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Current hypotheses suggest that tumors originate from cells that carry out a process of
“malignant reprogramming” driven by genetic and epigenetic alterations. Multiples studies
reported the existence of stem-cell-like cells that acquire the ability to self-renew and are
able to generate the bulk of more differentiated cells that form the tumor. This population
of cancer cells, called cancer stem cells (CSC), is responsible for sustaining the tumor
growth and, under determined conditions, can disseminate and migrate to give rise to sec-
ondary tumors or metastases to distant organs. Furthermore, CSCs have shown to be more
resistant to anti-tumor treatments than the non-stem cancer cells, suggesting that surviv-
ing CSCs could be responsible for tumor relapse after therapy. These important properties
have raised the interest in understanding the mechanisms that govern the generation and
maintenance of this special population of cells, considered to lie behind the on/off
switches of gene expression patterns. In this review, we summarize the most relevant epi-
genetic alterations, from DNA methylation and histone modifications to the recently dis-
covered miRNAs that contribute to the regulation of cancer stem cell features in tumor
progression, metastasis and response to chemotherapy.
© 2012 Federation of European Biochemical Societies.
Published by Elsevier B.V. All rights reserved.

1. Introduction

responsible for tumor development. Indeed, alterations in
DNA methylation, histone modifications, polycomb, miRNAs

During the last decades great advances have been made in ba-
sic research on cancer, in identifying the genetic changes and
chromosomal alterations responsible for cell transformation,
tumor initiation and progression (Fearon and Vogelstein,
1990; Vogelstein and Kinzler, 2004). Recent studies of epige-
netic changes in cancer demonstrate the relevance that these
have in cancer etiology (Jones and Baylin, 2007; Esteller, 2008).
A great body of evidence supports that both processes are

and chromatin remodeling complex function are mechanisms
that directly contribute to tumorigenesis.

Several epigenetic mechanisms are connected and work
synergistically in order to regulate the expression of specific
genes. DNA methylation is an important regulatory pathway
that is altered in carcinogenesis. DNA methyltransferases
are the enzymes responsible on the deposition of methyl
groups on cytosines. DNA methylation patterns are
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maintained through cell division cycles by DNA methyltrans-
ferase 1 (DNMT1), which recognizes semi-methylated DNA
(Eden et al., 2003), while DNMT3a and DNMT3b mediate de
novo DNA methylation (Okano et al., 1999). Methyl-cytosines
are recognized and bound by methyl-binding proteins, induc-
ing transcriptional repression by recruiting transcriptional co-
repressors (Klose and Bird, 2006). In mammals, nearly all
methylation occurs at CpG sites, especially in areas of repeti-
tive sequences. On the contrary, CpGs-enriched regions (CpG
islands) close to 5'-end of genes appear protected from such
modification, suggesting that DNA methylation of promoter
regions is a regulatory mechanism of gene expression (Bird,
2002). The cancer epigenome is characterized by global DNA
hypomethylation and gene specific hypermethylation
(Esteller, 2008; Feinberg et al., 2006). Different studies indi-
cated that DNA hypomethylation occurs at early stages in can-
cer development, contributing to chromosomal instability and
tumor progression (Esteller, 2008; Holm et al., 2005). DNA
hypomethylation also leads to the specific activation of key
genes involved in tumorigenesis, such as R-Ras, Cyclin D2,
MASPIN, melanoma-associated antigen (MAGE) (Akiyama
et al.,, 2003; De Smet et al., 1996; Nakamura and Takenaga,
1998; Nishigaki et al., 2005) and loss of imprinting (LOI) genes
(Cui et al., 2003; Ogawa et al., 1993). On the other hand, the si-
lencing of tumor-suppressor genes, such as retinoblastoma 1
(RB1), CDKN2A (p16), von Hippel-Lindau tumor suppressor
(VHL), MutL protein homolog 1 (MLH1) and BRCA1 (Tsai and
Baylin, 2011), as well as APC and Wnt-signaling genes in colo-
rectal carcinomas are associated to promoter DNA hyperme-
thylation and chromatin hypoacetylation (Hiltunen et al.,
1997; Suzuki et al., 2004).

Alterations in the balance among many of the histone
marks lead to deregulated gene transcription and are related
to cancer (Fraga et al., 2005; Seligson et al., 2005). The nucleo-
somes, the basic chromatin units, are composed of DNA wrap-
ped around octamers of the core histones H2A, H2B, H3 and
H4. The amino-terminal tails of histones are subjected to a va-
riety of post-translational modifications (reviewed in Torres-
Padilla et al., 2007) and, together with the linker histone H1,
can compact the nucleosomal DNA forming high-order struc-
tures. The more studied histone modifications are the methyl-
ation of lysine (K) residues mostly on H3, which, dependent on
the lysine residue, can be either activating or repressive, and
the acetylation of K residues on histones H3 and H4, which
are more abundant in transcriptionally permissive euchroma-
tin. The H3K4me3 is mediated by the Trithorax group of pro-
teins (TrxG) and marks nucleosomes found in the promoter
regions of actively transcribed genes (Santos-Rosa et al,
2002; Bernstein et al., 2002). H3K27me3 marks are mediated
by the Polycomb repressive complex 2 (PRC2), composed of
Polycomb group proteins (PcGs). PcGs were initially identified
as homeotic regulators which establish epigenetic patterns
during development, imprinting and X-inactivation
(Sparmann and van Lohuizen, 2006). Genes marked by
H3K27me3 are usually methylated and silenced. The catalytic
subunit of PRC2, Enhancer of zeste homolog 2 (EZH2) (Otte and
Kwaks, 2003; Ringrose and Paro, 2004), initiates the silencing
process through H3K27 methylation (Sun et al.,, 2002; Lee
et al., 2006; Vire et al., 2006). This mark allows the recruitment
of PRC1 and other co-repressors onto chromatin, resulting in

the heterochromatinization of the region through formation
of higher-order chromatin structures spanning around the
starting sites of the modification (Zhao et al., 2006). High levels
of PRC2 components are present in embryonic stem cells
(ESCs), which decline quickly upon the onset of differentia-
tion, while the expression and function of some of the compo-
nents of the PRC1 and PRC2 complexes have been found
altered in cancer (Tsang and Cheng, 2011). Concerning histone
acetylation, H3K4ac and H3K9ac are the more known marks
correlating with accessible euchromatin and transcriptionally
active regions. Histone acetylation is catalyzed by histone ace-
tyltransferases (HATs) and removed by histone deacetylases
(HDACsS) (Lee and Workman, 2007). Modulation of the histone
acetylation program interferes with the differentiation pro-
cess, and therefore, is not surprising that drugs targeting
HDACS are already being used to enhance differentiation or
reprogramming events. In addition, the PRC2-mediated tran-
scriptional repression of genes implicates histone deacetyla-
tion. EZH2 is physically and functionally linked to HDAC1
and HDAC2, which are frequently found overexpressed in var-
ious types of cancer (Halkidou et al., 2004; Song et al., 2005).
Furthermore, HATSs such as G9a, and aberrant fusion proteins
formed through chromosomal translocations of HAT and
HAT-related genes (MOZ, MORF, CBP and p300) (Yang, 2004)
or chromosomal translocations of MLL, have been related to
cancer (Krivtsov and Armstrong, 2007). Together, these stud-
ies show the complex interplay between HMT, DNMTs, HATs
and HDACs epigenetic pathways that contribute to aberrant
gene expression in cancer cells and illustrate how aberrant
DNA methylation can be initiated and maintained in cancer.

Additionally, ATP-dependent chromatin-remodeling fac-
tors were found significantly altered in cancer. These en-
zymes are represented by several subunits, encoded by 30
genes in mammals, and divided in four main families on the
basis of the sequence and the structure of the ATPase subunit:
SWI/SNF (switch/sucrose nonfermentable), ISWI (imitation
switch), CDH (chromodomain helicase DNA-binding) and
INOB8O (inositol-requiring 80). All those subunits interact with
each other in numerous combinations, creating assemblies
such as BAF (SWI/SNF), NuRD, ISWI, CDH1 and Tip60-p400
complexes (reviewed in Ho and Crabtree, 2010). In mammals,
Brm (Brahma) and Brgl ATPases together with other 12 sub-
units compose the major histone remodeling complex, BAF
(homologous to the SWI/SNF yeast complex). The selective
disruption of chromatin remodelers interferes with ESCs pro-
liferation and differentiation and alterations in the function of
this family of chromatin-modifying complexes were associ-
ated with cancer development (Roberts and Orkin, 2004;
Reisman et al., 2009). Thus, the BAF47 and BAF250A subunits
are inactivated in different types of tumors (Biegel et al.,
2000; Grand et al., 1999; Jones et al., 2010) and loss of heterozy-
gosity of Brm and Brgl, is found in primary lung cancers
(Reisman et al., 2003). At the present the epigenetic changes
caused by these mutations have yet to be defined.

miRNAs are small non-coding RNAs (19—25 nucleotides
long) that regulate mRNAs at post-transcriptional level. These
non-coding RNAs are involved in the control of ESCs pluripo-
tency (Gangaraju and Lin, 2009) and aberrant expression of
some of them is related to tumor growth and metastasis. Re-
cently, it was found that the expression of miRNAs may also
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be regulated by promoter DNA methylation, adding a new
level of complexity to the epigenetic regulation of tumorigen-
esis (Lujambio et al., 2007; Bandres et al., 2009).

However, most of the extensive characterization of epige-
netic alterations related above and associated to malignant
transformation and cancer has been obtained from whole
cells populations forming the tumor or cancer cell lines. Con-
sidering that tumors present cell heterogeneity, the identifica-
tion of specific epigenetic mutations and the characterization
of their effects in the subset of cancer cells responsible to
maintain the tumor growth, the cancer stem cells (CSCs, see
below), become a key issue. In this review we will focus on
the recent data regarding epigenetic modifications in CSCs
and in the bulk of tumor cells (non stem cancer cells-NSCCs)
with a less self-renewal potential, and their impact on tumor
initiation, progression and chemotherapy response.

2. Relevance of stem-like cells in cancer

Tumors have long been viewed as a caricature of normal tis-
sue development, where tumor cellular heterogeneity could
represent abortive attempts by a subset of undifferentiated tu-
mor cells to undergo functional differentiation (Pierce and
Speers, 1988). In this regard, some tumors show a pathological
architecture and hierarchical organization reminiscent to that
present in the origin tissue (Schepers et al., 2012). The CSC
model suggests that a subset of cancer cells, which presents
similar self-renewal and multipotency properties to adult
stem cells-responsible for tissue regeneration and homeosta-
sis is capable to sustain the tumor growth in contrast to the
bulk of tumor cells with a more differentiated phenotype
(N'SCCs) (Visvader, 2011). CSCs were initially described in my-
eloid leukemia. The use of cell surface markers that identify
hematopoietic stem cells enabled the isolation of tumor cells
expressing these markers. In contrast to the NSCCs, CSCs
were able to regenerate all the cell types present in the paren-
tal tumor after serial transplantation into immunodeficient
mice (Bonnet and Dick, 1997; Lapidot et al., 1994). During last
years, CSCs were identified in human solid tumors, such as
brain, breast, prostate, head and neck, pancreas, liver, ovary,
melanoma, skin and colon cancer, by using different stem
cell surface markers, including CD133, CD44, EpCAM, CD24,
Lgr5, by the expression of ALDH1 or by the ability to extrude
DNA dye (side population cells) (Visvader, 2011; Zhang et al.,
2011). However, some reports indicated that cells identified
by some of these markers were heterogeneous populations
of cells enriched in or containing CSCs and the phenotypic
features of these CSCs might change during tumor progres-
sion (reviewed in Baccelli and Trumpp, 2012). Therefore, it is
necessary to define this subset of tumor cells using more func-
tional assays, which relied on the ability to regenerate a tumor
with identical features to the parental tumor upon transplan-
tation into immunodeficient mice. However, this approach,
that imperfectly recapitulates the in vivo situation found in pa-
tients, has some limitations associated to isolation of tumor
cells, injection in heterotopic sites and the possible mis-
interpretation of tumor initiating capability of the isolated
cells depending on the immunodeficiency of mice used in
the xenograft assays (Quintana et al., 2008). This raised the

debate about the existence and role of the CSCs in the physi-
ological tumor progression. Recently, lineage tracing experi-
ments performed in mouse models demonstrated that adult
stem cells suffering specific mutation are the cells in the origin
of tumors in skin, colon and brain (Alcantara Llaguno et al.,
2009; Lapouge et al., 2011; Schepers et al., 2012; White et al.,
2011). Although in some tumor types these cells of origin
were demonstrated to act as CSCs (Chen et al., 2012;
Driessens et al., 2012; Schepers et al., 2012), some reports indi-
cated that CSCs can be also originated from more committed
progenitors (Cozzio et al., 2003; Krivtsov et al., 2006;
Somervaille and Cleary, 2006) that acquire stemness-related
features as a consequence of accumulation of genetic or epi-
genetic alterations. Thus, progeny of mutated stem cells could
acquire CSCs features and function.

In order to understand the relationship between CSCs and
normal stem cells, the transcriptional program in human in-
testinal stem cells and colorectal carcinoma was compared
and the results showed certain resemblance of gene expres-
sion signature between both populations of cells (Schepers
etal,, 2012). In addition, an adult stem cell transcriptional pro-
file was activated in diverse human epithelial cancers, which
correlated with recurrent disease, metastasis and death
(Merlos-Suarez et al., 2012; Wong et al., 2008). Furthermore,
ESCs-gene expression signature, defined in part by some miR-
NAs, PRC2-regulated genes and the transcription factors Oct4,
Nanog, Sox2, K1f4, is more frequently found in poorly differen-
tiated tumors with poor clinical outcome (Chiou et al., 2010;
Eberle et al., 2010; Schoenhals et al., 2009). The relevance of
the Oct4 and Nanog in cancer is also supported by the notion
that ectopic expression of these transcription factors in lung
and ovarian cancer cells increased the percentage of cells
with CSC properties, enhanced drug resistance and promoted
epithelial-to-mesenchymal transition (EMT) (Chiou et al,
2010; Kong et al., 2010; Siu et al., in press).

The relevance of CSCs to clinical cancer rely on the obser-
vation that CSC population are more resistant to anti-tumor
therapies than NSCCs (Dallas et al., 2009; Dylla et al., 2008;
Eramo et al., 2006; Hermann et al., 2007; Ma et al., 2008;
Todaro et al., 2007). Indeed, the frequently used anti-tumor
therapy would eliminate preferentially NSCCs, being the sur-
viving CSCs responsible for the tumor relapse. Using a combi-
nation of experimental approaches that selectively eliminate
glioblastoma CSCs, and conventional anti-tumor therapy
that suppress the bulk of dividing cells, it was recently demon-
strated that glioblastoma growth was dramatically impeded
in vivo, increasing the survival of tumor carrying mice (Chen
etal., 2012).

In addition, several lines of evidence indicate that cell ini-
tiating metastasis could be founded within subpopulations of
CSCs. Thus, CSCs possess some of the features characteristics
that make them likely candidates for metastasis initiating ac-
tivities, such as the tumor-initiating capacity, necessary for
the generation of secondary tumors in distant organs and
the expression of EMT markers (Mani et al., 2008), which is as-
sociated with the tumor cell ability to migrate.

The frequency of CSCs is variable in different tumors and it
may depend on the cell type of origin, tumor microenviron-
ment, accumulated somatic mutations and stage of malignant
progression reached by the tumor (Gupta et al, 2009;
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Vermeulen et al,, 2010). Tumor niche is composed of diverse
immune and stromal cells, blood vessels and matrix glycopro-
teins, which provide a highly specialized microenvironment
for cancer cells (Bissell and Hines, 2011; Hanahan and
Coussens, 2012; Shiao et al., 2011). Contact and communica-
tion between these elements are critical for stem cell self-
renewal and multipotency. CSCs are frequently enriched in
regions around tumor vessels and necrosis (Calabrese et al.,
2007), the latter associated with restricted oxygen/hypoxia.
Furthermore, hypoxia that maintains the undifferentiated
states of embryonic, hematopoietic, mesenchymal and neural
stem cells, influence proliferation and cell-fate commitment
of cancer cells (Mohyeldin et al., 2010) through hypoxia-
inducible factors-1 (HIF-1 and HIF being the latter preferen-
tially expressed in CSCs (Bar et al., 2010; Heddleston et al.,
2009; Li and Rich, 2010; Seidel et al., 2010). Hence, the signals
provided by the niche could be important to regulate the prop-
erties of CSCs as well the dynamic interplay between CSCs
and NSCCs during tumor progression. The CSC concept has,
therefore, evolved to model the complex and highly dynamic
processes of tumorigenesis, tumor relapse and metastasis. Al-
terations in adult stem/progenitors cell homeostasis induced
by genetic and epigenetics defaults could reprogram these
cells to acquire more advantageous features in response to
the tumor microenvironment requirements, thus, leading to
CSCs generation.

3. Epigenetic regulation of CSC properties

Multiples studies have been focused on decoding the genetic
and epigenetic mechanisms responsible for the acquisition
of stemness features and CSC genesis. Epigenetic mecha-
nisms are involved in the regulation of the embryonic and
adult stem cell transcriptional program, controlling self-
renewal and differentiation processes. Multiple observations
indicate that the establishment and maintenance of CSC fea-
tures can be orchestrated by a similar way, switching CSC
markers on and off to generate heterogeneous population of
cells with distinct phenotypes and features. Genetic and epi-
genetic changes would provide survival advantages in CSC
subpopulation and contribute to tumor initiation capability
and tumor progression. The relevance of the DNA methylation
in CSC regulation and tumor growth was illustrated in leuke-
mia stem cells. The abrogation of DNA methyltransferase
Dnmtl expression blocked the leukemia development. Fur-
thermore, haploinsufficiency of Dnmt1 resulted in tumor sup-
pressor gene derepression, reduced bivalent chromatine
marks, impaired CSC self-renewal and delayed leukemogene-
sis (Trowbridge et al., 2012). Although promoter hypermethy-
lation of some tumor suppressor genes, that drive
oncogenesis at early stages, was already present in the CSCs
and was preserved in NSCC subpopulation, the promoter
methylation status of some CSC markers can show differ-
ences in both tumor cell populations. Indeed, the methylation
of CD133 promoter was heterogeneous between CD133* and
CD133™ subpopulations isolated from brain (Gopisetty et al.,
in press; Yi et al,, 2008) and epithelial ovarian cancer (Baba
et al.,, 2009). Interestingly, the methylation of the CD133 pro-
moter appeared during the differentiation of CD133* CSCs to

CD133~ NSCCs cells, correlating with the decreased expres-
sion of this surface glycoprotein (Baba et al., 2009; Gopisetty
et al,, in press). Likewise, CD44, CD133 and Mushasi-1 pro-
moters presented a hypomethylated status which was associ-
ated with high expression of these CSC markers in triple-
negative breast tumors (Kagara et al.,, 2012). This suggests
that aberrant DNA methylation in tumors is dynamic and con-
tributes to the transition between active and repressive state
of gene transcription.

There is evidence that PcG complexes target similar sets of
CpG-containing genes in ESCs as in cancer cells (Ohm et al.,,
2007; Schlesinger et al., 2007; Widschwendter et al., 2007).
These targeted genes can be responsible for the CSC pheno-
type emerging during tumorigenesis (Schlesinger et al., 2007;
Widschwendter et al., 2007). An aberrant methylation may,
then, help to abnormally lock in the activation of stem cell
pathways and contribute to the self-renewing ability of CSCs
during tumor progression. The induced expression of EZH2
in hematopoietic stem cells promoted myeloid expansion in
a knock-in mouse model, indicating a stem cell-specific
EZH2 oncogenic role in myeloid disorders (Herrera-Merchan
et al.,, 2012). In addition, several studies demonstrated that
the upregulation of EZH2 expression in some tumors contrib-
ute to the maintenance of a reversible and undifferentiated
stem-like phenotype in cancer cells (Burdach et al., 2009;
Chang et al, 2011b) and the expansion of breast CSCs
(Chang et al., 2011b). Furthermore, the pharmacological inhi-
bition and downregulation of EHZ2 inhibits CSC self-renewal
in vitro, reduced the expression of CSC markers and block
the in vivo tumor-initiating capacity in different tumor types
(Bao et al., 2012; Crea et al., 2012b; Rizzo et al., 2011; Suva
et al., 2009). Similarly, BMI1, a subunit of PRC1 complex previ-
ously implicated in leukemogenesis, is upregulated by the ESC
transcription factor Sall4, through increase of H3K4me3 and
H3K79me2 marks on the BMI1 promoter, and this mechanism
can regulate self-renewal in normal and leukemic stem cells
(Yang et al., 2007). BMI1 is also expressed in CD133" cells in
human glioblastomas and its knockdown resulted in the inhi-
bition of the clonogenic potential, as well the ability to induce
brain tumor formation in vivo (Abdouh et al., 2009).

Methylation of H3 at lysine 4 (H3K4) is frequently associ-
ated with active promoters. LSD1/KDM1 is a histone demethy-
lase that suppresses gene expression by converting H3K4me2
to H3K4me and unmethylated H3K4. Inhibitors of LSD1
inhibited specifically the proliferation of pluripotent cancer
cells from teratocarcinoma, embryonic carcinoma and semi-
noma but not from normal somatic cells or non-pluripotent
cancer cells (Wang et al., 2011). Interestingly, a new mecha-
nism that mediate tumor hypoxic responses was recently re-
ported, which links microenvironmental regulation of
epigenetic modifying proteins to cancer cellular heterogene-
ity. The histone methyltransferase mixed-lineage leukemia 1
(MLL1) is induced by hypoxia in glioblastoma and CSCs were
found to express higher levels of this enzyme than matched
NSCC. Downregulation of MLL1 induced the repression of
HIF20 protein and target genes concomitantly with the reduc-
tion of CSC self-renewal and tumorigenicity (Heddleston et al.,
2012).

Several miRNAs implicated in development cooperate with
PcGs complexes and DNA methylation to regulate the balance
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between self-renewal and differentiation in CSCs (Esquela-
Kerscher and Slack, 2006; Volinia et al., 2006). Let-7 is one of
the most consistently and significantly reduced miRNAs in
different types of cancers and frequently linked to tumor ma-
lignant progression (Johnson et al., 2005; Viswanathan et al.,
2009). Similarly to that described in ESCs, let-7/Lin28 loop
plays a critical role in the breast CSC maintenance
(Viswanathan et al., 2009; Yang et al., 2010). Breast CSCs iso-
lated from human tumors expressed reduced levels of let-7
compared to NSCCs. Interestingly, increased expression of
let-7 enhance differentiation, leading to reduced CSC self-
renewal and ability to develop tumor and metastasis in immu-
nodeficient mice (Yu et al., 2007). Similarly, a reduced expres-
sion of let-7 family that leads to overexpression of EZH2 was
found in aggressive human prostate cancer and re-
expression of let-7 decreased EZH2 expression and repressed
CSC self-renewal (Kong et al., 2012).

Contrary to let-7, the expression of miR-200 family mem-
bers was unaffected during transformation, but it became
specifically downregulated in breast CSCs in comparison to
NSCCs. Indeed, miR-200b and miR-200c overexpression
strongly inhibited the proliferation of CSCs and their ability
to form tumors in vivo (Iliopoulos et al., 2010; Lo et al., 2011;
Shimono et al., 2009), and this effect was mediated by target-
ing different subunits of PcGs complexes. MiR-200c repressed
the expression of BMI1 (Lo et al., 2011; Shimono et al., 2009),
while loss of miR-200b increased Suzl2 expression and
H3K27 methylation. Interestingly, ectopic expression of
Suz12 in transformed cells was able to generate CSCs
(lliopoulos et al., 2010). In addition, miR-200c levels are regu-
lated by a complicated loop comprising of Bmil and ZEB1
(Wellner et al., 2009). These findings reveled that miR-200
family members play an important role regulation the CSC
formation and function, implicating PcG complexes in this
process.

In addition, miR-34a modulates CSC function in tumor
growth and metastasis. The expression of miR-34a is regu-
lated by p53 and miR-34a induces apoptosis, cell-cycle arrest
or senescence when is introduced in cancer cells (Bommer
et al,, 2007; Chang et al., 2007; He et al., 2007; Raver-Shapira
et al.,, 2007; Tarasov et al., 2007). Recently, it was demon-
strated that miR-34a, which is under-expressed in CSCs, neg-
atively regulates the tumor initiating capacity of prostate (Liu
et al.,, 2011), pancreatic (Ji et al., 2009b) and breast (Yu et al.,
2012) CSCs. Interestingly, systemically delivered miR-34a
inhibited prostate cancer metastasis and extended survival
of tumor-bearing mice (Liu et al., 2011). In addition, miR-
34a targets CD44 and CD44 knockdown phenocopied miR-
34a over-expression in inhibiting prostate cancer regenera-
tion and metastasis, indicating the relevance of CD44 marker
in CSC function (Liu et al., 2011). Similarly to the axis p53-
miR-34a regulation, TA-p73 and p63, homologous to p53,
may also upregulate the expression of
suppressor miRNAs, such as let-7, miR-15/16a, miR-145,
miR-29, miR-30 and miR-146a (Boominathan, 2010), high-
lighting the relevance of tumor suppressors genes in the reg-
ulation of miRNAs expression. Although some cancers
maintain wild-type human p53, it was found that miR-380-
5p, which is highly expressed neuroblastomas with poor out-
come, represses p53 expression via a conserved sequence in

tumor

the p53 3'-untranslated region (3'-UTR). MiR-380 over-expres-
sion cooperates with activated HRas oncoprotein to trans-
form primary cells, blocks oncogene-induced senescence
and forms tumors in mice (Swarbrick et al., 2010). Differen-
tial miRNA expression profiling of CD133+ CSCs and
CD133— NSCCs from human hepatocellular carcinoma iden-
tified a high expression of miR-130b in CSCs. Finally, miR-
130b that targets TP53INP1 (Ma et al., 2010), miR-181 that tar-
gets regulators of differentiation such as CDX2, GATA6 and
NLK (Ji et al., 2009a), and miR-371-3 (Cairo et al., 2010), are
over-expressed in CSCs compared to NSCCs in different tu-
mor types, resulting in enhanced self-renewal and tumorige-
nicity in vivo. Recent data suggest that Myc up-regulates the
miR-371-3 cluster with concomitant down-regulation of the
miR-100/let-7a-2/miR-125b-1 cluster, contributing to the ag-
gressive phenotype of liver tumors originating from hepatic
progenitors cells (Cairo et al., 2010).

4. Deregulation of pathways controlling CSC self-

renewal by epigenetic alterations

Some of the most characterized signaling pathways control-
ling self-renewal and differentiation in adult stem cells,
such as Wnt/p-catenin, Hedgehog, Notch and TGF-B/BMP
pathways are frequently modulated in cancer by epigenetic
mechanisms.

4.1. Wnt/B-catenin signaling pathway

The canonical Wnt signaling pathway, which through B-
catenin modulates the expression of specific target genes,
is an important regulator of stem cells and CSCs and is ab-
errantly activated during the development of various hu-
man cancers (Clevers, 2006; Fodde and Brabletz, 2007; Jin
et al., 2011; Vermeulen et al., 2010). Gain-of-function muta-
tions of the CTNNB1 gene (encoding B-catenin) and loss-of-
function mutations of APC and AXIN genes were identified
as the main mechanisms associated to Wnt signaling dys-
function in cancers (Barker and Clevers, 2006; Lindvall
et al., 2007; Polakis, 2000). A number of genes involved in
the Wnt/p-catenin signaling are methylated and silenced
in breast cancer, including the Wnt inhibitors WIF1,
SFRP1-5 and DKK1, as well APC and SRY-box containing
gene 17 (SOX17) (Klarmann et al., 2008; Suzuki et al., 2004;
Zhang et al., 2008). Recent studies indicate that Wnt/B-cat-
enin pathway can be also regulated by histone modifica-
tions in cancer. Genome wide profiling studies revealed an
enrichment of EZH2 and associated H3K27me3 on Wnt
genes in Drosophila and mammalian cells (Bracken et al.,
2006; Kirmizis et al., 2004). In support to this notion, over-
expression of EZH2 in mammary gland induces B-catenin
nuclear accumulation and activation of Wnt pathway and
causes intraductal epithelial hyperplasia (Li et al., 2009a).
Additionally, the transcriptional repression of DACT3,
a Wnt antagonist, was associated with bivalent H3K27me3
and H3K4me3 histone modifications (Jjiang et al., 2008) and
Dkk-1 repressed expression was induced by decreased
H4K16Ac and increased H3K27me3, and by the recruitment
of SirT1, EZH2, Suz12 and BMI1 to its promoter (Hussain
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et al., 2009). MiRNAs have also been implicated in the regu-
lation of different players of the Wnt/p-catenin pathways
(Inui et al., 2010). MiR-200a, miR-1826 and miR-320 directly
targets B-catenin mRNA and a direct correlation was found
between decreased levels of these and the upregulation of
B-catenin and tumor growth in different cancer types
(Hirata et al., 2012; Saydam et al., 2009; Sun et al., 2012).
In addition, B-catenin/Lefl transactivates the miR-371-373
cluster involved in CSC self-renewal, and in turn, these
miRNAs modulate the Wnt/p-catenin signaling by targeting
DKK1 inhibitor (Zhou et al.,, 2012). MiR-15a and miR-16-1
clusters, down-regulated in prostate cancer, target CCND1
(encoding cyclin D1) and WNT3A expression and reconsti-
tution assays of miR-15a and miR-16-1 expression resulted
in impaired tumor growth in vivo (Bonci et al., 2008). MiR-
135a and miR-135b target APC and suppress its expression,
inducing B-catenin signaling (Nagel et al., 2008). Interest-
ingly, a significant up-regulation of these miRNAs was
found in colorectal adenomas and carcinomas, which cor-
related with low APC mRNA levels (Nagel et al., 2008). On
the other hand, Wnt/p-catenin signaling can regulate also
tumor growth, cancer cell migration and invasion by nega-
tively regulating the miR-122a expression in liver cancer
(Wang et al., 2009a).

4.2. Hedgehog signaling pathway

In mammals, Hedgehog (Hh) signaling pathway controls the
proliferation of stem and progenitor cells in different tissues
and alterations in this pathway has been related to tumor de-
velopment (Ingham and Placzek, 2006; Jiang and Hui, 2008;
Pasca di Magliano and Hebrok, 2003). Binding of Hh to its re-
ceptor Patched (Ptch-1) activates the transmembrane protein
Smoothened (Smo), which subsequently activates the Gli fam-
ily of transcription factors, leading to activation of target
genes. Glil expression and function are regulated at different
levels by epigenetic mechanisms. Glil function is downregu-
lated by the chromatin remodeling protein SNF5, through its
interaction with Glil-regulated promoters and recently SNF5
was found to be inactivated in human malignant rhabdoid tu-
mors, coincidental with the activation of the Hh-Glil pathway
(Jagani et al., 2010). Gli1 and Gli2 are acetylated proteins and
their HDAC-mediated deacetylation promotes Hh pathway
transcriptional activation. A positive auto-regulatory loop
was described, where Hh activation induced upregulation of
HDACI1. This mechanism is turned off by HDAC1 degradation
through an E3 ubiquitin ligase complex, formed by Cullin3 and
REN, which is lost in human medulloblastoma (Canettieri
et al.,, 2010). In addition, Glil expression is downregulated by
miR-324-5p, and loss of miR-324-5p leads to tumor formation
(Ferretti et al., 2008). A recurrent amplification of the miR-17/
92 cluster proto-oncogene was found in 6% of pediatric medul-
loblastomas, which are characterized by present Sonic hedge-
hog (Shh) signaling activation compared with other subgroups
of medulloblastoma (Northcott et al., 2009). Shh treatment of
primary cerebellar granule neural progenitors resulted in in-
creased miR-17/92 expression, indicating a functional collabo-
ration between the miR-17/92 cluster and the Shh signaling
pathway in the development of medulloblastomas
(Northcott et al., 2009; Uziel et al., 2009).

4.3. BMP and TGF-@ signaling pathways

Bone morphogenetic proteins (BMPs) regulate a wide variety
of biological processes that range from proliferation and dif-
ferentiation to apoptosis, depending on developmental stage.
Deregulation of the molecular effectors of BMP signaling may
contribute to cancer (Fukuda and Taga, 2005; Plikus et al,,
2008; Rendl et al., 2008). BMP2/4 induces differentiation of neu-
ral stem cells and glioblastoma CSCs. This signaling is im-
paired by the EZH2-dependent epigenetic silencing of BMP
receptor 1B (BMPR1B). Ectopic over-expression of BMPR1B or
demethylation of its promoter restores differentiation capa-
bilities of BMP signaling, leading to loss of tumorigenicity
(Lee et al., 2008). Furthermore, BMP-6 has been identified as
an inhibitor of breast cancer EMT by rescuing E-cadherin ex-
pression (see below). Current data suggest that this process
is mediated by the BMP-6-induced transcriptional inhibition
of miR-21, which is over-expressed in aggressive breast can-
cers (Du et al., 2009). However, increased expression of miR-
21 also positively correlated with TGF-p1l and it was found
that TGF-B upregulates the expression of miR-21, facilitating
tumor progression (Qian et al., 2009). TGF-B acts as a tumor
suppressor in tumor initiation and early steps of tumor pro-
gression and inactivation of TGF-B tumor suppressor pathway
is a main step in the development of a variety of human tu-
mors. However, at late stage it induces tumor growth, EMT
and metastasis (Majumdar et al., 2012). MiR-106b-25 and
miR-17-92 clusters were described as key-modulators of
TGF-B signaling (Petrocca et al., 2008). By functioning both up-
stream and downstream of pSMAD2, miR-17-92 activation
triggers downregulation of multiple key effectors along the
TGF-B signaling cascade, as well as direct inhibition of TGF-
B-responsive genes, which regulate tumor growth, migration
and CSC function in various cancers (Dews et al., 2010; Ernst
et al., 2010; Mestdagh et al., 2010; Tili et al., 2010). In addition,
the elevated expression of miR-181b/d correlated with upre-
gulation of TGF-B and its downstream mediators SMAD 2, 3
and 4 in a mouse model of hepatocellular carcinoma. In
turn, miR-181b was augmented upon exposure of hepatic cells
to TGF-B, showing the involvement of TGF-B signaling path-
way in miR-181b expression. In turn, miR-181b enhanced ma-
trix metallopeptidases MMP2 and MMP9 activity and
promoted growth, migration and invasion of hepatocellular
carcinoma (Wang et al., 2010). In addition, TGF-B can induce
specific miRNA expression, such as miR-23a/27a/24 cluster,
which is up-regulated in hepatocellular carcinoma (Huang
et al,, 2008) and miR-155, induced in breast cancer (Kong
etal., 2008), to escape from tumor-suppressive response in de-
veloping tumors. Indeed, TGF-f increased miR-155 expression
through Smad4 function and the knockdown of miR-155 sup-
pressed TGF-B-induced EMT, as well as cell migration and in-
vasion. These data suggest that miR-155 may play an
important role in TGF-B-induced EMT and cell migration.

4.4. Notch signaling pathway

Notch signaling, a highly conserved regulatory signaling net-
work, is crucial for the correct development and growth of nu-
merous organs and tissues. When subverted, it can induce
tumorigenesis at times, serving as an oncogene and at others,
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behaving as a tumor suppressor (Katoh, 2007; Miele et al,,
2006; Weng et al., 2006). Notch is a transmembrane receptor,
whose intracellular part is cleaved off upon binding of a spe-
cific ligand, producing the Notch intracellular domain
(NICD). NICD is translocated to the nucleus, where it targets
the DNA binding protein RBP-Jkappa. In the absence of Notch,
RBP-Jkappa represses Notch target genes by recruiting a co-
repressor complex. Epigenetic modifications affecting Notch
pathway at different levels (receptor, ligands or downstream
effectors) have been associated with cancer development
and progression. Indeed, Notch ligand Jagged 2 is over-
expressed in multiple myeloma, coincidental with an aber-
rantly acetylated JAGGED 2 promoter region. This acetylation
is regulated by the recruitment of HDACs to promoter regions
through interaction with nuclear co-repressors such as SMRT.
Hence, reduced levels of SMRT decreased the HDAC recruit-
ment to the JAGGED 2 promoter region, leading to increase
transcriptional expression and upregulation of Notch signal-
ing in myeloma cell lines (Ghoshal et al., 2009). These findings
match with the effects of the HDAC inhibitor valproic acid, in-
ducing the expression of Notch genes and leading to an in-
crease of the invasiveness of non-invasive osteosarcoma cell
lines (Hughes, 2009). Notch pathway is also regulated by miR-
NAs, and this process has been related to the promotion of tu-
mor growth and invasion in different cancer types. In this
regard, miR-200c and miR-141 directly inhibited Jagged 1, im-
peding proliferation of human metastatic prostate cancer
cells (Vallejo et al., 2011). In addition, miR-34a inhibited inva-
siveness through to downregulation of the expression of JAG-
GED 1 and JAGGED 2 in glioma cells (Li et al., 2009b; Pang et al.,
2010). Enhanced expression of miR-34a as well as the inhibi-
tion of Notch signaling suppressed the invasiveness in these
cells and in osteosarcoma cells (Hughes, 2009; Pang et al.,
2010). In addition, the involvement of miR-34 by negatively
regulating the Notchl and Notch2 expression in self-
renewal/differentiation was recently demonstrated in pancre-
atic CSCs. These CSCs showed high levels of both receptors,
coincidental to decreased expression of miR-34 (ji et al,
2008). The expression of Notch1 is also regulated by miR-326
in glioma cells following a feedback loop, where Notch1 down-
regulates miR-326 expression and this miRNA inhibit Notch
proteins and activity (Kefas et al., 2009). Additionally, the ex-
pression of other Notch receptors such as Notch4 and Notch3
are respectively targets of miR-181c, which in turn, exhibits
a DNA methylation-dependent silencing expression in some
gastric carcinomas (Hashimoto et al., 2010). Other epigenetic
mechanisms that activate Notch signaling were related to
the role of miR-146a, that targets Numb (Kuang et al., 2009),
a negative regulator of Notch signaling found in a large pro-
portion of breast carcinomas (Pece et al., 2004; Stylianou
et al., 2006), and miR-199b-5p, that targets the transcription
factor Hes-1, inhibiting medulloblastoma cell growth. More-
over, over-expression of miR-199b-5p decreased the CSCs
(CD133"%) and also blocked expression of several cancer
stem-cell genes (Garzia et al., 2009).

Together, these findings support the notion that a complex
network of signaling pathways, responsible for controlling
self-renewal and differentiation fate in normal stem cells,
can get deregulated due to the aberrant function of multiples
epigenetic mechanisms during the course of tumorigenesis,

inducing the proliferation and self-renewal of CSCs. Interest-
ingly some of these epigenetic alterations are also described
in normal ESCs, indicating that the re-acquisition of these
may have a deep impact in CSC features essential to promote
tumor progression and metastasis.

5. Epigenetic regulation of metastasis and
chemotherapy response

Tumor cells dissemination and metastasis has been related to
epithelial-to-mesenchymal transition (EMT), a trans-
differentiation program that converts adherent epithelial cells
into individual migratory cells (Polyak and Weinberg, 2009).
EMT and the reverse process, termed the mesenchymal-to-
epithelial transition (MET), play central roles in embryogene-
sis (Perez-Pomares and Munoz-Chapuli, 2002; Thiery and
Sleeman, 2006), as well as in cancer invasion and metastasis
(Guarino et al., 2007; Polyak and Weinberg, 2009). EMT process
in cancer involves disruption of normal epithelial integrity,
loss of morphological features of polarized epithelia, includ-
ing cell—cell adhesion, planar and apical—basal polarity and
lack of motility, and the acquisition instead of mesenchymal
features, such as motility, invasiveness and a heightened re-
sistance to apoptosis (Polyak and Weinberg, 2009). This pro-
cess is triggered by a diverse set of stimuli including growth
factor signaling, tumor—stromal cell interactions and hypoxia,
whose crosstalk can lead to reprogramming of epithelial cells
to mesenchymal state. Currently, it is considered that dissem-
inated cancer cells require self-renewal capability, similar to
that exhibited by stem cells, in order to produce macroscopic
metastases. A direct link between the EMT and the gain of
stem cell properties was previously demonstrated (Mani
etal.,, 2008). Indeed, an increase in the proportion of immortal-
ized human mammary epithelial cells exhibiting stem cell
markers and an increased ability to form mammospheres,
was observed after EMT induction. Furthermore, stem cells
isolated from mouse and human mammary glands or mam-
mary carcinomas expressed EMT markers (Mani et al., 2008).
Hence, signaling pathways involved in the regulation of
stem cell function and niche—stem cell interactions may
play a role in triggering EMT, potentially by establishing and
maintaining stem cell-like characteristics. TGF-B induces
EMT through multiple signaling mechanisms (Massague,
2008; Yang and Weinberg, 2008) and by influencing the activ-
ities of other EMT-inducing signal transduction pathways, in-
cluding Notch, Wnt and integrin signaling (Polyak and
Weinberg, 2009).

EMT is characterized by the loss of E-cadherin expression,
which emerges as a critical step (Dohadwala et al., 2006;
Dumont et al., 2008; Gibbons et al., 2009). This results in the
liberation of B-catenin, which is normally sequestered by the
cytoplasmic tail of E-cadherin. The resulting free B-catenin
may then migrate to the nucleus and induce expression of
EMT transcription factors (Polyak and Weinberg, 2009;
Vincan and Barker, 2008). However, the activation of f-catenin
signaling, although necessary in some cells, may not be suffi-
cient to orchestrate all the program leading to EMT, as some B-
catenin activated cancer cells do not necessary exhibit EMT
markers. Loss of E-cadherin function can be induced by
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mutations in its encoding gene (CDH1), as that identified in
hereditary diffuse gastric cancer and in lobular breast carcino-
mas (Berx et al., 1996; Dunbier and Guilford, 2001). However,
other mechanisms are implicated in the regulation of E-cad-
herin expression, as direct inhibition by zinc finger transcrip-
tional repressors ZEB1, ZEB2, Snaill, and Twistl (Cano et al,,
2000; Comijn et al., 2001; Eger et al., 2005; Yang et al., 2004)
and epigenetic mechanisms as CpG hypermethylation and al-
terations of histone modifications (Lombaerts et al., 2006;
Peinado et al., 2004). Methylation of CpG islands in the re-
pressed E-cadherin promoter result in recruitment of HDAC
and histone deacetylation, which is essential for the silencing
of E-cadherin gene (Koizume et al., 2002; Wang and Shang, in
press). E-cadherin repression is also mediated by EZH2 and
PRC2 complex, which is recruited to E-cadherin promoter via
Snail (Cao et al., 2008; Herranz et al., 2008). Indeed, EZH2 si-
lencing results in inhibition of invasion and migration in dif-
ferent cancer cells. Together with BMII, is essential for the
anchorage-independent growth of metastatic cancer cells
(Crea et al., 2012a). In addition, the treatment of cancer cells
with DNMT inhibitors increase invasiveness, tumorigenicity
and metastatic capability, concomitantly with the upregula-
tion of EMT-associated genes (Ateeq et al., 2008; Guo et al,,
2002). In this regard, research of global epigenetic changes as-
sociated to EMT identified promoter hypomethylation of a set
of genes, which are highly expressed in breast CSCs
(Bloushtain-Qimron et al., 2008). In fact, the over-expression
of one of these factors, FOXC1, induced a complete EMT pro-
gram in breast cancer cell lines and increased invasion and
motility features (Bloushtain-Qimron et al.,, 2008). On the
other hand, global reduction in the heterochromatin mark
H3K9Me2 and an increase in H3K4Me3 and H3K36Me3 was re-
ported during the induction of EMT by TGF-B. These changes
depended largely on LSD1, and loss of LSD1 function had
marked effects on EMT-driven cell migration and chemore-
sistance (McDonald et al., 2012).

During the last years multiples miRNAs have been reported
as modulators of transcription factors involved in EMT and
metastasis. The miR-200 family members (i.e miR-200a, miR-
200b, miR-200c, miR-141), miR-429, and miR-205 are key deter-
minants in the regulation of EMT and cancer cell invasion and
migration by directly targeting ZEB1 and ZEB2 factors (Gregory
et al., 2008; Korpal et al., 2008; Park et al., 2008). Loss of miR-
200 results in increased ZEB1 and ZEB2 levels, leading to the
repression of E-cadherin and EMT induction. However, a recip-
rocal feedback loop, in which ZEB1 and ZEB2 bind to promoter
regions of the miR-200 family to repress its transcription, was
described (Bracken et al., 2008; Burk et al., 2008). MiR-200 is
also involved in the modulation of Sox2, Klf4, BMI1 and
Suz12, previously described to regulate stemness in cancer
cells (Gregory et al., 2008; Liu et al., 2012a; Shimono et al.,
2009). However, other mechanisms may be involved in the
regulation of miR-200. Thus, the exposure of immortalized hu-
man bronchial epithelial cells (HBECs) to tobacco carcinogens
induced a persistent and irreversible dedifferentiation pro-
gram marked by EMT and the emergence of CSCs. EMT induc-
tion was initially driven by chromatin remodeling through
H3K27me3 enrichment and later by DNA methylation to si-
lence the expression of miR-200c and miR-205 (Tellez et al.,
2011). Furthermore, p53 has shown to have a role in regulating

both EMT and EMT-associated stem cell properties by directly
binding to the miR-200c promoter and activating its expres-
sion. Loss of p53 in mammary epithelial cells leads to de-
creased expression of miR-200c and activation of the EMT
program and increased mammary stem cell population. Con-
trariwise, the enhanced p53 expression, induced by ectopic
expression or by etoposide treatment, was able to reverse
TGF-B induced mesenchymal phenotype to an epithelial phe-
notype, blocking the E-cadherin repression mediated by TGF-
B (Chang et al., 2011a). The relevance of the miR-200 family is
highlighted by the correlation between reduced levels of miR-
200c and an increased expression of EMT and stemness
markers in a cohort of high grade breast tumors (Chang
et al, 2011a). A link between DCAMKL-1 (a microtubule-
associated kinase considered a stem cell marker) (May et al.,
2008; May et al., 2010) which promotes pancreas tumorigene-
sis and EMT was established. Knockdown of DCAMKL-1 in
pancreatic cancer cells resulted in downregulation of Snail,
Slug, and Twist and induction of miR-200a (Sureban et al.,
2011). Recent studies indicated that miR-34a/c expression is
significantly decreased in metastases and human primary tu-
mors with lymph node metastases (Yang et al., in press) and
the expression of miR-34a was shown to be regulated by
ZEB1 and by methylation of its promoter (Ahn et al., 2012;
Yu et al., 2012).

More miRNAs have been related to EMT and metastasis,
such as miR-495. MiR-495 is highly up-regulated in breast
CSCs and directly targets E-cadherin and REDD1, promoting
tumorigenesis and cell invasion under hypoxia conditions
(Hwang-Verslues et al., 2011). MiR-21 and miR-31 were prom-
inently elevated under the synergistic actions of TGF-B/TNF-
o in colon cancer cells. Consistent with this, over-expression
of either miR-21 or miR-31 significantly enhanced the effect
of TGF-p inducing EMT and invasiveness by directly targeting
the expression of Tiam1, a guanidine exchange factor of the
Rac GTPase. Therefore, miR-21 and miR-31 are downstream
effectors of TGF-Bin facilitating invasion and metastasis of co-
lon carcinoma cells (Cottonham et al., 2010). Accordingly, an
increased expression of miR-21 was observed in gastric and
lung tumors correlating with poor prognosis (Liu et al., in
press-b; Xu et al., 2012). Further studies indicated that miR-
21 promotes invasion and metastasis by modulating PTEN ex-
pression through AKT and ERK1/2 pathways (Han et al., 2012;
Liu et al., in press-b).

Emerging evidences suggest that resistance to chemother-
apy in tumors is associated with CSC features and with the ac-
quisition of an EMT-like phenotype (Shah et al., 2007; Wang
et al.,, 2009b). Indeed, several pancreatic cancer cell lines
with high expression of the E-cadherin and low expression
of the ZEB1 showed to be sensitive to three conventional che-
motherapeutic agents (gemcitabine, 5 fluorouracil and cis-
platin). By contrast, pancreatic cancer cell lines that showed
EMT characteristics resistant to these drugs
(Arumugam et al., 2009). Furthermore, pancreatic cancer cells
selected to be resistant to gemcitabine acquired EMT features,
as well as increased cell migration and invasion capabilities
(Arumugam et al., 2009). Interestingly, the reversion of the
EMT phenotype by downregulation of Notch signaling, which
resulted in decreased expression of vimentin, ZEB1, Snaill
and Slug and nuclear factor «B (NFkB), lead to decrease of

were
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resistance to chemotherapy (Shah et al., 2007). The above ev-
idence suggests that the epigenetic modifications involved in
the acquisition of these properties (EMT and CSC features)
could have an impact in the response to chemotherapy.
Hence, miR-200 family is downregulated in pancreatic cancer
cells resistant to gemcitabine, and the re-expression of the
miR-200 resulted in resistant cells becoming sensitive to the
drug (Li et al., 2009c). High levels of miR-21 has been related
to resistance to chemotherapy and poor survival in pancreatic
cancer (Ali et al.,, 2010; Giovannetti et al., 2010; Hwang et al.,
2010; Moriyama et al., 2009). Many members of the let7 family
are also found downregulated in EMT-type cells resistant to
gemcitabine (Li et al., 2009c). Inhibition of miR-221 lead to ar-
rest of the cell cycle, induction of apoptosis and sensitization
of pancreatic cancer cells to the effects of gemcitabine (Park
et al.,, 2009). In addition, an upregulation of miR-221/222 was
reveled in breast cancer cell resistant to the fulvestrant. Ec-
topic expression of these miRNAs increase the resistance to
this drug in breast cell lines and resulted in deregulation of
multiple oncogenic signaling pathways previously associated
with drug resistance. Activation of B-catenin by miR-221/222
contributed to fulvestrant resistance, whereas TGF-B-medi-
ated growth inhibition was repressed by the two miRNAs
(Rao et al., 2011).

ABCG2 is a ubiquitous ATP-binding cassette transmem-
brane protein that plays a role in stem cell biology and clinical
drug resistance. The increased expression of ABCG2 and the
consequent acquisition of chemoresistance were associated
with several chromatin modifications in the ABCG2 promoter,
such as increased acetylated H3, H3K4me3 and H3 serine 10
phosphorylation and decreased HDAC1. Indeed, only those
cells exhibiting permissive histone mark and lack of
H3K9me3 repressive marks allowed recruitment of RNA poly-
merase II and Brgl to the ABCG2 promoter, resulting in in-
creased ABCG2 expression, suggesting that chromatin
remodeling may impact the response to chemotherapy (To
et al., 2008). Moreover, ABCG2 protein expression was shown
to be regulated by miR-328 and miR-519c in breast cancer cells,
as indicated by the downregulated expression of this trans-
porter after ectopic expression of miR-328- or 519c (Li et al.,,
2011). Recently it was reported that miR-200c target ABCG2,
ABCG5 and MDR1 and ectopic expression of this miRNA or
downregulation of BMI1 reduced drug resistance and mela-
noma xenograft growth and metastasis in vivo (Liu et al., 2012a).

Altogether, these observations suggest that modulating the
expression of miRNAs responsible for EMT, CSC phenotype
and chemoresistance would improve the response to therapy.
Hence, doxorubicin treatment of breast tumors growing in im-
munodeficient mice caused a significant regression of the tu-
mor, but relapse of the disease was observed. Treatment of
either miR-200 or siRNA against Suz12 had only a very slight
effect on tumor growth, presumably because these treatments
did not affect NSCCs. Strikingly, the combinations of doxoru-
bicin with either miR-200b or Suz12 depletion caused even
stronger regression of tumor growth, and relapse was pre-
vented (Iliopoulos et al., 2010). Furthermore, the direct inhibi-
tion of miR-21 or the reduction of its expression after
treatment with SP600125, an inhibitor of the miR-21-
regulator AP-1, increased topotecan sensitivity of cancer cells
(Misawa et al., 2010). These promising findings will provide

a new strategy for cancer therapy by impairing the CSC resis-
tance to chemotherapy.

6. Concluding remarks

In this review, we described the complex circuit of epigenetic
mechanisms that contributes to the acquisition and mainte-
nance of self-renewal and stemness features by a population
of cancer cells, resulting in the generation of cancer stem cells,
as itis summarized in Figure 1. Indeed, histones modifiers and
remodelers, DNA methyltransferases and miRNAs, appear se-
verely deregulated in tumor cells, while a small subpopulation
within the tumor emerge with stem cell-like features. Multiple
studies demonstrated that this population of cells conserves/
acquire the expression of stem cell markers and in most of the
cases, a hierarchical organization similar to that presented in
the tissue of origin. Interestingly, the re-expression of
pluripotency-associated genes and adult stem cell gene ex-
pression signature, as well as the upregulation of EMT- and
metastasis-related genes correlate with poor prognosis and
with resistance to chemotherapy. Furthermore, several sig-
naling pathways involved in the homeostasis of adult and
sometimes embryonic stem cells are altered in cancer by epi-
genetic mechanisms, providing to CSC signals to self-renewal,
maintain an undifferentiated status and survive in the tumor
microenvironment. In this regard, interaction with the tumor
niche can provide signals to induce cancer cells migration and
metastasis. However, further studies will be necessary to
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reveal specific signals that regulate, through epigenetic mech-
anisms, EMT and metastasis. Interestingly, the epigenetic or-
igins of some of the aberrant signals that operate in tumor
progression facilitate their reversion by specific inhibitors. In
consequence, targeting the stemness-like properties of this
special population of cancer cells with agents that modify
their epigenetic landscape can contribute to the sensitization
of CSCs to chemotherapy, impeding tumor relapse. This is
a rapidly emerging field in oncology and might represent
a promising strategy for cancer therapy in the future.
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