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A B S T R A C T

Breast cancer is a clinically heterogeneous disease, which necessitates a variety of treat-

ments and leads to different outcomes. As an example, only some women will benefit

from chemotherapy. Identifying patients who will respond to chemotherapy and thereby

improve their long-term survival has important implications to treatment protocols and

outcomes, while identifying non responders may enable these patients to avail themselves

of other investigational approaches or other potentially effective treatments. In this study,

serum metabolite profiling was performed to identify potential biomarker candidates that

can predict response to neoadjuvant chemotherapy for breast cancer. Metabolic profiles of

serum from patients with complete (n ¼ 8), partial (n ¼ 14) and no response (n ¼ 6) to che-

motherapy were studied using a combination of nuclear magnetic resonance (NMR) spec-

troscopy, liquid chromatographyemass spectrometry (LCeMS) and statistical analysis

methods. The concentrations of four metabolites, three (threonine, isoleucine, glutamine)

from NMR and one (linolenic acid) from LCeMS were significantly different when compar-

ing response to chemotherapy. A prediction model developed by combining NMR and MS

derived metabolites correctly identified 80% of the patients whose tumors did not show

complete response to chemotherapy. These results show promise for larger studies that

could result in more personalized treatment protocols for breast cancer patients.
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1. Introduction information on a large number ofmetabolites, including those
Breast cancer, although histologically similar, is clinically

a very heterogeneous disease, which results in a range of

treatment effectiveness and outcomes (Paik et al., 2004). Neo-

adjuvant chemotherapy can significantly benefit breast can-

cer patients; however, the varied response to such therapy

means that a significant proportion of the patient population

is subjected to ineffective treatment while at the same time

being exposed to the therapy’s toxicities (Wolmark et al.,

2001). Pathologic complete response (pCR), which is defined

as the disappearance of the invasive cancer cells in the breast

after chemotherapy, is used to evaluate patient response and

is strongly associated with improved long-term survival rates

(Bear et al., 2004; Fisher et al., 1998; Kuerer et al., 1999). Unfor-

tunately, less than 30% of patients overall show complete re-

sponse to neoadjuvant chemotherapy (Jones and Smith,

2006). An ability to predict response to chemotherapeutic

agents should enable development of personalized treatment

protocols, improving survival rates and reducing unnecessary

exposure of patients to toxic drugs.

Research focused on finding useful molecular or clinical

predictors of pCR to neoadjuvant chemotherapy in breast can-

cer is relatively sparse. Imaging studies, such asmagnetic res-

onance imaging (MRI) (Padhani et al., 2006) and

scintimammography (Marshall et al., 2005; Sciuto et al.,

2002) were proposed to predict pathological responses to neo-

adjuvant chemotherapy, but they are somewhat limited by

low sensitivity combined with high costs. High levels of

MUC-1 antigen (CA 15.3) in pre-treatment serumand its fall af-

ter chemotherapy can predict responses as well (Al-Azawi

et al., 2006) but many patients do not exhibit elevation of

this marker before treatment and hence it is not helpful for

such patients (Kurebayashi et al., 2003). Approaches using ge-

nomics and immunohistochemistry have been explored to

find serum and tissue biomarkers (Bear et al., 2003; Guarneri

et al., 2006; Rouzier et al., 2005; van’t Veer et al., 2002). It has

been shown that gene signatures such as HER2 overexpres-

sion/amplification and lack of ER expression were associated

with pCR and certain neoadjuvant chemotherapy regimens

(Chen et al., 2011; Gianni et al., 2005; Thuerigen et al., 2006).

Other molecular markers such as tumor RNA (Parissenti

et al., 2010), glucose-regulated protein (GRP78) (Lee et al.,

2011) and hormone receptors (Van Poznak et al., 2002; Wang

et al., 2009) have also been identified as potential predictors

of pCR. However, suboptimal performance is a major issue

that limits their wide applicability. Circulating tumor cells

(CTC) have also been established as providing outcomepredic-

tions fromparticular therapies; however CTCs can be detected

in less than 30% of early stage breast cancer patients, which

limits their clinical applicability (Hayes and Smerage, 2008).

As an alternative approach for biomarker discovery,

metabolomics (or metabolite profiling) enables identification

of small-molecule metabolites in biofluids and tissues that

are sensitive to altered pathology (Lindon et al., 2004;

Nicholson et al., 1999; Nicholson and Wilson, 2003). High-

throughput analytical techniques of nuclear magnetic reso-

nance (NMR) spectroscopy and mass spectrometry (MS) com-

bined with multivariate statistical analyses provide
that have altered levels between healthy subjects and patients

with various diseases including cancer (Lanza et al., 2010; Pan

and Raftery, 2007; Zhang et al., 2012). So far, themetabolomics

based approaches have been used in a large variety of applica-

tions, including early disease detection, drug response, toxic-

ity and nutritional studies, and basic systems biology (Clayton

et al., 2006; Gowda et al., 2008; Griffin and Kauppinen, 2007;

Serkova and Niemann, 2006; Sreekumar et al., 2009; Zhang

et al., 2008). Compared with other biomarker discovery ap-

proaches for breast cancer, metabolomics provides a strong

link between genotype and phenotype, and may provide

some insight into oncogenesis. Also, once established, tests

based on metabolic profiles are relatively inexpensive, rapid

and can be automated (Spratlin et al., 2009).

A growing number of metabolomics studies are contribut-

ing toward an improved understanding of breast cancer, and

these advances have been reviewed (Claudino and

Quattrone, 2007; Gowda et al., 2008; Oakman et al., 2011a).

Many of the studies have focused on identifying altered met-

abolic levels in breast cancer cells or tissues, and relating

these changes to their associated metabolic pathways

(Cheng et al., 1998; Sitter et al., 2002; Whitehead and Kieber-

Emmons, 2005; Bathen et al., 2007; Sitter et al., 2006; Yang

et al., 2007). A very recent study using metabolic profiling of

numerous human cancer cell lines found a high correlation

between breast cancer (and other cancer) proliferation and

the glycine biosynthetic pathway (Jain et al., 2012). Previously,

differences between normal and metastatic mammary epi-

thelial cell lines, including up-regulation of fatty acid synthe-

sis and alterations in glycolysis, the TCA cycle and others,

were detected using 13C stable isotopic label tracing by 2D

NMR and GCeMSmethods (Yang et al., 2007). Breast cancer tu-

mors could be separated from non-involved tissues based on

intensities from spectra generated by high-resolution magic

angle spinning (HR-MAS) NMR spectroscopy with a sensitivity

of 83% and a specificity of 100%. Some metabolites such as

choline and glycinewere found to be significantly upregulated

in tumors larger than 2 cm (Sitter et al., 2006). In another NMR

study, amultivariate statisticalmodel based on 67 urinaryme-

tabolites successfully identified all the breast cancer patients

with high specificity (93%) (Slupsky et al., 2010). Breast cancer

prognostic factors, such as estrogen and progesterone recep-

tor status, could be predicted by HR-MAS NMR based metabo-

lomics on tissue samples (Giskeodegard et al., 2010).

Metastatic breast cancer patients could be differentiated

from early stage patients with 72% prediction accuracy using

serum samples detected by NMR based metabolomics

(Oakman et al., 2011b). For identifying breast cancer recur-

rence, a predictive model built on 11 biomarkers detected by

combining NMR and two-dimensional gas chromatogra-

phyemass spectrometry (GC � GCeMS), provided 86% sensi-

tivity and 84% specificity (Asiago et al., 2010).

In this study, we use a metabolomics approach to predict

the response to chemotherapy in the neoadjuvant setting. Se-

rum samples from 28 patients obtained before preoperative

chemotherapy have been studied using a combination of

NMR, liquid chromatographyemass spectrometry (LCeMS)

and multivariate statistics methods. Four metabolites that

http://dx.doi.org/10.1016/j.molonc.2012.10.003
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were identified fromNMR andMSmethods are well correlated

with pCR. A statistical model built based on these metabolites

predicts pCR with high sensitivity and specificity.
2. Experiments

2.1. Chemicals

For NMR experiments, deuterium oxide (D2O, 99.9% D) was

purchased from Cambridge Isotope Laboratories, Inc. (And-

over, MA). Sodium azide (NaN3) and the sodium salt of trime-

thylsilylpropionic acid-d4 (TSP) were purchased from

SigmaeAldrich (Milwaukee, WI). For LCeMS experiments,

two internal standards (tridecanoic acid and chlorophenylala-

nine) and linolenic acid were purchased from SigmaeAldrich

(analytical grade, St. Louis, MO). HPLC-grade methanol and

acetic acid were purchased from Fisher Scientific (Pittsburgh,

PA).

2.2. Patients and serum samples

The patients were enrolled into the study between 2005 and

2008 (Table 1; see also Supplementary Table S1), and were

treated according to current guidelines for neoadjuvant ther-

apy. Those patients with locally advance breast cancer and el-

igible for neoadjuvant chemotherapy were enrolled in this

study. All patients were recruited and treated at the
Table 1 e Summary of clinicopathological characteristics of the
breast cancer patients studied.

Patient characteristics pCR PR SD

Number of patients 8 14 6

Average age (range) 49.5 (37e60) 48.7 (34e64) 43.7 (37e59)

Stage T1 0 0 2

T2 6 10 3

T3 2 1 1

T4 0 3 0

N0 6 1 2

N1 1 4 2

Nþ 1 9 0

NX 0 0 2

M0 8 12 5

MX 0 2 1

Menopause

status

pre 4 7 4

post 4 6 1

N/A 0 1 1

ER status pos 3 12 4

neg 5 2 2

PR status pos 5 11 5

neg 3 3 1

Her2 status pos 5 5 3

neg 3 9 3

Grading G1 0 0 1

G2 6 10 5

G2-3 1 0 0

G3 1 4 0

pCR: pathologic complete response; PR: partial response; SD: stable

disease.
Department of Gynecology and Obstetrics, University of Tue-

bingen. The criteria for patient selection included: 1) signed

informed consent and willingness to comply with require-

ments; 2) at least 18 years old; 3) histopathologically verified

lesions of locally advanced breast cancer; 4) indication for

neoadjuvant chemotherapy; 5) consent to neoadjuvant che-

motherapy; 6) negative result for a serum human chorionic

gonadotropin pregnancy test before start of the study for

women of childbearing potential; 7) ability to consent to study

participation. Patient’s study data were collected in case re-

port forms (CRF). For each included patient a CRF was com-

pleted. Documents which identify the patient (e.g. the

patient identification log and the signed informed consent)

were maintained in confidence by the investigator. More de-

tailed information about the sample collection can be found

in the supplementary materials.

The response to neoadjuvant chemotherapy in patients

with locally advanced breast cancer was based on the correla-

tion of magnetic resonance imaging (MRI), two dimensional

(2D)/three dimensional (3D) ultrasound (US) and mammogra-

phy (MG) with histopathology (study code BCD-001, funded by

the BMBF, Germany). Based on their response, patients were

categorized as having pathologic complete response (pCR),

partial response (PR) or stable disease (SD). Here, pCR is de-

fined as the disappearance of all tumor deposits; PR indicates

a reduction of tumor volume exceeding 50%; while tumor re-

duction less than 50% or increase of volume up to 25% is

scored as stable disease (SD) (Neubauer et al., 2008). The re-

sponse of the tumors to the neoadjuvant chemotherapy was

evaluated pathologically by classifying the regressive changes

using a semiquantitative scoring system from 0 to 4 (0¼ no ef-

fect, 1 ¼ resorption and tumor sclerosis, 2 ¼ minimal residual

invasive tumor [<0.5 cm], 3 ¼ residual noninvasive tumor

only, 4 ¼ no tumor detectable) according to the tumor regres-

sion grading described by Sinn et al. (1994). A consultant pa-

thologist (U. Vogel) blinded to clinical outcome reviewed all

paired biopsy and surgical specimens. Samples were de-

identified in compliance with a protocol approved by the IRB

committees at both Eberhard-Karls-University of Tuebingen

and Purdue University.

Serum samples from all 28 breast cancer patients with

baseline samples available before neoadjuvant chemotherapy

were obtained. Clinical and histopathological data are listed in

Table 1 and Supplementary Table S1. Of these patients, 8

belonged to pCR group, 6 to SD group and 14 to PR group

(Table 1 and S1). Blood (2 � 8 mL) was drawn 45 min before

the start of the chemotherapy. The collected blood was

allowed to clot for 45 min at room temperature and centri-

fuged for 10 min at 3000 rpm at room temperature; the upper

serumphasewas then isolated, aliquoted and frozen at�80 �C
until further use.

Patients were treated according to the design of Gepar-

Quattro including 4 three weekly EC cycles consisting of

Epirubicin (90 mg/m2), with simultaneous administration of

Cyclophosphamide (600 mg/m2). Subsequently, patients re-

ceived Docetaxel (100 mg/m2) in three weekly intervals.

Patients with Her2/neu positive tumors were also treated

with Trastuzumab (6 mg/kg, i.v.) every three weeks, starting

with a loading dose of 8 mg/kg i.v. on day 1 of the first EC-

cycle.

http://dx.doi.org/10.1016/j.molonc.2012.10.003
http://dx.doi.org/10.1016/j.molonc.2012.10.003
http://dx.doi.org/10.1016/j.molonc.2012.10.003
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2.3. NMR spectroscopy

Frozenserumsampleswere thawedand530mLwasmixedwith

5 mL 0.1% NaN3 solution. A 60 mL 0.5 mM TSP solution was uti-

lized as an internal standard. 1H 1D NMR experiments were

performed using the CPMG (CarrePurcelleMeiboomeGill)

pulse sequence coupled with water presaturation on a Bruker

Avance-500 spectrometer equipped with a TXI gradient cryo-

probe. 128 scans with 16 k time domain data points were col-

lected using a spectral width of 6000 Hz. An exponential

weighting function corresponding to 1.0 Hz line broadening

was applied to the time domain data before Fourier transfor-

mation. The spectra were then phased, baseline corrected

and referenced to alanine (d ¼ 1.48 ppm) using Bruker Topspin

3.0 software.

2.4. Liquid chromatography resolved mass spectrometry
(LCeMS)

Frozen serum samples (100 mL) were thawed, and protein was

precipitated by adding 200 mL methanol containing two inter-

nal standards, tridecanoic acid and chlorophenylalanine,

used to monitor extraction efficiency. The solutions were

centrifuged at 13,200 rpm for 30 min; the resulting superna-

tants were dried under vacuum and reconstituted in 25 mL

methanol/water (1:1). A pooled sample, which was a mixture

of small random volumes from all 28 samples, was extracted

using the same procedure as above. This sample was used as

a quality control (QC) and was analyzed after every 10 patient

samples. LCeMS analysis was performed using an Agilent

6520 HPLC-QTOF system (Agilent Technologies, Santa Clara,

CA) consisting of anAgilent 1200 SL liquid chromatograph cou-

pledwith a time-of-flight (TOF)mass spectrometer. The recon-

stituted serum samples were gradient-eluted at 600 mL/min

using (A) 0.2% acetic acid in water and (B) 0.2% acetic acid in

methanol (2%B to 98%B in 13min, 98%B for 6min). A 3 mL sam-

ple aliquot was injected onto a 2.1 � 50 mm Agilent Zorbax

Extend-C18 1.8 mmparticle columnwith a 2.1� 30mmAgilent

Zorbax SB-C 8 3.5 mm particle guard column heated to 60 �C.
Electrospray ionization (ESI) was used in positive mode. The

MS interface capillary wasmaintained at 325 �C, with a sheath

gas flow of 9 L/min. The spray voltage for positive ion injection

was 4.0 kV. The instrument was scanned over a range of

50e1000 m/z. Agilent MassHunter Workstation LCeTOF and

QTOF Acquisition software (B.02.01) was used for automatic

peak detection and mass spectrum deconvolution.
3. Data analysis

3.1. Patient characteristics

The three groups of patients have similar age distributions. Al-

though the pCR cohort has the highest average age (49.5) and

the SD cohort has the lowest (43.7), both groups have almost

the same age range (37e60 for pCR and 37e59 for SD). In terms

of cancer stage and grade,most cancer patients in all three co-

horts were in the T1eT2 stage and G2 grade, which represent

75% of pCR patients (n ¼ 6), 71% of PR (n ¼ 10) and 83% of SD

patients (n ¼ 5), respectively. All three cohorts contain both
pre and post-menopausal patients. In the pCR and PR groups,

pre and post-menopausal patients are evenly distributed

(pre:post ¼ 4:4 and 7:6 for pCR and PR, respectively), while

SD cohorts have more pre-menopausal patients

(pre:post ¼ 4:1 for SD). All three groups have diverse distribu-

tions of ER/PR/Her2 statuses. Most of the samples (n ¼ 24) are

from ER or PR positive women. And almost half of the samples

(n ¼ 13) are Her2 positive.

3.2. Data pre-processing

From the 1HNMR spectra, 27 spectral regionswithmetabolites

peaks were identified and integrated after local baseline cor-

rection, and normalized to the total sumof all themetabolites.

In order to identify distinguishing metabolite biomarkers, the

integral for each metabolite was statistically compared using

the Student’s t-test between different groups of patients.

The LCeMS data were processed using Agilent’s Mass-

Hunter Qualitative Analysis software (version B.03.01). A list

of ion intensities for each peak detected was generated,

matching m/z and retention time (RT) for each ion. Agilent

MassHunter Workstation Mass Profiler Professional software

(version B.02.00) was then used for compound peak alignment

and removal of any peaks with missing values (ion

intensity ¼ 1) in more than one sample from any group; 115

metabolites passed this filter. Internal standard peaks were

also removed. Finally, the Agilent Formula Database (Agilent

2010) was used for metabolite identification by matching the

accurate mass spectrum to a database of compounds. The

Student’s t-test was performed between pCR and SD samples,

and 9 metabolites with low p-values (<0.1) (Supplementary

Table S2) were selected as biomarker candidates for further

statistical analysis.

3.3. Statistical analysis

The statistical analysis for this metabolomics study was per-

formed retrospectively after sample collection. We performed

comparisons by computing p-values between all 3 pairs of the

responding groups (SD, PR, pCR) to find any difference or sep-

aration between these groups.

All 27 metabolite peak integrals from NMR and 9 LCeMS

metabolites with p < 0.1 were imported into Matlab software

(Mathworks) installed with the PLS toolbox (Eigenvector Re-

search, Inc., version 4.0) for partial least squares (PLS) analysis

to obtain clustering information and identify outliers. The

same software was also used for partial least squares discrim-

inant analysis (PLS-DA)modeling. Leave-one-out cross valida-

tion (CV) was chosen, and the number of latent variables were

selected according to the root mean square error of CV proce-

dure. The R statistical package (version 2.8.0) was used to gen-

erate receiver operating characteristics (ROC) curves and box-

and-whisker plots.
4. Results

In order to visualize the intrinsic grouping of samples and

identify outliers, PLS analysis was performed using the 27

NMR derived metabolite regions, and the results of this

http://dx.doi.org/10.1016/j.molonc.2012.10.003
http://dx.doi.org/10.1016/j.molonc.2012.10.003
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analysis are shown in the Supplementary Figure S1. The re-

sults showed that the SD patient group has one outlier, which

was omitted from further analysis; the new PLS score plot

thus obtained is depicted in Figure 1(a). Both pCR and SD

groups were separated along the first two latent variables

(LV1 and LV2), while the PR group lies between pCR and SD.

Similar analysis performed using the 9 metabolites with

p < 0.1 obtained from LCeMS data was also performed, and

the results are shown in Figure 1(b). As observed for the

NMR data, metabolites derived from LCeMS also separated

pCR from the SD group of patients. However, again the cluster-

ing for the PR group was not as well defined.

Comparison of the NMR data between different groups of

patients using the Student’s t-test showed four metabolites

to be statistically significant ( p < 0.05) (Table 2). One-way

ANOVAwas not used here since the objective is to see the dif-

ference between each pair of groups. These p-values indicate

that levels of threemetabolites, isoleucine, threonine and glu-

tamine, were significantly different between pCR and SD

groups and the levels of twometabolites, threonine and gluta-

mine, were different between PR and SD. Only onemetabolite,

histidine, differed significantly between pCR and PR. The

LCeMS data showed that the most statistically differentiating
Figure 1 e PLS score plot based on (a) 27 metabolites detected by NMR and

outlier was deleted. The LV label on the two axes stands for latent variable.

disease.
compounds found were long-chain lipids or fatty acids. The

most interesting of these, linolenic acid, was validated using

a pure, commercially obtained compound. This metabolite

separated pCR from SD samples perfectly, which makes com-

bining linolenic acid with other LCeMS detected markers un-

necessary for model building. Statistical analysis shows

linolenic acid to be significantly different between pCR and

SD groups (p < 0.01). Performance of these metabolites was

evaluated individually using receiver operating characteristic

(ROC) curves and box-and-whisker plots. Figure 2 shows box-

and-whisker plots for the five metabolites (4 from NMR and 1

from LCeMS) and Supplementary Figure S2 shows ROC curves

along with area under the ROC (AUROC) values. The concen-

tration distribution for all the metabolites except histidine

showed a consistent trend from pCR to PR to SD; while threo-

nine, glutamine and linolenic acid increased, isoleucine de-

creased. Further, four metabolites, threonine, glutamine,

isoleucine and linolenic acid each showed aminimumAUROC

of 0.80 in classifying pCR and SD patients, while only linolenic

acid distinguished pCR from both SD and PR patients with an

AUROC of greater than 0.80 (Supplementary Figure S2). As

mentioned above, linolenic acid distinctly separated pCR

from SD with an AUROC ¼ 1 (Table 3).
(b) 9 metabolites detected by LCeMS for all the patients. In (a), one

pCR: pathologic complete response; PR: partial response; SD: stable

http://dx.doi.org/10.1016/j.molonc.2012.10.003
http://dx.doi.org/10.1016/j.molonc.2012.10.003
http://dx.doi.org/10.1016/j.molonc.2012.10.003


Table 2 e Summary of NMR metabolites having low p-values.

Chemical shift (d) Multiplicity Assignment p-Value (pCR vs. SD) p-Value (pCR vs. PR) p-Value (PR vs. SD)

4.24 m Threonine 0.04 0.28 0.01

1.00 s Isoleucine 0.04 0.10 0.20

2.09 m Glutamine 0.01 0.30 0.02

7.07 s Histidine 0.29 0.01 0.54
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Further analysis focused on evaluating the performance of

themetabolites in combination. First, we combined the 3 NMR

markers, threonine, glutamine and isoleucine that distin-

guished pCR and SD, performed PLS-DA and built a statistical

classification model. Leave-one-out cross validation was used

to reduce overfitting and estimate model accuracy. Figure 3

shows prediction results using this model for different patient

groups. The AUROC for distinguishing pCR and SD was 0.81.

However, as with the individual metabolites, the performance

for distinguishing pCR from the other two groups, PR and SD,

was relatively poor (AUROC ¼ 0.72).

Analysis was also performed combining threeNMR derived

markers (threonine, glutamine and isoleucine) with LCeMS

detected linolenic acid. The results from the statistical analy-

sis are shown in Figure 4. Themodel provides 100% selectivity

and 80% sensitivity for the prediction of pCR vs. SD with an

AUROC of 0.95, which is significantly better compared to the

classification offered by the 3markermodel (Figure 3). PR sam-

ples were not well classified by either model.
5. Discussion

In this study, we present a new metabolomics approach for

predicting the outcome of breast cancer neoadjuvant chemo-

therapy. By combining two different analytical platforms,

NMR and LCeMS, three amino acids and one fatty acid are
Figure 2 e Individual metabolite box-and-whisker plots for the different g

histidine; and (e) linolenic acid.
shown to be highly correlated with pCR. Although the clinical

and histopathological parameters of the patients and tumors

in each response group are quite heterogeneous, the serum

samples still fall into distinct clusters. In order to investigate

the impact of different subtypes of breast cancer on the per-

formance of four markers we used for model building, p-

values from the Student’s t-test were obtained by comparing

samples from different ER/PR/Her2 status for pCR, PR, SD. All

of these sample data are summarized in Supplementary

Table S3. No p-value less than 0.05 can be found, indicating

that none of the 4 markers is significantly altered by any of

these parameters in the data set.

The resulting prediction model has high sensitivity and

specificity. Considering the challenges involved in predicting

the outcome of almost any cancer treatment, this promising

method might open a new approach for selecting the use of

certain cancer treatments or even provide better personalized

treatment options. Interestingly, however, as seen from the

comparison of the clinical data and clustering of the patient

samples in the statistical analysis based on blood metabolites

(Table 1, Supplementary Table S1 and Figure 4), the derived

metabolite biomarkers provide a strong response to chemo-

therapy and do not indicate an association with any sub types

such as ER, PR or Her2 status. These results suggest that al-

tered metabolic pathways associated with the derived bio-

markers are unconnected to ER, PR or Her2 status. However,

studies on larger patient cohorts are required to substantiate
roups of patients: (a) threonine; (b) glutamine; (c) isoleucine; (d)

http://dx.doi.org/10.1016/j.molonc.2012.10.003
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Table 3 e Summary of data for linolenic acid detected by LCeMS.

Compound
name

Formula Mass
calculated

(Da)

Mass
detected

(Da)

Delta mass
(ppm)

RT detected
(min)

p-Value
(pCR vs. SD)

p-Value
(pCR vs. PR)

p-Value
(PR vs. SD)

Linolenic acid C18H30O2 278.2246 278.2247 �0.36 11.44 0.03 0.0002 0.32

M O L E C U L A R O N C O L O G Y 7 ( 2 0 1 3 ) 2 9 7e3 0 7 303
these findings and identify metabolic link between the patho-

logically different subtypes, if any.

The performance of linolenic acid detected by LCeMS anal-

ysis was particularly striking, and showed an AUROC of 0.86

for the classification of pCR from PR and SD, and 1.0 for the

classification of pCR from SD (Figure S2). In addition, the com-

bination ofMS andNMRdetectedmetabolites provides a num-

ber of advantages including enabling identification of

additional distinguishing metabolites that provide better in-

sights into the cellular metabolism and provides potentially

a more robust model that can perform effectively when tested

with a larger cohort of patients. Fourmetabolites derived from

the combination of NMR and MS distinguished the three

breast cancer patient groups, pCR, PR and SD with good per-

formance. The predictive model thus developed by combining

the four metabolites correctly separated pCR from SD patients

with 100% specificity and 80% sensitivity (Figure 4). Such

a high degree of sample classification achieved through the

serum derived metabolites is particularly noteworthy at

a time when the prediction of the response to breast cancer
Figure 3 e (a) Predictions results for the PLS-DA model based on the 3 m

NMR; (b) ROC curve for pCR vs. SD using the cross-validated predicted

groups using the cross-validated predicted class values (AUROC [ 0.72).
neoadjuvant chemotherapy continues to be challenging. We

found that PR samples show large variance in the values for

most of the markers we identified. Some PR patients tend to

be predicted as pCR; while others cluster with SD samples.

This effectmay be due to the heterogeneous results of chemo-

therapy for these patients who are classified between SD and

pCR. Pathologic response rates are surrogates of patient out-

come. It will be important in a larger cohort of patients to de-

termine if the PRs who were predicted as pCR have a better

clinical outcome than those predicted to be SD.

To the best of our knowledge, this is the first study to com-

bine NMR and MS to identify altered metabolites in the serum

for use as predictors of response to neoadjuvant chemother-

apy. Altered levels of the four metabolites identified in this

study, threonine, glutamine, isoleucine and linolenic acid

that predict response to neoadjuvant chemotherapy represent

changes in the metabolic activity of several pathways. Infor-

mation about the association of specific metabolic pathways

with response prediction remains to be clearly understood.

However, numerous studies have reported altered levels of
etabolite markers (threonine, isoleucine and glutamine) detected by

class values (AUROC [ 0.81); (c) ROC curve for pCR vs. the other

http://dx.doi.org/10.1016/j.molonc.2012.10.003
http://dx.doi.org/10.1016/j.molonc.2012.10.003
http://dx.doi.org/10.1016/j.molonc.2012.10.003


Figure 4 e (a) Prediction results for the PLS-DA model based on combining isoleucine, glutamine, and threonine detected by NMR and linolenic

acid detected by LCeMS; (b) ROC curve for pCR vs. SD using the cross-validated predicted class values (AUROC [ 0.95); (c) ROC curve for

pCR vs. the other two groups combined using the cross-validated predicted class values (AUROC [ 0.89).
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blood serum/plasma amino acids in breast cancer patients

and those results match with the association of the amino

acids found in the present study (Asiago et al., 2010; Lai

et al., 2005; Zhang et al., 2011). For example, a study using

blood plasma showed increased concentration of threonine

in breast cancer (Kubota et al., 1992). In addition, investiga-

tions of breast cancer cells showed increased levels of threo-

nine, under hypoxic conditions, and such an increase is

attributed to impaired protein synthesis due to hypoxia

(Weljie et al., 2011). Increased glutamine levels in blood

plasma have been reported for breast cancer, in addition to

esophageal and liver cancers (Gao et al., 2009; Proenza et al.,

2003; Zhang et al., 2011). Glutamine is an essential nutrient

for the growth of cancer cells, and the catabolismof glutamine

is a major route for the proliferation of mammalian cells.

Many types of cancer cells are shown to depend on high rates

of glutamine uptake and metabolism (Coles and Johnstone,

1962; Eagle, 1955; Wise et al., 2008). An association of isoleu-

cine that we find in the present study has not been reported

previously for breast cancer. However, its altered levels in

blood plasma are known in liver and colorectal cancers

(Georgiannos et al., 1995; Watanabe et al., 1984). Identification

of the fatty acid, linolenic acid, is also consistent with several

earlier investigations, which showed significant upregulation

of fatty acids in breast cancer (Baron et al., 2004; Boros et al.,

2002; Yang et al., 2007).

Thus, although, three of the four distinguishing metabo-

lites, threonine, glutamine and linolenic acid, have previously
been shown to have links with breast cancer, the mechanism

of their down-regulation in patients that responded to chemo-

therapy (pCR group) compared to those that do not (SD group)

is not well understood. The results, however, suggest thatme-

tabolites in the serum of breast cancer patients are indicators

of tumor/host metabolism and that they can predict both sen-

sitivity and resistance to chemotherapy a priori. This is consis-

tent with previous reports that indicate some hypoxic cancer

cells exhibit higher levels of threonine and that high levels of

fatty acids found in malignant breast cancer cells are also as-

sociated with clinically aggressive tumor resistance behavior

(Kuhajda, 2000; Weljie et al., 2011; Zeng et al., 2010). Moreover,

it is now known that some cancer cells display addiction to

glutamine. Glutamine is a major oxidizable substrate for tu-

mor cells, which require glutamine for survival (Fuchs and

Bode, 2006; Wise and Thompson, 2010; Yuneva et al., 2007).

Hence, the higher concentration of glutamine observed for pa-

tients (SD group) that did not respond to chemotherapy ap-

pears to favor tumor survival and growth, and offer

resistance to chemotherapy.
6. Conclusion

We present a prediction model for the outcome of breast can-

cer neoadjuvant chemotherapy based on metabolic profiling

studies that combine NMR and LCeMS methods. A combina-

tion of four metabolites, three detected by NMR (threonine,

http://dx.doi.org/10.1016/j.molonc.2012.10.003
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glutamine and isoleucine), and one by MS (linolenic acid) dis-

tinguish groups of patients with no, partial or complete re-

sponse. While this pilot study was focused on a small

patient cohort, it clearly indicates that several blood-based

metabolite markers are sensitive to response, and that the ap-

proach is promising for predicting the response to chemother-

apy. Studies using larger patient cohorts will be needed to

substantiate the results and determine any association of

the derived metabolite markers with pathologically different

sub types. Validation of these results using a larger and inde-

pendent sample cohort, and identification of additional me-

tabolite markers, will provide better insights into the

pathology at the molecular level that lead to different re-

sponse outcomes for the three groups of patients. In addition,

considering its strong performance as a biomarker in the pres-

ent study, linolenic acid and possibly other fatty acids might

be of particular interest for further validation studies. This ap-

proach, which clearly differentiates patients that respond to

drugs from those that do not, may provide a useful tool for

a non-invasive prognosis of the treatment outcome.
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