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A B S T R A C T

Lung adenocarcinoma (ADC) is the most common lung cancer subtype and presents a high

mortality rate. Clinical recurrence is often associated with the emergence of metastasis

and treatment resistance. The purpose of this study was to identify genes with high prom-

etastatic activity which could potentially account for treatment resistance.

Global transcriptomic profiling was performed by robust microarray analysis in highly met-

astatic subpopulations. Extensive in vitro and in vivo functional studies were achieved by

overexpression and by silencing gene expression.

We identified the small GTPase RHOB as a gene that promotes early and late stages of

metastasis in ADC. Gene silencing of RHOB prevented metastatic activity in a systemic mu-

rine model of bone metastasis. These effects were highly dependent on tumor-host inter-

actions. Clinical analysis revealed a marked association between high RHOB levels and

poor survival. Consistently, high RHOB levels promote metastasis progression, taxane-

chemoresistance, and contribute to the survival advantage to g-irradiation. We postulate

that RHOB belongs to a novel class of “genes of recurrence” that have a dual role in metas-

tasis and treatment resistance.
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1. Introduction
 For the characterization of key determinants in both pro-
Adenocarcinoma (ADC) is the most frequent histological type

and accounts for 30e40% of non-small cell lung cancers

(NSCLCs) (Jemal et al., 2010). Prognosis remains poor despite

recent progress in multimodal management, which includes

surgical resection, and combined chemo- and radiotherapy.

Similarly to other lung cancer subtypes, ADC tumorsmetasta-

size to local or distant sites, including the brain, the adrenal

medulla and the skeleton (Hess et al., 2006). This process

may appear even during early stages of tumor progression

because >30% of stage I tumors relapse after complete surgi-

cal resection (Feld et al., 1984). More often, following the

course of treatment and a variable period of remission, recur-

rence involves refractory response to chemo- and radio-

therapy and the appearance of metastasis or a secondary

primary tumor (Martini et al., 1995).

Metastasisentails several consecutive steps inwhich tumor

cells acquire novel functions such as invasiveness, resistance

to shear-stress in the circulation, and evasion of immune sur-

veillance, which allows infiltration and colonization in target

organs (Fidler, 2003). These functional advantages of cellular

variants within the primary tumor are directed by an intrinsic

genetic/epigenetic program (Gupta et al., 2007; Minn et al.,

2005) that is highly modulated by microenvironmental cues

(Joyce and Pollard, 2009). The complexity of this process has

beenpreviouslyestablished for sometumors, inwhichasubset

of genes acts cooperatively and promotes different events in

the metastatic process (Gupta et al., 2007; Yang et al., 2004).

Their relevance is underscored by their significance as prog-

nostic markers of the clinical course. Less frequently, a single

gene that confers robust pleiotropic functions and predicts

clinical outcome has been identified (Han et al., 2008; Yang

et al., 2004). Recently, functional endothelial proteinC receptor

(EPCR) promotes metastasis and associates with survival of

ADC patients (Ant�on et al., 2012).

In addition to cell intrinsic mechanisms, a variety of non-

tumor cells greatly influence tumor progression. These het-

erotypic cellular interactions as well as a variety of locally

released cytokines and growth factors initiate critical

signaling pathways that strongly influence the primary tu-

mor, aggravating disease progression and promoting coloni-

zation at distant sites. In bone, a frequent target organ of

ADC metastasis, paracrine loops between bone-derived fac-

tors, such as transforming growth factor (TGF-b), and tumor

cells have been shown to exacerbate osseous colonization

(Yin et al., 1999). Moreover, host-related effects mediated by

stromal platelet-derived growth factor receptor signaling

have been implicated in bone homing of lung cancer

(Catena et al., 2011).

Similarly, hostetumor mechanisms and intrinsic tumor

mutations can also greatly influence treatment resistance. A

variety of mutations or acquired gene expression changes in

molecular transporters, DNA repair pathways, or intracellular

drug metabolism (Stewart, 2010) have been shown to confer

cell resistance. Given this reciprocal influence of tumormicro-

environment in both processes, we hypothesized that some

genes that promote a metastatic phenotype may also endow

cells with enhanced tolerance to therapeutic stress.
cesses of lung ADC, we first identified genes with robust

prometastatic activity. After extensive in vitro and in vivo

functional analysis, we used data mining and clinical valida-

tion to specify further their potential contribution to treat-

ment resistance. Using this approach, we identified RHOB

as a critical component in lung ADC. This small GTPase

acts as a signaling switch, that is implicated in the regulation

of a variety of molecular pathways by cycling between an

active GTP and inactive GDP-bound state (Prendergast,

2001). Unlike other RHO GTPases, RHOB participates in endo-

some trafficking (Jaffe and Hall, 2002). Consistent with this,

RHOB displays a unique pattern of cellular distribution that

contributes to the cytoplasm to membrane targeting of a va-

riety of receptors and signaling molecules (Jaffe and Hall,

2005).

RHOB effects are stage and/or cell-type dependent, and in

some cellular contexts, ectopic expression of RHOB promotes

proliferation and transformation (Prendergast et al., 1995),

whereas in others, high RHOB levels inhibit invasive and

migratory cell behavior (Bousquet et al., 2009; Jiang et al.,

2004). This context-specificity has also been observed in vivo

in some tumors (Du and Prendergast, 1999), including lung

cancer in which RHOB levels decreased between preinvasive

and invasive stages in the tumorigenic progression

(Mazieres et al., 2004). Because of these findings in lung cancer

and in other tumors (Couderc et al., 2008; Liu et al., 2001a,

2001b; Zhou et al., 2011), RHOB has been considered to func-

tion as a tumor suppressor (Prendergast, 2001). Yet, recent ev-

idence challenges this prevailing view by unveiling the

dominant host-derived effects in tumor vasculature elicited

by RHOB (Kazerounian et al., 2013). In this study, we found

that ablation of RHOB levels in tumor cells dramatically

decreased bone metastasis in an experimental model. In

contrast, RHOB overexpressionwas associatedwith enhanced

dissemination from the primary location and increased resis-

tance to chemotherapy and radiation.
2. Material and methods

2.1. Plasmids

Human RHOB cDNA was cloned in pBABE retroviral vector.

Lentiviral vectors containing short hairpin for RHOB were ob-

tained from shRNA Mission (Sigma).
2.2. Cell lines

A549 cell line was a kind gift from Dr. Gazdar (University of

Texas Southwestern, Dallas, TX). The cell line is authenticated

by sequencing of several describedmutations every 6months.

Murine stromal ST-2 cell line was authenticated by qPCR.
2.3. RHO activity assays

Pull down assays were performed using Rhotekin-RBD (for

RHO proteins) and PAK-PBD beads (for Rac1 and cdc42) and

http://dx.doi.org/10.1016/j.molonc.2013.11.001
http://dx.doi.org/10.1016/j.molonc.2013.11.001
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samples were subjected to western blot analysis according to

manufacturer specifications (Cell Biolabs).

2.4. In silico experiments

Gene expression and clinical data for 111 cases of primary

lung carcinomas were obtained from Bild et al. Data were

retrieved from the Gene expression Omnibus (GSE3141).

2.5. Chemoresistance and radioresistance clonogenic
assay

Cells (1 � 104 per well) were seeded into 48-well plate. After

24 h, cells were treated for 24 h with paclitaxel (Sigma), 2 h

with cisplatin (Sigma), and 9 h with gemcitabine (Eli Lilly) for

the indicated doses. After culturing the cells in drug-free me-

dia for additional 48 h, clonogenic assay was performed as

previously described (Hu et al., 2009).

For resistance to radiation, cells (1 � 105) alone or with

ST-2 (1 � 105) were exposed to g-rays (5.5 Gy) on 60 mm

dishes using a Gammacell 3000 irradiator (Nordion, Ottawa,

Canada). Cells were recovered for 48 h and harvested in

8 mL and a 100 mL aliquot was seeded onto 6-well plates

for 8 days. Cells were fixed, stained and the total area of

resistant clones was evaluated with a computerized image

analysis system.

2.6. In vitro assays

Global MMP activity was performed in coculture supernatants

using an assay based on the cleavage of synthetic fluorogenic

peptide for MMP-3 from Bachem (M-2110) and fluorogenic pep-

tide substrate II (R&D systems), an excellent substrate for

MMP-3 and MMP-10. Cell adhesion, invasion assays have been

described elsewhere (22).

2.7. In vivo assays

Intracardiac inoculation (i.c.) and intratibial injection (i.t.) were

performed as previously described (Vicent et al., 2008). Oropha-

ryngeal aspiration was performed according to Lakatos et al.

(2006).

2.8. Statistical analysis

Log-rank test was used to calculate the statistical significance

( p value) of differences observed among KaplaneMeier

curves. To study differences in proliferation rates, tumor

growth, differences in metastatic area, SCC number and met-

alloproteolytic activity data were analyzed by different com-

parison test. For parametric analysis, ANOVA followed by

Tukey Post hoc test was performed in cases with variance ho-

mogeneity and Brown-Forsythe and T2 Tamhane when this

did not happen. Data are presented as mean �SD in these

cases. For non-parametric statistics, data were analyzed by

KruskalleWallis test followed by Mann-Whithney multiple

comparison test with Bonferroni’s adjustment. Statistical re-

sults were defined as statistically significant (*p < 0.05,

**p < 0.01, ***p < 0.001).

Supplementary methods provide additional information.
3. Results

3.1. Transcriptomic identification of RHOB

Using the human ADC A549 cell line, we established a dual

screening strategy by transcriptomic selection of genes with

robust prometastatic activity (Kang et al., 2003), and subse-

quently tested their importance in human lung cancer. This

approach identified a triple gene signature of HDAC4, PITX1

and ROBO1 which concomitantly confer strong prometastatic

activity to bone even though the individual contribution of

each gene proved to be irrelevant (Luis-Ravelo et al., 2013).

This transcriptomic analysis also enabled to identify RHOB

as another top overexpressed gene (Figure 1a). A complete list

of the top 40 gene probe sets (FDR cutoff <0.052) can be found

in Figure 1a. Expression of this gene was confirmed by using

western blotting (Figure 1b) and real-time quantitative PCR

(qPCR) (Figure 1c). Because RHOB participates in a variety of

cellular processes, we performed an in silico analysis of micro-

array data of RHOB expression levels derived from human

lung tumor samples in a previously published database (Sup.

methods). Bioinformatics analysis revealed no statistical dif-

ferences when all histological subtypes were included (data

not shown). However, when only ADC was considered, pa-

tients with high RHOB expression levels had a poor prognosis

as compared to those with low levels of RHOB expression in

lung tumors (Figure 1d).

Next, we performed an immunohistochemical analysis be-

sides limitations inherent to the specificity of available anti-

bodies (Sup. Figure 1, 2, 3). However, experiments on two

independent cohorts, using an anti-RHOB antibody (Sup.

Figure 3), strongly suggest an association between RHOB

expression levels and survival time in ADC patients treated

with adjuvant therapy (Sup. Figure 3). More importantly, a sur-

vival analysis of a cohort of NSCLC tumors subjected to adju-

vant taxane-based chemotherapy and/or radiotherapy was

also performed and patients with high RHOB levels were

found to have a worse survival rates than those with low

levels (Sup. Figure 4).

These data suggest that RHOB might confer cell advanta-

geous functions associated with poor clinical outcome.
3.2. Identification of RHOB as a prometastatic gene
in ADC

We assessed the contribution of RHOB to the prometastatic

activity by downregulating its expression levels (Figure 2a).

Proliferation was unaffected by gene knockdown in vitro

(Figure 2a). To substantiate the role of RHOB, we performed

i.c. inoculation using twodifferent knockdown constructs. An-

imals inoculatedwith RHOB knockdown cells showed a longer

latency in the appearance ofmetastasis with fewermetastatic

lesions (Figure 2b) and a significant decrease in tumor burden

(Figure 2c). Bioluminescence image analysis, histological anal-

ysis and mCT scans, revealed decreased colonization of the

bone marrow compartment, with a lower degree of cortical

bone destruction in the metaphyseal region, and colonization

of extraosseous tissues (Figure 2d). These findings suggest

that RHOB levels could confer prometastatic activity.

http://dx.doi.org/10.1016/j.molonc.2013.11.001
http://dx.doi.org/10.1016/j.molonc.2013.11.001
http://dx.doi.org/10.1016/j.molonc.2013.11.001
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3.3. RHOB levels modulate different steps of the
metastatic cascade

We retrovirally overexpressed RHOB in parental cells using

two different vectors (Figure 3a). The overexpressors did not

show differences in their growth kinetics (Sup. Figure 6).

RHOB overexpression led to an increase in the active form of

the protein, but the activity of other RHO GTPases such as

RHOA, RHOC, RAC1 or CDC42 was not affected (Figure 3a

and Sup. Figure 7).

We sought to explore whether high RHOB levels could also

influence early metastatic events such as invasion and intra-

vasation. We orthotopically inoculated RHOB-overexpressing

cells. Bioluminescence image analysis of the thoracic cavity

showed no significant differences in tumor burden between

groups at 7 months post-inoculation. Although nometastases

were observed in control animals during the experimental

period, several metastatic foci were detected in some mice

inoculated with RHOB-overexpressing cells (Figure 3b). The

presence of cells that colonized extrapulmonary organs in

this group was detected. No other macroscopic lesions were

observed after systematic necropsy. Taken together, these

data suggest that cells with high RHOB levels in the lung

microenvironment showed an increased ability to form

distant metastases.

To investigate the effects of high RHOB levels in late stages

of metastasis, we i.c. inoculated athymic nude mice with

RHOB-overexpressing cells. Mice showed decreased latency

for initiation of bone metastatic lesions, an increase in osteo-

lytic lesions (Figure 3c) and tumor burden (Figure 3d).
To distinguish the contribution to colonization, we injected

shRHOBandcontrolcells intratibially.Twenty-fivedaysafter in-

jection, control cells induced overt osteolytic lesions, whereas

shRHOB cells induced smaller bone lesions (Figure 3e). These

findings indicate that the decreased metastatic activity

observed in shRHOB cells could be mediated, at least in part,

by the impaired ability of shRHOB cells to colonize and thrive

in the bone compartment.

Taken together, these data suggest that RHOB levels in lung

cancer cells play an important role in early and late steps of

metastasis by increasing the prometastatic activity.

3.4. RHOB modulates multiple metastasis-related
mechanisms

It has beenwell established thatMMPs significantly contribute

to bone matrix degradation in bone metastases (Lu et al.,

2009). Although osseous collagens can be degraded by several

MMPs, we have previously shown that MMP-3/MMP-10 activ-

ities are rapidly induced upon tumorestromal interactions

(Luis-Ravelo et al., 2011). To establish the cellular RHOB levels

that could account for the metastatic effects observed in vivo,

we assessed MMP3/10 matrix metalloproteinase (MMP) activ-

ities. Conditioned medium (CM) derived from knockdown

cells cultured with stromal ST-2 cells resulted in a decrease

in MMP activity (Figure 4a and Sup. Figure 8). Consistently,

when RHOB-overexpressing cells were cultured under the

same conditions, global MMP activity increased with a fluoro-

genic substrate recognizing MMP-3 and -10, an activity that

was completely abrogated by the global MMP inhibitor

http://dx.doi.org/10.1016/j.molonc.2013.11.001
http://dx.doi.org/10.1016/j.molonc.2013.11.001
http://dx.doi.org/10.1016/j.molonc.2013.11.001
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eosin staining (right). Asterisk indicates presence of tumor cells.

M O L E C U L A R O N C O L O G Y 8 ( 2 0 1 4 ) 1 9 6e2 0 6200
GM6001 (Figure 4a and Sup. Figure 8). Thus, RHOB levels

modulated global MMP activity. RHOB was upregulated in tu-

mor cells cultured with murine stromal ST-2 cells, whereas

no effects were observed in A549 cells incubated with the

CM derived from ST-2 cells cultured alone or with A549 cells

(Figure 4b). Consistent with the in vivo metastatic effects,

RHOB knockdown cells displayed decreased ability to invade

collagen type I; the most abundant bone matrix protein. In

contrast, RHOB-overexpressing cells displayed increased

invasiveness under the same conditions (Figure 4c). Moreover,

overexpression of RHOB in a panel of humanADC cell lines led

to increased invasiveness in 5/7 cell lines as compared to

mock-transduced cells (Figure 4d). These data support the

conclusion that high RHOB levels enhance invasiveness of

ADC cancer cell lines. No differences in osteoclastogenic
activities were found in an in vitro osteoclastogenic assay

(data not shown).

RHOB has been implicated in adhesion-perturbing integrin

receptor signaling therefore, we tested the ability of different

RHOB clones to adhere to different substrates. These cells dis-

played greater adhesion to fibronectin, while knockdown cells

showed impaired adhesion to this substrate. Differences were

also found for hyaluronic acid (Sup. Figure 9).

3.5. RHOB mediates chemo- and radioresistance in lung
ADC

To establish the possible contribution of RHOB expression

levels in the clinical findings, we first studied the effect of

RHOB levels in in vitro chemoresistance to three currently

http://dx.doi.org/10.1016/j.molonc.2013.11.001
http://dx.doi.org/10.1016/j.molonc.2013.11.001
http://dx.doi.org/10.1016/j.molonc.2013.11.001
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M O L E C U L A R O N C O L O G Y 8 ( 2 0 1 4 ) 1 9 6e2 0 6 201
used drugs: cisplatin, paclitaxel, and gemcitabine. Incubation

of RHOB knockdown cells with increasing doses of paclitaxel

showed increased chemosensitivity as compared to control

cells (Figure 5a), but not to other tested drugs (data not

shown). In contrast, incubation of RHOB-overexpressing cells

with increasing doses of paclitaxel led to an increase in the

number of surviving colonies in clonogenic assays, as

compared to mock control cells, in a dose-dependent manner

(Figure 5a). These data suggest that RHOB levels modulate

paclitaxel chemoresistance in A549 cells.

We also studied the influence of RHOB levels in radioresist-

ance. RHOB levels had no influence on radioresistance when

cellswere cultured alone. However, stromal cells can contribute

to radioresistance on tumor cells (Josson et al., 2010). Interest-

ingly, RHOB-overexpressing cells co-cultured with stromal ST-
2cellsshowedanincrease inresistancetog-irradiation,whereas

low levels of RHOB increased radiosensitivity (Figure 5b). Next,

we assessed the contribution of RHOB in taxane-resistance

in vivo using a xenotransplant model in nude mice. RHOB-

overexpressing tumors showed increased resistance to pacli-

taxel treatment as compared to control-treated tumors

(Figure 5c). Thus, these data suggest that RHOB levels play a

role in conferring taxane chemoresistance and radioresistance.
4. Discussion

In this report, we identified RHOB as a strong metastatic

effector with robust functional activities that also contributes

to treatment resistance in lung cancer. All these tumor cell

http://dx.doi.org/10.1016/j.molonc.2013.11.001
http://dx.doi.org/10.1016/j.molonc.2013.11.001
http://dx.doi.org/10.1016/j.molonc.2013.11.001
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functions are highly modulated by the host milieu where

contextual signals mediated by RHOB could dominate over

its tumor-intrinsic effects.

The role of RHOB in resistance is in agreementwith previous

reports describing mechanisms of tolerance to radiation. In

agreement with our findings, decreased levels of RHOB lead

to high radiosensitization by enhanced tumor oxygenation

(Ader et al., 2003, 2002), through a mechanism that involves

HIF-1a downregulation (Skuli et al., 2006) and altered DNA

repair via integrins (Monferran et al., 2008). In contrast, in other

models, genetic ablation of RHOB renders cells resistant to

agents that target microtubules or DNA, as well as g-radiation

(Liu et al., 2001a). This apparent discrepancy could be explained

by non-cell autonomous effects derived by hostecell contacts

(Kazerounian et al., 2013) that markedly softened the long-

standing perception of RHOB as a tumor-suppressor

(Prendergast et al., 1995). In a complementary sense, mecha-

nisms of taxane-resistance inmicrotubule dynamics instability

(Goncalves et al., 2001) are consistent with the well-

characterized actions of RHOB that are involved in cytoskeletal

remodeling and microtubule polymerization. It is tempting to

consider the possibility that class III b-tubulin, which has

been reported as a clinical outcome predictor and a mediator

of taxane resistance in lung cancer, could be regulated by
RHOB (Gan et al., 2007). This would explain why RHOB levels

did not affect chemosensitivity to gemcitabine and cisplatin.

Thus, RHOB could confer treatment resistance by cell-

autonomous effects related to its actions on microtubule regu-

lation, or/and by increasing tumor-host dependent MMPs

secretion, which modulates radiosensitivity (Ganji et al.,

2010). Furthermore, radio- and chemoresistance by RHOB could

be mediated by tumor-host interactions through changes in

stromal angiogenesis (Kazerounian et al., 2013), and/or changes

in host-derived MMP secretion (Luis-Ravelo et al., 2011).

Advantagesacquiredduringtreatmentmightalsohave influ-

enced the cell functions required for single ormultiplemetasta-

tic steps. At this point, we cannot establish how andwhen high

RHOB-expressing cells might appear in the primary tumor.

Basedon the clinicaldata, one could consider the intriguingpos-

sibility thathighRHOB-expressingcellsmightbeselectedduring

conventional treatment, and subsequently escape from the pri-

mary tumor. Complementary to this view, rare variants with

highRHOB levels,whicharise fromthe interactionof tumorcells

with the rich stromal componentofADC tumors,might bemore

prone to initiate early metastatic spread to distant organs and

overcome resistance. Indeed, in this context of RHOB alone

was sufficient to confer dissemination in our orthotopic model;

presumably by means of increased invasiveness and MMP

http://dx.doi.org/10.1016/j.molonc.2013.11.001
http://dx.doi.org/10.1016/j.molonc.2013.11.001
http://dx.doi.org/10.1016/j.molonc.2013.11.001
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proteolyticdegradation. Inagreementwith thesefindings,RHOB

regulates migration and is a key regulator of uPAR signaling in

cell adhesion, migration and invasion (Alfano et al., 2012; Vega

et al., 2012). These cell functionsmay also account for the overt

osseouscolonizationandparticipate in resistance to ionizing ra-

diation, sinceMMPsecretionhasbeenshowntomodulate radio-

sensitivity (Ganji et al., 2010). In our model, tumorestroma

interactions induced an increase in RHOB expression levels un-

der co-culture conditions; an event that could be relevant in the

bone compartment. It is worthy to note that other contextual

signals suchasTGF-b, a host-derivedgrowth factor RHOBwhich

is highly abundant in the bonematrix, could further exacerbate

RHOB effects in bone (Engel et al., 1998). Thus, RHOB might

confer prometastatic functions such as invasiveness, in a cell-

intrinsic manner, and increase MMP activity important during

early and late stages of metastasis, which could be exacerbated

by tumor-host interactions that further modulate RHOB levels.

The complexity of the mechanisms triggered by RHOB in

lung ADC might ultimately endow cells with enhanced toler-

ance to stress, by conferring dual properties in metastasis

and treatment resistance. Similarly, a recent study has uncov-

ered the role of metadherin, which is frequently amplified in

breast cancer metastasis and chemoresistance, and it is also

associated with poor prognosis (Hu et al., 2009). More recently,
a CXCL1 network links resistance and metastasis (Acharyya

et al., 2012). Thus, we postulate the emergence of a novel class

of “genes of recurrence” that confer dual roles in resistance

and metastasis.

Our results highlight the relevance of the subtype-specific

RHOB effects such as survival of patients with lung ADCs,

whereas in other histological subsets, RHOB levels did not

correlated with survival as previously reported (Mazieres

et al., 2004; Sato et al., 2007). As formerly pointed out

(Kazerounian et al., 2013), this context specificity could

explain the apparent paradoxical observation that in early

stages of lung tumorigenesis, loss of RhoB expression

occurred between preinvasive and invasive stages (Mazieres

et al., 2004; Sato et al., 2007). As well as in vitro findings, where

ectopic expression of RhoB led to inhibition of invasive and

migratory properties (Jiang et al., 2004), whereas opposite ef-

fects were observed in bronchiolar cells despite their normal

growth kinetics (Bousquet et al., 2009).

In line with previous findings emphasizing the predomi-

nant role of RHOB driven by non-cell autonomous mecha-

nisms (Kazerounian et al., 2013), our study supports the

requirement of host-induced complementary activation of

other stage- and subtype-specific genes or cell signaling path-

ways. Indeed, RHOB can recruit different effector proteins

http://dx.doi.org/10.1016/j.molonc.2013.11.001
http://dx.doi.org/10.1016/j.molonc.2013.11.001
http://dx.doi.org/10.1016/j.molonc.2013.11.001
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involved in intracellular trafficking to endosomalmembranes,

such as Dia1 (Fernandez-Borja et al., 2005) and PRK1 (Mellor

et al., 1998), which could mediate the various responses eli-

cited by RHOB in a stage- or subtype-specific manner. This

subtype specificity is consistent with the ADC-restricted acti-

vation of the WNT/TCF signaling pathway that confers robust

metastatic activity to bone and brain (Nguyen et al., 2009) only

in this histological subset. The fact that WNT5 acts through

different receptors and cooperates with RHOB to control

motility suggests an intriguing link between WNT hyperacti-

vation and RHOB overexpression that requires further valida-

tion in lung cancer (Witze et al., 2008).

It is noteworthy that our findings shed some doubt on early

reports concerning the presumed role of RHOB in lung cancer

(Mazieres et al., 2004; Sato et al., 2007). First, Mazieres et al.

showed stunted inhibition in anchorage independent growth

and cell growth kinetics upon RHOB transfection in A549 cells,

findings that couldbe explainedby theanalysis of only two iso-

lated transfected clones and the potential toxic effects derived

from high doses of the transgene. These results contradicted

thefindingsbySato et al. and toourownfindings,wherenodif-

ferences in cell growth kineticswere found after RHOB overex-

pression. Second, Mazi�eres et al. used immunohistochemistry

to compare different lesions including normal lung, preinva-

sive lesions, low-grade tumor, and highly invasive tumors,

and in an independent study, neoplastic and adjacent non-

neoplastic tissues observing a progressive decline in immuno-

reactivity associated with aggressive lesions. However, a

rigorous study of different RHOB levels within the histological

subset of ADC was not performed. In the Sato et al. study, the

analysis of RHOB immunoreactivity did not reach statistical

significance in all NSCLC samples, which is also in agreement

with our findings. Thus, both reports remain far from conclu-

sive on the role of RHOB levels in the ADChistological subtype.

In summary, we identified RHOB as a key “gene of recur-

rence” in lung ADC. Our data also suggest that RHOB could

be an effective target to develop new therapeutic modalities

for the treatment of lung ADC.
5. Conclusions

We identified the small GTPase RHOB which markedly

enhanced the ability of cancer cells to promote early lung tu-

mor dissemination and osseous colonization in a murine

model of bone metastasis. RHOB promoted taxane-

resistance and survival advantage to radiation. Thus, RHOB

likely contributes to the aggressive metastatic phenotype

and resistance to treatment of ADC. It might be possible to

use RHOB as a predictive factor in lung ADC relapse and as

an appealing target to enhance chemosensitivity.
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