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A B S T R A C T

Introduction: Breast cancer risk of recurrence is known to span 20 years, yet existing

prognostic signatures are best at predicting early recurrences (�5 years). There is a crit-

ical need to identify those patients at risk of late-relapse (>5 years), in order to select

potential candidates for further treatment and to identify molecular targets for such

treatment.

Methods: A total of 252 breast primary tumors were selected at the Netherlands Cancer

Institute from a retrospective series of ERþ, HER2� breast cancer patients with a

follow-up of at least 10 years. Gene expression analysis was performed using

Agilent 4x44K microarrays. Patients were classified in 3 groups: no relapse (M0); relapse

before 5 years (M0-5) or after 5 years (M5-15). We assessed the correlation of clinico-

pathological variables with late Distant Metastases (DM). We divided the patient

series into a training set of untreated patients (n ¼ 140) and a test set of treated patients

(n ¼ 112), to investigate whether a gene-signature or single genes could be identified for

predicting late DM. Pathway level late DM correlates were identified using PARADIGM

and DAVID.

Results: Of the clinico-pathologic variables tested, only lymph node status associated with

late DM. A 241-gene signature developed on the NKI training set was able to classify M5-15

patients in the test set with a sensitivity of 77% and a specificity of 33% (AUC 0.654). This

signature showed enrichment in genes involved in immune response and extracellular

matrix. An alternative analysis of individual genes identified CH25H as an independent

predictor of distant metastasis in our patient series.
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Conclusions: We identified a gene signature for late metastasis in breast cancer. Our data are

consistent with a model in which suppressed anti-tumoral immunity enables dormant

tumor cells to re-enter the cell cycle to form metastases in response to extrinsic events in

the microenvironment.

ª 2013 Federation of European Biochemical Societies.

Published by Elsevier B.V. All rights reserved.
1. Introduction responsible for the development of early and late distant
Breast cancer is a highly heterogeneous disease with respect

to its molecular and clinico-pathological characteristics. Esti-

mates of the number of distinct breast cancer subtypes range

from the five intrinsic subtypes (Luminal A, Luminal B, HER2,

Basal, andNormal) to ten ormore as proposed recently by Cur-

tis et al. using an integrated genomic and transcriptomic

approach (Curtis et al., 2012) For breast cancer patients, this

can translate into very different prognoses as well as diverse

sensitivities to treatment. Moreover, the risk of recurrence

for breast cancer patients is known to span 20 years, with es-

trogen positive (ERþ) and Luminal A patients especially prone

to late onset metastases. The 2012 report of the Early Breast

Cancer Trialist’s Collaborative group (EBCTSG) provides a

comprehensive view of the natural history of breast cancer

and the effects of treatment on outcome for up to 15 years af-

ter adjuvant treatment. While confirming the long-term

benefit of radiotherapy, chemotherapy and adjuvant tamox-

ifen, which persist for up to 10 years after diagnosis, this over-

view also shows that even optimally treated patients continue

to relapse after 5 years. For ERþ patients who received chemo-

therapy and 5 years of tamoxifen, the absolute risk of relapse

is 16.4% over the first 5 years, a risk level that persists at 16.6%

between years 5 and 10 rather than decreasing with time as

occurs in ER negative disease (Chia and Wolff, 2011; Darby

et al., 2011; Davies et al., 2011; Peto et al., 2012). These findings

have been recently confirmed by long-term follow up of major

adjuvant trials of aromatase inhibitors with an annual recur-

rence risk after 5 years of approximately 2% per year, resulting

in a similar overall absolute rate of recurrence in the first and

second 5-year period after diagnosis (Burstein and Griggs,

2012). These findings imply that patient management should

cover both short-term and long-term risks of mortality and

morbidity, ideally taking into account the evolving features

of the disease after initial treatment.

Various prognostic classifiers are currently used as

decision-making tools for adjuvant treatment. Classical

clinico-pathological factors such as patient age, tumor size,

number of positive nodes, tumor grade, and hormone receptor

and HER2 status are integrated in tools like Adjuvant Online!�

and routinely used for chemotherapy or hormonal therapy in-

dications; more recently, molecular tools such as the 70-gene

profile Mammaprint� (Glas et al., 2006) or the Recurrence

Score derived by Oncotype DX� (Paik et al., 2004) inform the

utility of adjuvant systemic therapy. These tools are most

powerful to identify patients who will develop distant relapse

within the first 5 years after diagnosis, with decreasing predic-

tive power over time (Buyse et al., 2006; Esserman et al., 2011).

These results suggest that different mechanisms may be
metastases.

Studies of large cohorts as well as more specific research

on the timing of recurrence have demonstrated that the tu-

mors at highest risk for relapse after 5 years are ERþ, HER2�
(Esserman et al., 2011). The use of anti-estrogen therapy for

longer than 5 years has been studied in several trials

(Harbeck, 2008). These studies suggest that longer-term hor-

monal therapy might improve disease-free survival in some

subgroups, but the clinical significance and magnitude of

this benefit remain unclear. There is a critical need to identify

those patients at risk of late-relapse after 5 years of adequate

hormonal treatment, in order to select potential candidates

for further treatment and identify molecular targets for such

treatment.

With the hypothesis that the ‘intrinsic’ molecular features

present in a tumor at diagnosis may predict early or distant

metastases (Weigelt et al., 2005), we initiated the present

study aimed at exploring the differential molecular expres-

sion profiles of ERþ, HER� breast cancer tumors based on

outcome: we compared tumors of patients that did not

develop relapse at 10 years, patients with early metastatic

relapse before 5 years, and patients with late metastatic

relapse after 5 years. We assessed the correlation of clinico-

pathological variables with late Distant Metastases (DM) and

investigated whether a gene-signature could be identified for

the late metastasis group. In addition, we investigated single

genes associated to the late metastatic process, and identified

biological pathways revealed by comparative analysis of the

expression profiles of the tumors.
2. Methods

2.1. Patient selection

A set of 252 patients was selected retrospectively at the

Netherlands Cancer Institute (NKI-AVL) from six different

consecutive series: (van de Vijver et al., 2002; Mook et al.,

2010, 2009; Kok et al., 2009; Saghatchian et al. (N ¼ 9, submit-

ted), Bedard et al. (N ¼ 7, submitted), according to following

criteria: (1) frozen material available, Distant Metastatic (DM)

relapse as first event or no metastatic relapse (control group)

with a follow up of more than 10 years (yr.); (3) ER or

Progesterone-receptor (PgR) positive and HER2 status nega-

tive. Patients who developed either contralateral breast can-

cer or a second primary breast tumor before the first

metastatic event were excluded, as were patients who devel-

oped local or regional relapse before the distant metastatic
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relapse. Patients in the control group were event-free during

the follow up period (at least 10 yr).

A subgroup of 140 treatment na€ıve patients was subse-

quently selected from the 252 patient series. Patient tumors

were classified in 3 groups: no relapse at 10 yr (M0, n ¼ 57),

DM relapses before 5yr (M � 5, n ¼ 42), or DM relapses after

5yr (M5-15, n ¼ 41). Patients with DM relapse after 15 years

were excluded from the analysis. Clinical features of the pa-

tient group are summarized in Table 1. Due to the low number

of patients with four or more positive lymph nodes, we group-

ed together all patients with at least one positive lymph node.

Written informed consent was obtained from all patients

included in the study. The ethics committee of the

Netherlands Cancer Institute approved the study.

2.2. Gene expression profiling

Out of the 252 primary frozen tumors, 235 were analyzed at

Agendia NV (Amsterdam, The Netherlands). RNA isolation

was performed as described previously (van’t Veer et al.,

2002). RNA integrity was evaluated with the 2100 Bioanalyzer

(Agilent) using the RNA 6000 Nano LabChip, following the

manufacturer’s protocol. RNA amplification, labeling and hy-

bridization to a custom High Density (HD) 44K oligoarray (Agi-

lent Technologies) were performed as described previously

(Glas et al., 2006). Fluorescence intensities were Lowess

normalized across the samples using Feature Extraction soft-

ware version 7.5 and Log10 transformed.
Table 1 e Clinical, pathological and molecular characteristics of the untr

Variable M0

N % N

Total 57 40.7 42

Age

<55 years 29 (50.9%) 42.6 24 (57.1

�55 years 28 (49.1%) 38.9 18 (42.9

Histology

IDC 50 (87.7%) 41.0 38 (90.5

ILC 2 (3.5%) 20.0 4 (9.5%

Other 5 (8.8%) 62.5 0 (0.0

Hormonal status

ER positive, PR positive 46 (80.7%) 44.2 25 (61.0

ER positive, PR negative 5 (8.8%) 17.9 15 (36.6

ER positive, PR unknown 6 (10.5%) 85.7 1 (2.4%

ER negative, PR positive 0 (0.0%) 0.0 1 (100

Diameter

�2 cm 43 (75.4%) 51.2 17 (40.5

>2 cm 14 (24.6%) 25.0 25 (59.5

Lymph node status

0 54 (94.7%) 49.1 26 (61.9

1þ 3 (5.3%) 10.0 16 (38.1

Grade

1 30 (52.6%) 58.8 6 (14.3

2 15 (26.3%) 30.6 16 (38.1

3 12 (21.1%) 30.0 20 (47.6

MammaPrint

Good 43 (75.4%) 48.9 18 (42.9

Poor 14 (24.6%) 26.9 24 (57.1

M0 no distant metastasis, M � 5 distant metastasis between 0 and 5 yr, M

ceptor, PR ¼ Progesterone Receptor.
The remaining 17 samples (17 out of 252) were analyzed at

the Institute Gustave Roussy (IGR). RNA isolation, labeling

and hybridization were performed with the same protocols

as those used at Agendia NV. These samples were hybridized

on commercial High Density 44K oligoarrays (Agilent

Technologies) following the manufacturer’s protocol, using

the MammaPrint� Reference Pool (MRP), a breast tumor pool

described in (van’t Veer et al., 2002), as a reference signal.

Fluorescence intensities were Lowess normalized across the

samples using Feature Extraction software version 10.5.1.1

and then Log10 transformed. The Rosetta Resolver system

version 7.2.2.0.SP1.31 was used for the data quality assess-

ment. Data are MIAME compliant and have been submitted

to ArrayExpress (E-MTAB-949).

In order to have a unique dataset of the 252 samples, we

only considered the common probes (n ¼ 39,859) between

the two microarray platforms used, representing more than

90% of the all probes in both arrays. Probes that had more

than 25%missing valueswere removed. If a probewas present

more than once on the array, we retained the one that showed

the highest variance across the samples and removed the

others. These filtering steps resulted in a dataset with 32,840

probes.

After selection of the 140 treatment-na€ıve patients used in

the training set, probe intensities were median-centered

across the samples. Missing values were calculated using the

k-nearest neighbor algorithm, setting K to 10 (Troyanskaya

et al., 2001).
eated ERD (or PRD) and HER2L patients (N [ 140).

M � 5 M5-15 Total

% N %

30.0 41 29.3 140

%) 35.3 15 (36.1%) 22.1 68 (48.6%)

%) 25.0 26 (63.4%) 36.1 72 (51.4%)

%) 31.1 34 (82.9%) 27.9 122 (87.1%)

) 40.0 4 (9.8%) 40.0 10 (7.1%)

%) 0.0 3 (7.3%) 37.5 8 (5.7%)

%) 24.0 33 (80.5%) 31.7 104 (74.8%)

%) 53.6 8 (19.5%) 28.6 28 (20.1%)

) 14.3 0 (0.0%) 0.0 7 (5.0%)

.0%) 100.0 0 (0.0%) 0.0 1 (100.0%)

%) 20.2 25 (58.5%) 28.6 84 (60.0%)

%) 44.6 17 (41.5%) 30.4 56 (40.0%)

%) 23.6 30 (73.2%) 27.3 110 (78.6%)

%) 53.3 11 (26.8%) 36.7 30 (21.4%)

%) 11.8 15 (29.4%) 29.4 51 (36.4%)

%) 32.7 18 (36.7%) 36.7 49 (35.0%)

%) 50.0 8 (20.0%) 20.0 40 (28.6%)

%) 20.5 27 (65.9%) 30.7 88 (62.9%)

%) 46.2 14 (34.1%) 26.9 52 (37.1%)

5-15 distant metastasis after 5 yr, and before 15 yr; ER ¼ Estrogen Re-

http://dx.doi.org/10.1016/j.molonc.2013.07.006
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2.3. ER, PgR and HER2 prognostic marker assessment

Immunohistochemistry forER-alpha, (EstrogenReceptoralpha),

PgR (Progesterone Receptor alpha and HER2 (Human Epidermal

growth factor Receptor 2) and additional chromogenic in situ

hybridization (CISH) for HER2 was performed and scored as

described previously (Hannemann et al., 2006; van de Vijver

et al., 1988). Staining for ER and PgR was interpreted as positive

when more than 10% of tumor cells were stained. HER2

status equal to 0 or 1 was considered as negative and HER2 sta-

tus equal to 3 as positive. When HER2 status was not available,

the microarray-based gene expression test TargetPrint�

(Roepman et al., 2009) was used for the assessment.

2.4. MammaPrint� profile

Patients were assessed for their MammaPrint status (Glas

et al., 2006).

2.5. Statistics

Distant Metastasis Free Survival (DMFS) time was measured

using the interval between the primary tumor diagnosis and

the event of distant metastasis or death from any cause or

last follow-up. Survival curves were generated using the

KaplaneMeier method and p-values of log-rank tests were

used. Univariate and multivariate analyses were conducted

using, respectively, anuninomial orpolynomial logistic regres-

sion model in which the variables included were tested to be

independent predictor of early relapse (M0-5 group) and late

relapse (M5-15 group) with respect to the control group (M0).

Variables with a p-value �0.3 at the univariate level were

included in the subsequent multivariate analysis. The Wald

statistic test was used to test the statistical significance. Ana-

lyseswere performedusing SPSS 18.0 and the survival package

of the statistical language R (http://www.r-project.org/).

2.6. Gene expression signature identification with PAM
(prediction analysis of microarray)

In order to identify a gene expression signature predictive of

the latemetastatic relapse (M5-15 group), we used themethod

implemented in the R package pamr from Tibshirani and col-

leagues, based on the nearest shrunken centroid classification

(Tibshirani et al., 2002). First the 50% probes (out of the 32,840)

with the highest variance across the 140 patients were

selected (n ¼ 16,420). Next, the nearest shrunken centroids

method was applied to the NKI M0 and M5-15 patients with

a MammaPrint low-risk profile (n ¼ 70) and the classification

performance was evaluated by 10-fold-cross validation

repeated 10 times using the Bioconductor software package

MRCestimate as described previously (Oberthuer et al., 2006).

The final gene expression-classifier was built using the Classi-

fierBuild function implemented in MRCestimate. The area un-

der the receiver operating characteristic curve (AUC) was used

as the prediction quality criterion. The ROC curveswere calcu-

lated using the Bioconductor software package pROC (http://

www.bioconductor.org/).

Next we performed a functional enrichment analysis using

the DAVID Gene Functional Classification Tool 6.7 (Huang da
et al., 2007) and gProfiler annotation tool (Reimand et al.,

2011, 2007) in order to identify significantly enriched biological

processes, cellular components, molecular functions, and

pathways in the signature. Only GO terms that were statisti-

cally significant after multiple testing corrections (Benjamini

Hochberg False Discovery Rate calculation, FDR) were selected

( p-value<0.05).

2.7. Identification of genes associated to late DMFS
differences

In order to identify individual genes associated to late survival

differences (using time as a continuous variable) in the 140 pa-

tient group, we used the survdiff function implemented in the

R package survival and we set the parameter rho to �1 to give

greater weight to the later part of the survival curves

(Harrington and Fleming, 1982). Only the 50% probes (out of

the 32,840) with highest variance across the 140 patients

were considered (n ¼ 16,420). The survdiff function was

applied to each probe individually for DMFS time considering

the probe as a covariate dichotomized into 2 groups (above

and below the median expression across all samples). The

log rank test p-values were then corrected for multiple testing

using the Benjamini Hochberg False Discovery Rate (FDR)

calculation. The parameter “strata” was used to stratify the

140 patients based on additional clinico-pathological parame-

ters (Grade, Diameter, Lymph node status and MammaPrint),

in order to find genes that add prognostic value to those pa-

rameters already known.

2.8. PARADIGM (Pathway Recognition Algorithm Using
Data Integration On Genomic Models)

PARADIGMwas used to estimate pathway activities to identify

portions of the network models differentially active in the

breast cancer samples (Vaske et al., 2010). PARADIGM is a

probabilistic model that searches for altered pathways in the

US National Cancer Institute Pathway Interaction Database.

First we estimated pathway activities based on the gene

expression levels of the 140 ERþ Her2� patients as described

previously (Vaske et al., 2010). Next we applied aWilcoxon sta-

tistical test to identify pathway components with activity

levels that differed significantly between M0 and M5-15 pa-

tients (uncorrected p-values <0.05). The resulting subnet-

works were then visualized using Cytoscape (Smoot et al.,

2011) and analyzed for composite pathway enrichment using

the EASE methodology (Hosack et al., 2003) including a multi-

ple testing correction (BenjaminieHochberg False Discovery

Rate calculation, FDR) step. This methodology assumes a geo-

metric distribution and uses a modified Fisher Exact Probabil-

ity p-value (so called EASE score) to test for significance.
3. Results

3.1. Patient characteristics

Patients, for whom frozen samples were available, were

selected from the database of the Netherlands Cancer Insti-

tute (NKI) following the selection criteria including patient

http://www.r-project.org/
http://www.bioconductor.org/
http://www.bioconductor.org/
http://dx.doi.org/10.1016/j.molonc.2013.07.006
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Figure 1 e Patient selection strategy to identify the late metastasis

gene expression signature. MP Poor [ MammaPrint high-risk

profile, MP Good [ MammaPrint low-risk profile; M0 no distant

metastasis, M £ 5 distant metastasis between 0 and 5 yr, M5-15

distant metastasis after 5 yr.
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outcome, as described in the Methods. In order to capture the

intrinsic aggressiveness of the tumor, excluding any effect of

systemic treatment, we split the initial selection of ERþ
HER2� patients (n ¼ 252) into treated (n ¼ 112) and untreated

patients (n ¼ 140). The untreated group was used as a training

set (Figure 1), whereas the treated group was used as a valida-

tion set.

Gene expression profiles of all the primary tumors were

grouped in three classes: no DM (Distant Metastasis) relapse

(M0) for at least 10 years of follow-up, early DM relapse

(M � 5, DM event at �5 yr), late DM relapse (M5-15, DM event

>5 yr). All follow-up events were censored at 15 years.

Clinico-pathological and molecular data of this un-

treated patient group are summarized in Table 1: 83 out

of 140 (59.3%) patients had a distant relapse, 42 (30.0%) pa-

tients before 5 years and 41 (29.3%) patients between 5 and

15 years.
Table 2 eUnivariate (A) and multivariate (B) analysis of different clinico-p
ERD HER2L untreated group (N [ 140).

Class DMa Variable

A. Univariate analysis of clinical pathological markers and MammaPrint

M5-15 Age (<55 yr vs � 55 yr)

Histology (IDC vs others)

Diameter (�2 cm vs > 2 cm)

Lymph node status (0 vs 1þ)

Grade (1,2 vs 3)

Grade (1 vs 2, 3)

B. Multivariate analysis of clinical pathological markers and MammaPrin

M5-15 Age (<55 yr vs � 55 yr)

Diameter (�2 cm vs > 2 cm)

Lymph node status (0 vs 1þ)

Grade (1 vs 2, 3)

Abbreviations: yr ¼ years; OR ¼ Odds Ratio; CI ¼ Confidence Interval.

a The reference class is M0.
In the treated group we observed more relapses, with a

similar distribution over time: 77 relapses out of 112 patients

(68.7%), 37 M � 5 (33.0%) and 40 M5-15 (35.7%). The character-

istics of the treated group are summarized in Additional file 1,

Table S1.
3.2. Lymph node status is the only clinico-pathological
variable associated with late metastatic relapses

Metastatic relapse has been associated with large tumor size,

high-grade, and positive lymph node status, characteristics

believed to reflect a cancer’s ability to proliferate rapidly, colo-

nize other tissue types, and evade the immune system

(Weigelt et al., 2005; Castano et al., 2011). To determine

whether these variables or the other clinico-pathological/

established molecular features listed in Table 1 correlated

with late metastasis occurrence versus no relapse, we per-

formed univariate and multivariate analysis for their associa-

tion to the M5-15 group versus the M0 group (see Methods). As

shown in Table 2A, in univariate analysis only lymph node

status was significantly associated with late recurrence (M5-

15 class; p-value ¼ 0.01, OR ¼ 0.15, CI 95% ¼ 0.04e0.59). Table

2B shows the result of the multivariate analysis of age, tumor

diameter, lymph node status, grade (1 vs. 2, 3). As in the uni-

variate analysis, only lymph node status was significantly

associated to the late DM class (M5-15) compared to the con-

trol group (M0) ( p-value ¼ 0.005, OR ¼ 0.14, CI 95% ¼
0.03e0.56). In contrast, tumor grade retained significant asso-

ciation to early metastatic relapse M � 5 in multivariate anal-

ysis (Additional file 1, Table S2B).
3.3. Gene expression signature identification using PAM
(Prediction Analysis of Microarray)

We set out to identify a predictor of late metastasis using our

training set. Unsupervised Hierarchical Clustering (HCL) of the

140 patients using the highest variance selected probes

(n¼ 16,420) did not reveal any obvious partitioning of themet-

astatic classes (Additional file 1, Figure S1). Therefore, we
athological and genomic variables in relation to the M5-15 class in the

P value OR 95% CI

in relation to Late Distant Metastasis (DM) class

0.16 0.56 0.24e1.27

0.50 0.68 0.22e2.11

0.08 0. 46 0.19e1.09

0.01 0.15 0.04e0.59

0.85 0.91 0.33e2.47

0.12 0.52 0.23e1.18

t in relation to Late Distant Metastasis (DM) class

0.12 0.50 0.21e1.20

0.24 0.57 0.23e1.45

0.005 0.14 0.03e0.56

0.16 0.52 0.21e1.28

http://dx.doi.org/10.1016/j.molonc.2013.07.006
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opted for a supervised approach based on nearest shrunken

centroid algorithm (also known as PAM (Tibshirani et al.,

2002)) to identify a gene expression signature predictive of

late metastasis.

For this analysis we chose to exclude patients predicted to

be at high risk of an early metastasis (MammaPrint poor pro-

file), retaining only those patients predicted to be at low risk

for subsequent events (MammaPrint good profile), reasoning

that metastatic processes unique to late events are likely

distinct from those captured by early relapse predictors.

Based on this hypothesis and the observation that the ma-

jority of late metastases patients were predicted to be Mam-

maPrint low risk, we included M0 and M5-15 untreated

patients with MammaPrint low-risk profile (43 and 27 cases

respectively) to identify a predictive signature of distant

metastasis (DM between 5 and 15 years). Figure 1 depicts our

strategy for identifying a predictive signature of late

metastasis.

A set of 241 predictive probes was identified using the

PAM algorithm comparing M5-15 versus M0 MammaPrint

good patients (Additional file 1, Figure S2). The PAM vote ma-

trix (Additional file 1, Figure S3A) estimated that an overall

accuracy of 77% could be achieved with this classifier.Within

the 10-times-repeated 10-fold-cross validation procedure,

this classifier of 241 probes (threshold ¼ 1.517) was able to

correctly classify on average 17/27 M5-15 patients and 37/43

M0 patients. Specifically, M5-15 patients in the partitioned

test sets were correctly identified with a sensitivity of 63%

and a specificity of 86%. The median false discovery rate for

the 241-gene nearest shrunken centroid classifier, estimated

after 1000 permutations, was below 1% (Additional file 1,

Figure S3B). As expected, the area under the Receiver Oper-

ating Characteristic (ROC) curve (AUC) for the 241-probe

signature applied to the training set was close to 1

(AUC ¼ 0.936, CI 95% ¼ 0.866e1) confirming the good perfor-

mance of the 241-probe signature in the training set

(Additional file 1, Figure S4).

3.4. Functional enrichment of the 241-gene signature

After matching the 241 probe Agilent IDs with RefSeq ID and

the Gene symbol ID we found 230 unique genes. Out of the

230 genes, 144 genes were well-characterized protein coding

genes; the remaining 86 genes were poorly annotated. The

complete list of the 241 probes is reported in the Additional

file 2.

In order to understand the biology behind the 241-gene

signature we performed a functional enrichment analysis of

the 241 probes using DAVID and gProfiler (see Methods for de-

tails) (Huang da et al., 2007; Reimand et al., 2011, 2007). Of the

241 probes, 150matched to the corresponding DAVID/gProfiler

ID’s. Interestingly both tools gave similar results. Functional

enrichment by DAVID revealed the 241-probe signature to be

dominated by genes active in the “extracellular region”, with

functions relating to the “extracellular matrix” and “immune

response” ( p-value <0.0001). Other highly ranked categories

( p-value �0.05) include “antigen binding” and “lectin and

sugar binding sites”. A complete list of the Gene Ontology cat-

egories and the functional clusters found with DAVID are re-

ported in the Additional file 3.
3.5. Performance assessment of the 241-probe signature
on an independent dataset

In order to validate the accuracy of the 241-gene signature for

detecting late metastases in the independent dataset, we

tested the classifier on the M0 and M5-15 MammaPrint low-

risk treated patients (n ¼ 51) in the NKI test set. To predict

the DM class of a patientwe calculated the Pearson correlation

between the 241-probe centroid of the patient and the training

241-probe centroids (M0 and M5-15 centroids). The predicted

DM class of the patient was defined as the one with the high-

est correlation coefficient to the training centroids. The 241-

gene signature classified the M5-15 patients with a sensitivity

of 77% (23/30) and a specificity of 33% (7/21).Whenwe selected

only hormonally treated patients, the 241-gene classifier

showed an increased sensitivity for the M5-15 patients (85%,

17/20), but a decreased specificity (30%, 3/10). To summarize,

the 241-gene signature performed similarly on the hormonal

treated only patients (AUC ¼ 0.690, CI 95% ¼ 0.486e0.892)

and on the chemotherapy and/or hormonal treated patients

(AUC ¼ 0.654, CI 95% ¼ 0.499e0.809) (Additional file 1,

Figure S5).

3.6. Identification of individual genes associated with
late distant metastasis using time as a continuous variable

In order to further investigate differences in gene expression

related to outcome over time, we opted to identify individual

genes able to predict late distant metastasis (DM) events.

This approach differed from the previous analyses, because

we used the distant-metastasis free survival (DMFS) time as

continuous variable without grouping the patients into

different classes (i.e. M0, M � 5 and M5-15) and we aimed to

predict the time to the DM event, using the expression of the

genes as explanatory variable. We tested whether expression

of each of the 16,420 most variable probes was significantly

associated with late differences in DMFS time (see Methods

for details) in the untreated patients (n ¼ 140). In univariate

analysis, MammaPrint risk class, tumor diameter, lymph

node status and tumor grade were found to be significantly

associated to late DMFS differences (Chi-square test p-values

equal to 0.016, 0.004, <0.001 and 0.016 respectively) among

all clinico-pathological and molecular features listed in

Table 1. Therefore we decided to identify genes associated to

late DMFS differences after correcting for these variables.

Two genes, cholesterol 25-hydroxylase (CH25H ) and

follistatin-like 4 (FSTL4) were selected as significantly associ-

ated to late DMFS after correction for multiple testing ( p-

value ¼ 0.01). Interestingly CH25H is part of the 241-gene

signature previously described. After Cox regression analysis,

patients with high expression of CH25H (‘intensity above me-

dian’) showed a hazard ratio (HR) of 0.28 (95% CI ¼ 0.17e0.44)

compared to patients with a low expression of CH25H (‘inten-

sity belowmedian’). For the gene FSTL4 we observed an oppo-

site trend: patients with high expression of FSTL4 showed an

HR of 2.42 (95% CI ¼ 1.54e3.80) compared to patients with

low expression of FSTL4.

In order to independently validate the prognostic power of

these two genes, we tested their performance in the validation

set of treated patients (n ¼ 112) and in three publicly available

http://dx.doi.org/10.1016/j.molonc.2013.07.006
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Figure 2 e Kaplan Maier analysis of CH25H high/CH25H low in different datasets (NKI untreated dataset, n [ 140; NKI treated dataset,

n [ 112; Harrell dataset (Harrell et al., 2011), n [ 331; Desmedt dataset (Desmedt et al., 2007), n [ 111; Symmans dataset (Symmans et al.,

2010), n [ 298). CH25H [ cholesterol 25-hydroxylase. Log rank test was performed to test for significance.
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datasets (Desmedt et al., 2007; Harrell et al., 2011; Symmans

et al., 2010). In the publicly available datasets we selected

only ERþ patients in order to mimic our selection criteria. Un-

fortunately the HER2 status was only available for the Harrell

series (Harrell et al., 2011), therefore for the two other series

we only considered ER status for selection. As shown in

Figure 2, the CH25H gene validated as being significantly asso-

ciated tometastasis-free survival time in all tested series (Har-

rell dataset p-value ¼ 0.024, Desmedt dataset p-value ¼ 0.048,

Symmans dataset p-value ¼ 0.012). The gene FSTL4 was not

significantly associated to metastasis-free survival time in

all four independent datasets (Additional file 1, Figure S6).

Moreover in two out of four series (NKI treated patient group

and Harrell series), high and low expression of FSTL4 was

inversely associated to survival in respect to what observed

in the NKI patient group, although the associationwas not sig-

nificant. Since we were not able to reproduce the prognostic

ability of FSTL4 in the independent datasets we excluded it

from further investigation.

In order to specifically test the ability of CH25H to predict a

late metastatic relapse (after 5 yr), we performed a multivar-

iate analysis, using a multinomial logistic regression model,

as was previously done for the clinico-pathological and estab-

lished molecular characteristics. We included age, diameter,

lymph node status, grade (1 vs. 2,3), MammaPrint status and

CH25H binary expression (above and below the median

expression value). As expected, CH25H was confirmed as an

independent predictor of the M5-15 class in the untreated pa-

tient group (n ¼ 140) (Table 3) as well as in the pooled series

(n ¼ 252, untreated and treated patients) (Additional file 1,

Table S3). However, a significant association between CH25H

expression and early metastasis (M � 5) was also observed

in the pooled series (Additional file 1, Table S3).

3.7. Pathway analysis using PARADIGM

Considering that analyses in different datasets show different

genetic alterations involving common pathways, we used

PARADIGM, a novel bioinformatics approach that identifies
Table 3 e Multivariate analysis of Age, Diameter, Lymph node
status, Grade, MammaPrint and CH25H expression in relation to
the M5-15 class in the ERDHER2L NKI untreated group
(N [ 140).

Variable P value OR 95% CI

Multivariate analysis of clinical pathological markers and CH25H

expression in relation to late DM (Distant Metastasis)

M5-15 Age (<55 yr vs � 55 yr) 0.54 0.74 0.29e1.90

Diameter (�2 cm

vs > 2 cm)

0.75 0.85 0.31e2.35

Lymph node status

(0 vs 1þ)

0.004 0.12 0.03e0.50

Grade (1 vs 2, 3) 0.47 0.70 0.27e1.84

CH25H expression

(Low vs High)

0.001 5.43 2.00e14.72

The reference class is M0.

Abbreviations: yr ¼ years; OR ¼ Odds Ratio; CI ¼ Confidence

Interval.
specific altered pathway activities and regulatory networks

rather than single genes or profiles (Vaske et al., 2010).

To identify the pathway activities involved in early and late

metastasis versus no metastasis, we performed comparisons

between paired groups of outcome: early metastasis (M � 5)

versus late metastasis (M5-15), early metastasis versus no

relapse (M0) and late metastasis versus no relapse. We also

analyzed for differences in pathway activities between Mam-

maPrint good profile patientswho did not recur (M0) and those

with late recurrences (M5-15), reasoning as we did for the PAM

signature development that ‘low risk’ women with late recur-

rences might reflect distinct biology.

First we identified the PARADIGM pathway activities for

the 140 untreated patients using the gene expression profiles

as input to the algorithmdescribed in (Vaske et al., 2010). After

comparing the pathway activities of patients with different

outcomes, we performed an EASE enrichment analysis in or-

der to identify pathways with activity levels that were signif-

icantly differentially altered between the metastasis groups

and visualized the resulting networks using Cytoscape. The

number of significant pathways (EASE score <0.05) was

similar between the three comparisons. Out of 1189 pathways

tested 10 and 6 pathways remained significant in theM � 5 vs.

M0 andM � 5 vs. M5-15 comparisons respectively after Benja-

minieHochberg (BH) multiple testing correction was applied.

However, after multiple testing corrections, no pathway was

selected for the M5-15 vs. M0 comparison (as shown in

Additional file 1, Figure S7). The complete list of identified

pathways is reported in the Additional File 4.

Two activated pathways recurred in early metastasis

(M � 5) compared to late metastasis (M5-15) or no metastasis

(M0): the FOXM1 transcription factor network, E2F signaling,

Aurora B kinase signaling, and PLK1 signaling events.

Interestingly, when we restricted our analysis to patients

with MammaPrint good (low risk) profiles (N ¼ 70), and

compared those with no metastasis (M0) to those with late

recurrence (M5-15), we found three pathways that signifi-

cantly associated with late recurrence after BH multiple

testing correction: IL12-mediated immune signaling, FAS

(CD95) apoptotic signaling, and retinoic acid signaling

(vitamin D processing) (Figure 3). Significant genes in the

IL12 immune pathway include granzyme genes GZMA and

GZMB, NOS2, CCL3, and cytokines like TBX21 in addition to

IL1B and IL1R1, all genes associated with activation of cyto-

toxic T lymphocytes and natural killer cells, and all expressed

at lower levels in patients with late recurrence compared to

those who did not recur. The abstract entities “natural killer

cell activation” and “T cell proliferation” were also downregu-

lated in late recurrence patients, reflecting the many immune

genes in the PARADIGM super pathway with cohesive under-

expression in late recurring patients.

The FAS (CD95) signaling pathway, part of the larger

network of apoptosis related genes significantly downregu-

lated in late recurrence MammaPrint good profile patients

contains several key caspases (CASP3, CASP8) and other genes

important to the apoptotic process including FAS and BID.

Interestingly, these immune and apoptotic regulatory net-

works are connected, forming a larger network connected by

links between the granzyme GZMB (immune) and apoptotic

genes BID, CASP7 and CASP3 (Figure 4).
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Figure 3 e PARADIGM analysis results considering only the

untreated MammaPrint low-risk patients (n [ 70). The pathways

significantly associated with late recurrences (M5-15) after multiple

testing corrections ( p-value<0.05) as compared with no recurrence

(M0) are reported. For each pathway is reported the EASE score and

the p-value after BenjaminieHochberg (BH) multiple testing

correction.

Figure 5 e The bar plot reports for each of the three pathways

significantly associated to late recurrence (M5-15) as compared with

no recurrence (M0), the number of significant genes that are higher
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The third significant pathway, retinoic acid signaling, con-

tains genes like RARA and RARS and various inferred vitamin

D3 complexes, the latter of which appear to be downregulated

in late recurrence patients compared to patients who did not

recur. We note that genes expressed at lower levels in low

risk women who recur late dominate all three pathways

(Figure 5).
expressed in the M0 and M5-15 MammaPrint low-risk patients.
4. Discussion

Late distant metastases represent a major cause of death for

breast cancer patients. Numerous studies have focused on

breast cancer metastases and how they might originate from

primary breast tumors; however, few studies have addressed
Figure 4 e IL12-mediated signaling and FAS (CD95) apoptotic signaling n

the network is a gene. Red nodes represent genes overexpressed in M5-15 p

intensity correlates with the size of the expression.
metastatic recurrence occurring many years after initial

diagnosis.

Current breast cancer prognostic signatures effectively

predict for outcome risk within five years of diagnosis. How-

ever, there still is a need for understanding which patients
etwork visualized using Cytoscape (Smoot et al., 2011). Each node of

atients and blue nodes genes overexpressed in M0 patients; the color
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will relapse late to identify patients that may benefit from

longer hormonal therapy regimen. Moreover, understanding

the biological pathways behind this late metastasis process

may help in the development of novel treatment strategies

for this group of patients.

The Netherlands Cancer Institute has assembled a large

database of breast cancer patients for which clinical data,

treatment details, long-term follow-up, frozen samples or

gene expression data are available. Therefore we were able

to select breast cancer patients who underwent surgical treat-

ment, with or without further adjuvant treatment. Conse-

quently, we could analyze the expression profiles of primary

tumors based on patient outcomes over long time periods

that reflect the natural history of the initial breast cancer.

It has been shown previously that gene expression

profiling of human primary breast tumors can predict metas-

tasis risk, which indicates that the capacity to metastasize

might be acquired early during tumor genesis, even if metas-

tases develop after a long interval. Consequently we assumed

that metastatic response profiles could be developed on pri-

mary tumors (Weigelt et al., 2005).

As shown recently (Esserman et al., 2011), risk of relapse for

hormonal positive patients persists over 20 years, whereas the

risk for both triple negatives and HER2þ patients spans up to 5

years approximately. Therefore, for this study we selected

only ERþ HER2� breast cancer patients, in order to identify

clinical and genomic characteristics predictive of late recur-

rences or long-term remission. Patients with distant relapses

after five years from first diagnosis (M5-15 patients) were

considered to be late metastatic patients and treated as the

group of interest in our study.

Among all the clinico-pathological features tested, only

lymph node status was found to be a strong predictor of late

metastasis, as emerged from the univariate and multivariate

analysis of Table 2. This finding is in agreement with what

was previously reported, that nodal status is the dominant

characteristic predicting disease specific survival (Esserman

et al., 2011). No other clinico-pathological feature showed a

correlation to late metastasis (M5-15).

We used a supervised approach based on gene expression

data to identify a gene expression signature specifically for

late metastasis. The 241-probe signature was shown to be a

good predictor of late metastasis (M5-15 patients) in the

training group of untreated patients, with respect to the con-

trol group (M0 patients), with an overall accuracy of 77% as

estimated by cross-validation studies. When we applied the

241-probe signature to the independent validation set, the

treated patients, its overall accuracy decreased to 59%, with

23/30 M5-15 patients correctly classified (77%), and with 7

out of 21 M0 patients correctly classified (33%).

The recently finalized work of the Cancer Genome Atlas

Network provided key insights into previously defined gene

expression subtypes and confirmed the existence of four

main breast cancer classes when combining data from five

platforms, each of which shows significant molecular hetero-

geneity (Comprehensive molecular, 2012). Occurrence of late

metastases in each of these subgroups likely follows distinct

pathways that might not be well represented by a single mo-

lecular profile. Our series allowed us to select only for ERþ,

HER2� and MammaPrint good profile patients. However this
group likely remains heterogeneous in terms of the molecular

and biological characteristics and pathways of late metastatic

recurrence. The lack of predictive signal might point to domi-

nating extrinsic factors, or for the need for other types of data,

bigger sample size, or non-genomic data, or different types of

statistical approach to this time dependent analysis.

Interestingly, a functional enrichment analysis of the 241

probes using DAVID suggests that this genomic signature is

significantly enriched in genes involved in the immune sys-

tem and immune response (see Additional file 3). This finding

reflects the possibility that late metastatic relapses might be

explained by inflammatory events (with immune system acti-

vation) in patients, or the development of suppressed anti-

tumoral immunity, whereas early metastatic relapse might

mostly result from high levels of proliferation in the primary

tumor. The later hypothesis, that suppressed anti-tumoral

immunity might play a role, was supported by the results of

a PARADIGM pathway analysis of MammaPrint good-profile

patients showing that late recurrence in this subgroup is

associated with lower expression levels of the IL12 immune

pathway including granzyme genes GZMA and GZMB, NOS2,

CCL3, and cytokines like TBX21 in addition to IL1B and

IL1R1, all genes associated with activation of cytotoxic T lym-

phocytes and natural killer cells. It is relevant to note here

that interleukin dependent inflammatory signaling networks

control responses to cellular senescence (Kuilman et al.,

2008). Our finding that immune genes are associated with

late metastases raises the interesting possibility that in the

absence of anti-tumoral immunity, dormant disseminated

breast cancer cells could be reactivated to enter the cell cycle

through interleukin signals or other extrinsic events. Concor-

dantly with this idea, Esserman and colleagues recently pro-

posed that late recurrences in hormone receptor negative

and positive patients might be linked to altered immune

function (specifically, to suppressed immunity) (Esserman

et al., 2011).

Besides immune response, the other category that

emerged from this analysis was the extracellular matrix. It is

well established that to form a metastasis from the primary

tumor, the cancer cells need to acquire additional properties

that enable invasion of the extracellular matrix and, ulti-

mately, invasion to a secondary site (Place et al., 2011; Spano

and Zollo, 2012). Our data might thus reflect the role of the

microenvironment in the late metastatic process, especially

considering that late metastases often occur in the bone

through the involvement of osteoblasts, an important compo-

nent of the normal bone microenvironment as well as bone

metastases (Place et al., 2011). Recently, using a global gene

expression analysis, Rajski and colleagues showed that the

interaction between breast cancer cells and osteoblasts plays

a role in the bone metastasis formation (Rajski et al., 2012).

To summarize, our signature provides evidence that occur-

rence of late metastasis implies genes expressed in the pri-

mary tumor that are related to the immune system and the

extra-cellular matrix. This might suggest that beyond any

intrinsic characteristic of the primary tumor, a triggering

event from the external microenvironment (mediated by the

immune system and/or the extra-cellular matrix) might be

needed to stimulate late metastatic proliferation of a dormant

cell.
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Furthermore, we performed an additional analysis to iden-

tify individual genes with expression levels that associated

strongly with distant metastasis free survival time after strat-

ification by clinico-pathological variables and MammaPrint

profile. Interestingly, we found that CH25H, a gene that codes

for a cholesterol 25-hydroxylase involved in cholesterol and

lipid metabolism (Bauman et al., 2009), was significantly asso-

ciated to late distant metastasis-free survival (DMFS) time ( p-

value¼ 0.01). As shown in the KaplaneMeier curve of Figure 2,

the expression of CH25H was able to stratify patients in two

risk groups: high expression of CH25H was associated with

longer DMFS (low-risk group), conversely, low expression of

CH25H was associated with worse DMFS (high-risk group).

The prognostic ability of CH25H was evaluated in three

different independent series, and in all three datasets the

CH25H expression was confirmed as being associated with

the DMFS. Moreover, when we tested the ability of CH25H to

specifically predict the M5-15 class in a multivariate analysis

including age, diameter, lymph-node status, grade and Mam-

maPrint, CH25H expression was shown to be an independent

predictor of late metastasis ( p-value ¼ 0.002). However,

when we tested the ability of CH25H expression to predict

early metastatic relapse (M � 5 class), it appeared to be signif-

icant as well. This result suggests that CH25H may be an

important general marker of distant metastasis, involved in

all types of metastatic processes (early and late). Conse-

quently, CH25H could be considered a useful clinical marker

for predicting late metastasis for patients who are distant-

metastasis free until 5 years but who are still at risk of a later

metastasis relapse. CH25H catalyzes the formation of 25-

hydroxycholesterol from cholesterol, leading to the repres-

sion of cholesterol biosynthetic enzymes (Bauman et al.,

2009). In recent years, it has become increasingly clear that

lipid metabolism plays an important role in breast cancer

development and progression. In particular, it has been

shown that increased cholesterol content is linked to more

advanced and aggressive breast tumors (Llaverias et al.,

2011). In our study, we showed that low expression of CH25H

is associated with worse prognosis and this could be due to

higher cholesterol concentration, a result of a lack of choles-

terol biosynthetic enzyme repression (through CH25H ). In

addition to the role of CH25H in lipid metabolism, Bauman

and colleagues showed that CH25H is an immunoregulatory

lipid that negatively regulates the adaptive immune response

(Llaverias et al., 2011); More recently, another study

(Hannedouche et al., 2011) demonstrated that down-

regulated CH25H reduced plasma cell response after an im-

mune challenge, confirming the important role of CH25H in

the adaptive immune response. This role of CH25H in regu-

lating immune responses is consistent with the proposed

link between late recurrences in hormonal receptor negative

patients and altered immune function. Taken together, these

findings make the CH25H gene a potential target for distant

metastasis control in breast cancer.
5. Conclusion

Our study allowed us to identify a molecular profile, a molec-

ular target (CH25H gene) and immune and apoptotic biological
pathways that may be further explored for a better under-

standing of the biological processes leading to late breast can-

cer relapses. Our data are consistent with a model in which

suppressed anti-tumoral immunity enables dormant tumor

cells to re-enter the cell cycle to form metastases in response

to extrinsic events in the microenvironment.
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