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Themitotic kinesin KIF11 (also called Eg5) plays critical roles in spindle functions. Although

a number of small-molecule inhibitors of KIF11 are currently in clinical development, drug-

resistance could be developed through compensation by another kinesin called KIF15. Us-

ing a newly developed infrared-based cell system, we discovered that the effectiveness of

one of the latest generations of KIF11 inhibitor (SB743921) could be enhanced with several

inhibitors of Aurora A kinase. Evidence including live-cell imaging and isobologram anal-

ysis indicated that targeting KIF11 and Aurora A together promotedmonoastral spindle for-

mation and mitotic catastrophe synergistically, supporting a model of parallel pathways of

centrosome regulation by Aurora A and KIF11. We also developed a KIF15-dependent

SB743921-resistance cell model. Significantly, the drug-resistance could also be overcome

with Aurora A inhibitors. These results provide a molecular basis for increasing the effec-

tiveness of Aurora A and KIF11 inhibitors and tackling problems of drug resistance.

ª 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights

reserved.
1. Introduction One important class of mitotic target for anticancer drugs
Antimitotic drugs are among the most important chemother-

apeutic agents available. Archetypal examples include spindle

poisons that inhibit microtubules depolymerization (e.g. tax-

anes) or polymerization (e.g. vinca alkaloids). The spindle-

assembly checkpoint is artificially activated by spindle poi-

sons, resulting in mitotic block followed by a unique form of

cell death often termed mitotic catastrophe (Chow and Poon,

2010). The major shortcoming of anti-microtubule agents is

that microtubules are also critical for other cellular functions

such as intracellular transport and neuronal function. More

specific inhibitors of mitosis would avoid the side effects of

anti-microtubule agents such as neuropathy.
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is mitotic kinesin. KIF11 (also called Eg5, KSP, HKSP, KNSL1,

and TRIP5) is a tetrameric plus-end directed microtubule mo-

tor of the Kinesin-5 family (Lawrence et al., 2004), which local-

izes along the interpolar spindle microtubules and spindle

poles (Cochran et al., 2004). KIF11 is implicated in various

mitotic microtubule functions including microtubule cross-

linking, antiparallel microtubule sliding, and bipolar spindle

formation, thereby ensuring the fidelity of chromosome

segregation.

The expression of KIF11 is closely related to cell prolifera-

tion and cancer. Overexpression of KIF11was found in bladder

cancer (Ding et al., 2011) and pancreatic cancer (Liu et al.,

2010). Furthermore, transgenic mice overexpressing KIF11
ished by Elsevier B.V. All rights reserved.
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are prone to develop a variety of tumors (Castillo et al., 2007).

These and other observations favor KIF11 as an attractive

target for chemotherapy.

The first small-molecule inhibitor of KIF11 (KIF11i), monas-

trol, was identified using a phenotypic screen designed to

identify antimitotic compounds that do not directly interfere

with microtubule dynamics (Mayer et al., 1999). Monastrol in-

duces the formation of monoastral spindle, resulting in an

activation of the spindle-assembly checkpoint followed by

apoptosis (Huszar et al., 2009). Nevertheless, the clinical po-

tential of monastrol is limited because of its relatively weak

KIF11 inhibitory activity and the variety of side effects associ-

ated with high dosages.

Newer generations of KIF11i including SB743921 have sub-

stantially higher potency and specificity towards KIF11 than

monastrol (Holen et al., 2011). Nevertheless, potential issues

that apply to many drugs in general, including tolerance and

drug-resistance, could hamper their clinical development. A

solution to these problems is to adopt combinatorial treat-

ments to target multiple mitotic regulators simultaneously.

Synergism between two drugs may allow lower doses to be

used than in single drug treatment. Another rationale of tar-

geting multiple mitotic regulators is that drug resistance

developed in cancer patients treated with single-target drugs

is often due to the activation of alternative pathways.

Herewe studied one of the latest KIF11i, SB743921, which is

an improved version of Ispinesib (SB715992) currently in

phase I/II trials (Holen et al., 2011). We identified two AURKA

inhibitors could enhance the mitotic catastrophe induced by

SB743921. Moreover, AURKA inhibitors could overcome drug-

resistance developed against SB743921. One obstacle of iden-

tify compounds that act synergistically is the cost and time

involved in screening. To tackle this, we developed an

infrared-based cell system for reporting cell proliferation.

This proof-of-principle study indicates that this cost-

effective and sensitive approach can be used for many types

of drug screening.
2. Materials and methods

2.1. DNA constructs

Plasmid expressing iRFP (Filonov et al., 2011) was obtained

from Addgene (Cambridge, MA, USA). Plasmid expressing

iFP1.4 (Shu et al., 2009) was a gift from Roger Tsien (University

of California, San Diego). Histone H2B-GFP construct was a gift

from Tim Hunt (Cancer Research UK).
2.2. RNA interference

Cells were transfected with siRNA (10 nM unless stated other-

wise) by Lipofectamine� RNAiMAX (Life Technologies, Carls-

bad, CA, USA). Stealth siRNA targeting AURKA

(GGCCAAUGCUCAGAGAAGUACUUGA), KIF11 (GAGAGAUUCUGUG-

CUUUGGAGGAAA) and control siRNA were obtained from Life

Technologies; siRNA against KIF15 (GCGGUUAUAAUGGUACCAU)

was obtained from Genepharma (Shanghai, China).
2.3. Cell culture

The HeLa used in this study was a clone that expressed the

tTA tetracycline repressor chimera (Yam et al., 2000). H1299

cells were obtained from the American Type Culture Collec-

tion (Manassas, VA, USA). Cells were propagated in Dulbecco’s

modified Eagle’s medium (DMEM) supplemented with 10% (v/

v) calf serum (Life Technologies) (for HeLa) or fetal bovine

serum (Life Technologies) (for H1299) and 50 U/ml of penicillin

streptomycin (Life Technologies). Cells were cultured in hu-

midified incubators at 37 �C in 5% CO2. Unless stated other-

wise, cells were treated with the following reagents at the

indicated final concentration: Alisertib (Selleck Chemicals,

Houston, TX, USA) (62.5 nM), Barasertib (Selleck Chemicals)

(12.5 nM), MG132 (SigmaeAldrich) (10 mM), MK-5108 (Selleck

Chemicals) (125 nM), monastrol (Enzo Life Sciences, Farming-

dale, NY, USA) (25 mM), RO3306 (Enzo Life Sciences) (2.5 mM),

SB743921 (Selleck Chemicals) (10 nM). Cells were transfected

with plasmids using a calcium phosphate precipitation

method (Ausubel et al., 1995). Trypan blue analysis (Poon

et al., 1995) and clonogenic survival assays (Marxer et al.,

2013) were performed as described previously. WST-1 assays

were performed according to the instructions of themanufac-

turer (Roche Applied Science, IN, USA). Cell-free extracts were

prepared as described previously (Poon et al., 1995).
2.4. Generation of stable cell lines

HeLa and H1299 cells expressing iRFP were generated by

transfection followed by cell sorting. Cells were transfected

with an iRFP-expressing construct and the iRFP-positive cells

were enriched by sorting using a flow cytometer (FACSAria

II, Becton Dickinson, Franklin Lakes, NJ, USA) using a 633-

nm red laser for excitation. The cells were propagated for

one week before being sorted again. Three rounds of sorting

were performed. HeLa cells that stably expressed histone

H2B-GFP were described previously (Chan et al., 2008). To

generate SB743921-resistant cells, HeLa or H1299 cells were

cultured in the presence of 2.5 nM of SB743921 for 2 weeks.

The cells were then subcultured with limited dilution in

5 nM of SB743921 for three weeks. Individual colonies were

isolated and tested for resistance to 10 nM of SB743921-

induced G2/M arrest with flow cytometry. The cells were sub-

sequently propagated in the absence of SB743921.
2.5. Infrared imaging

Infrared images of cells expressing iRFP or iFP1.4 were ac-

quired and quantified with a ODYSSEY CLx system (LI-COR

Biosciences, Lincoln, NE, USA). The following parameters

were used: focus offset (3.0 mm), resolution (196 mm), quality

(low), and intensity (6). Unless stated otherwise, the 700 nm

channelwas used. Background obtained from culturemedium

only was subtracted from the readings.
2.6. Flow cytometry

Flow cytometry analysis after propidium iodide staining was

performed as described previously (Siu et al., 1999).
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Figure 1 e Developing an infrared fluorescent cell model for drug screening. (A) Expression of infrared fluorescent proteins. HeLa cells were

transfected with a blank vector or plasmids expressing IFP1.4 or iRFP. A plasmid expressing histone H2B-GFP was co-transfected to serve as a

transfection marker. Fluorescence images were acquired with a Cy5.5 filter set for IFP1.4 and iRFP and a GFP filter set for the histone H2B-GFP.
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2.7. Live-cell imaging

The setup and conditions of time-lapse microscopy of living

cells were as previously described (On et al., 2011).

2.8. Drug synergism studies

HeLa cells expressing iRFP were seeded onto 96-well plates

(1000 cells/well) at 24 h before drug treatment. The cells

were treated with different chemicals (see Fig S1 for list and

concentrations used) either on their own or together with

1 nM of SB743921. The iRFP intensity was analyzed with an

infrared imager at 96 h after drug treatment. The relative

cell proliferation after single drug treatment was normalized

to the untreated control and the relative cell proliferation after

co-treatment with SB743921 was normalized to cells treated

with SB743921 alone.

2.9. Isobologram analysis

The combination effects of two treatments were analyzed ac-

cording to the median-effect method of Chou and Talalay

(Chou and Talalay, 1984). Each dose-response curve was

used to calculate the isobologram and the linear correlation

coefficient of the median-effect plot (r). The combination in-

dex (CI) at different effective dose (ED) was calculated accord-

ing to Chou and Talalay using Calcusyn Version 2.1 (Biosoft,

Cambridge, UK). CI value <1 indicates synergistic effect

(0.1e0.5 strong synergism; <0.1 very strong synergism); CI

value of 1 indicates additive effect; and CI value >1 indicates

antagonistic effect.

2.10. mRNA expression

The conditions of RT-PCR were as previously described

(Chow et al., 2013) using primers for TPX2 (50-GATTCATGGTTT-
GAGGAGAAGG-30; 50-TTCTGCCTCTTTGTAGTAAGTG-30), actin (50-
GGGAAATCGTGCGTGACATT-30; 50-GGAACCGCTCATTGCCAAT-30),
and KIF15 (50-AGAAGGGATGAGATTGAAGGA-30; 50-CGTAGTAA-
GAAGGTAAGTTTGGAG-30).

2.11. Antibodies and immunological methods

Antibodies against AURKA (BD Biosciences, Franklin Lakes, NJ,

USA), CDC27 (BD Biosciences), cyclin B1 (Santa Cruz Biotech-

nology, Santa Cruz, CA, USA), KIF11 (BD Biosciences),
(B) Detection of iRFP using an infrared imager. HeLa cells were transfected

infrared imaging system using either 700 nm or 800 nm. Both IFP1.4- and iR

(C) Detection of iRFP-expressing cells using colony formation assays. HeLa

on a 6-well plate. The plate was scanned with an infrared imager on the indi

violet. (D) iRFP provides a broad linear range for measuring cell proliferat

expressing cells were seeded onto a 96-well plate in triplicates. At 6 h after

and quantified (upper panel). The cells were then processed for WST-1 cel

(E) Infrared signal is directly proportional to the cell number. HeLa cells e

indicated time points, the plates were first scanned with an infrared imager

Mean ± SD of triplicate samples. (F) Growth curves as quantified by infrare

seeded onto a 96-well plate in triplicates. The wells were scanned with an in

Mean ± SD of triplicate samples.
phospho-histone H3Ser10 (Santa Cruz Biotechnology), KIF15

(Santa Cruz Biotechnology), PARP1 (BD Biosciences), cleaved

PARP1(Asp214) (BD Biosciences), TPX2 (Biolegend, San Diego,

CA, USA), Alexa Fluor 488 conjugated a-tubulin (Life Technol-

ogies), and g-tubulin (Santa Cruz Biotechnology) were ob-

tained from the indicated suppliers. Immunoblotting was

performed as described (Poon et al., 1995).

2.12. Fluorescence microscopy

Cells grown on poly-L-lysine-treated coverslips were fixed

with ice-cold methanol at �20 �C for 10 min. The cells

were then washed three times with phosphate buffered sa-

line (PBS) for 5 min each, blocked and permeabilized with

3% bovine serum albumin (BSA) and 0.2% Triton X-100 in

PBS at 25 �C for 30 min. The subsequent incubation steps

were followed by three times washing with wash buffer

(1% BSA and 0.2% Triton X-100 in PBS) for 5 min each time.

The cells were first incubated with anti-g tubulin antibodies

in wash buffer and followed by Alexa Fluor 594 goat anti-

mouse IgG secondary antibody (Life Technologies) in wash

buffer for 2 h at 25 �C. The cells were further incubated

with Alexa Fluor 488 conjugated a-tubulin antibodies in

wash buffer. DNA was stained with Hoechst 33258 (0.5 mg/

ml in wash buffer) for 5 min. After being washed three times

with wash buffer, the coverslips were mounted with 2%(w/v)

N-propyl-gallate (SigmaeAldrich) in glycerol. The fluores-

cence images were acquired with a Nikon TE2000E

microscope.
3. Results

3.1. Developing an infrared fluorescent cell model for
drug identification

Wesought to establish an improved cellular systemto facilitate

drug discovery. Desirable features include the ability to report

proliferation with high sensitivity, a broad linear range,

providing temporal information, as well as being rapid and

economical to perform. An infrared-based system meets the

above criteria. Recent advances in infraredfluorescent proteins

produce probes, such as IFP1.4 (Shu et al., 2009) and iRFP

(Filonov et al., 2011), which are bright and well tolerated by

mammalian cells. Transient expression in HeLa cells indicated

that iRFP was significantly brighter than IFP1.4 (Figure 1A). As
as in panel (A). When near confluence, the plates were imaged with an

FP-expressing cells could be detected using the 700 nm channel only.

cells stably expressing iRFP were generated and plated at low density

cated days. On day 12, the cells were also fixed and stained with crystal

ion. Two-fold serial dilutions (from 27,200 to 27 cells) of iRFP-

seeding, the plate was scanned using an infrared imaging system (left)

l proliferation assay (bottom panel). Mean ± SD of triplicate samples.

xpressing iRFP were seeded onto 60-mm plates in triplicates. At the

before harvested for trypan blue cell counting with a haemocytometer.

d imaging. The indicated number of HeLa cells expressing iRFP were

frared imager at different time points and the iRFP signals quantified.
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Figure 2 e Identification of chemicals that act synergistically with KIF11i. (A) Growth inhibition by SB743921. HeLa cells expressing iRFP were

seeded onto 96-well plates and incubated with buffer or different concentrations of SB743921 (in triplicates). During the next five days, the plate

was scanned with an infrared imaging system (upper panel) to quantify the infrared signals (lower panel). Mean ± SD of triplicate samples. (B)

ED50 of SB743921 on HeLa cells. Cells expressing iRFP were treated with SB743921 as described in panel (A). At 96 h after treatment, the iRFP

intensity was quantified using an infrared imager (upper panel). The cells were then harvested and analyzed with WST-1 assay (lower panel).

Mean ± SD of triplicates. The ED50 values obtained from the two methods are shown. (C) Chemicals that act synergistically with SB743921. HeLa

cells expressing iRFP were seeded onto 96-well plates (1000/wells) at 24 h before the experiment. The cells were treated with different chemicals

(see Figure S1 for the list and concentrations used) either on their own or together with 1 nM of SB743921. After incubation for 96 h, the iRFP

intensity was analyzed with an infrared imager. The relative cell proliferation after single drug treatment was normalized to the untreated control;
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excitation and emission maxima of iRFP (690/713) and IFP1.4

(684/708) are similar to that of the IRDye 680 dye used in stan-

dard desktop infrared imaging systems, we evaluated if the

iRFP-expressing cells can be detected using infrared imaging

systems. Indeed, cells expressing iRFP could be readily detected

using an ODYSSEY infrared imaging system (Figure 1B).

To generate cells stably expressing iRFP, HeLa cells were

transfected with an iRFP-expressing plasmid and selected by

sorting with flow cytometry. The mixed population contained

predominantly iRFP-positive cells (Figure 1C). Detection of

infraredwas very sensitive because colonies could be detected

using an infrared imager as early as 4 days after plating (be-

tween 32 and 64 cells). Compare to using other fluorescent pro-

teins such as GFP, an advantage of infrared is the low auto-

fluorescence signal from the growth medium and plastic,

thereby producing excellent signal-to-noise ratio. As infrared

imaging systems have a broad dynamic range, the signals

remained linear with at least 1000-fold difference in cell num-

ber (Figure 1D). Cell proliferation as measured by infrared was

comparable to conventionalmetabolic-basedmethods such as

WST-1 assays (Figure 1D), or more direct cell counting using

trypan blue staining and a haemocytometer (Figure 1E). Unlike

end-point assays such as WST-1 assays, the iRFP-expressing

cells remained viable after scanning. This allowed simple

and economical measurement of time-dependent changes in

cell number using the same plate (Figure 1F).

Collectively, we have developed a robust iRFP-based

screening platform, which is characterized by having a broad

linear range, high sensitivity, and can provide rapid and

economical time-dependent measurement of the effects of

drugs on cell growth. A similar infrared-based system and its

advantageshavealsobeendescribed recently (Hocketal., 2013).

3.2. Identification of compounds that act synergistically
with KIF11 inhibition

Using the iRFP-expressing cell platform, we next investigated

the cytotoxicity of the mitotic kinesin KIF11i SB743921 (Holen

et al., 2011). Incubation of iRFP-expressing HeLa cells with

SB743921 induced growth inhibition in a dose-dependent

manner (Figure 2A). Similar ED50 values were obtained from

infrared measurement and conventional WST-1 assays

(1.4 nM and 1.1 nM, respectively, at 96 h after drug addition),

further supporting the usefulness of the new infrared-based

proliferation assay (Figure 2B).

Flow cytometry analysis verified that 10 nM of SB743921

was sufficient to induced an accumulation of G2/M

(Figure S2A). Analysis of mitotic markers including cyclin B1

and phosphorylation of histone H3Ser10 and CDC27 confirmed

that SB743921 blocked cells in mitosis (Figure S2B). It is note-

worthy that the level of KIF11 was not altered in the presence
the relative cell proliferation after co-treatment with SB743921 was norma

relative proliferation after incubation with the compound alone (x-axis) or

predicted response if there was no change in cell proliferation between treatm

the predicted response for 75% reduction of cell proliferation in the combi

exerted strong effects on cytotoxicity when combined with SB743921 are in

with SB743921. The drugs and their reported targets are indicated. The re

SB743921 are shown. Isobologram analysis was performed (Materials and M
of SB743921. Finally, time-lapse microscopy (using cells

expressing histone H2B-GFP) confirmed that SB743921-

treated cells typically underwent protracted mitosis without

forming a metaphase plate before undergoing cell death

(Figure S2C).

To identify compounds that can potentiate the anti-

proliferation effects of SB743921, we treated iRFP-expressing

cells with a number of chemicals, either alone or in the pres-

ence of a relatively low concentration of SB743921 (1 nM). Dose

responses of the different compounds on HeLa cells were

tested beforehand to obtain sublethal concentrations

(Figure S1). The compounds were selected mainly based on

their potential cell cycle effects. Infrared imaging was used

to monitor which compounds, when combined with

SB743921, exerted strong anti-proliferation effects

(Figure 2C). Several compounds were found to have possible

synergistic effects with SB743921, causing more than 75%

reduction of cell proliferation in the combined treatment

compared to effect of the compounds individually (summa-

rized in Figure 2D). Not surprisingly, SB743921 itself was iden-

tified because the combinatorial treatment increased the

concentration of the drug. Other compounds that exerted

stronger effects than SB743921 included the Aurora kinase in-

hibitors Alisertib (also called MLN8237) and MK-5108 (also

called VX-689), and the PDK1 inhibitor BX795.

To investigate more rigorously if the effects of the above

chemicals and SB743921 together represented synergism, iso-

bologram analysis was carried out according to the median-

effectmethodofChouandTalalay (ChouandTalalay, 1984).Us-

ing infrared imaging to monitor proliferation, we found that

SB743921 acted synergistically with Alisertib, BX795, and MK-

5108 (Figure 2D). The combination index (CI) was less than 1,

which indicated synergism, over a range of effective dose

(ED50, ED75 and ED90; with the exception of Alisertib at ED90).

Taken together, these results indicate that the KIF11i

SB743921 induces mitotic arrest followed by cell death.

Furthermore, the anti-proliferation property of SB743921 is

enhanced by combination with several compounds that

include small-molecule inhibitors of Aurora kinases.

3.3. Aurora A inhibitors act synergistically with KIF11
inhibitors to induce mitotic catastrophe

Given the interests for both KIF11 and Aurora kinases as drug

targets, we performed detailed analysis of the interactions of

their inhibitors. On its own, SB743921 exerted negligible ef-

fects on proliferation at concentrations up to 1.25 nM after

48 h (Figure 3A). Likewise, Alisertib alone at concentrations

up to 31.3 nM did not affect proliferation. By contrast, prolifer-

ation was severely compromised in the presence of both

SB743921 and Alisertib. Similar results were obtained for
lized to cells treated with SB743921 alone. Each dot represents the

in the presence of SB743921 ( y-axis). The solid line indicates the

ent alone and co-treatment with SB743921. The dashed line indicates

ned treatment compared to single drug treatment. Compounds that

dicated. (D) Summary of compounds that showed synergistic effects

lative proliferation of single drug treatment and in combination with

ethods). Combination index (CI) value < 1 indicates synergism.
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Figure 3 e AURKAi acts synergistically with SB743921 to induce mitotic catastrophe. (A) Combinatorial treatment of Alisertib and SB743921

inhibits cell growth. HeLa cells were cultured in the presence of different concentrations of SB743921 and Alisertib for 48 h. Proliferation was

analyzed usingWST-1 assays. Mean ± SD of triplicates. (B) Long-term cell survival is inhibited by Alisertib and SB743921. HeLa cells were plated

at low density and cultured in the presence of the indicated concentrations of Alisertib and SB743921. After one week, the cells were fixed and

visualized with crystal violet staining. (C) Synergism between SB743921 and different AURKAi. HeLa cells were plated at low density and treated

with the indicated combination of Alisertib (62.5 nM), MK-5108 (125 nM), and SB743921 (1.25 nM). The colonies were fixed and stained with

crystal violet. The number of colonies was quantified. Mean ± SD of three independent experiments. (D) SB743921- and Alisertib-induced

monoastral spindle mitosis. HeLa cells were either untreated or exposed to SB743921 (1.25 nM) and Alisertib (62.5 nM) for 3 h. The proteasome

inhibitor MG132 was added for another 2 h to prevent mitotic exit. The cells were fixed, stained with antibodies against alpha-tubulin and gamma-

tubulin, and analyzed with fluorescent microscopy. Representative images are shown for mitosis with bipolar spindle and monoastral spindle. (E)

Targeting KIF11 and AURKA together induces monoastral spindle formation. Cells were treated with buffer, SB743921 (1.25 nM or 10 nM),

Alisertib (62.5 nM), and MK-5108 (125 nM) for 3 h. The proteasome inhibitor MG132 was added for another 2 h to prevent mitotic exit. The cells

were analyzed with fluorescence microscopy as in panel (D). The percentage of mitotic cells containing monoastral spindle is shown (n [ 80).

Mean ± SD of three independent experiments. (F) Targeting KIF11 and AURKA extends mitosis and promotes mitotic catastrophe. HeLa cells

expressing histone H2B-GFP were exposed to Alisertib (62.5 nM), MK-5108 (125 nM), and SB743921 (1.25 nM) as indicated. Individual cells

were tracked using time-lapse microscopy for 24 h. Each horizontal bar represents one cell (n[ 50). Key: grey[ interphase; black[mitosis (from

DNA condensation to anaphase or cell death); truncated bars [ cell death. (G) Normal mitotic exit is abolished by inhibition of KIF11 and
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longer-term cell survival (Figure 3B, for 1 week) or clonogenic

survival after >2 weeks (Figure 3C). Survival was similarly

diminished after co-treatment with SB743921 and the Aurora

A (AURKA)-specific inhibitor MK-5108 (Figure 3C).

Although KIF11, AURKA, and Aurora B (AURKB) all regu-

late mitosis, distinct consequences are induced by their inhi-

bition. While KIF11i arrests cells in mitosis with monoastral

spindle, inhibitors of AURKA (AURKAi) and AURKB induce

mitotic arrest mainly with bipolar spindle and mitotic slip-

page, respectively (Marxer et al., 2013). We determine the

types of spindle defects in the combinatorial treatments

with immunofluorescence microscopy. Examples of bipolar

mitosis and monoastral mitosis are shown in Figure 3D. As

a control, 10 nM of SB743921 triggered monoastral spindle

formation in >90% of mitotic cells (Figure 3E). In contrast,

sublethal concentration of SB743921 (1.25 nM) did not elevate

the frequency of monoastral mitosis above the background.

Significantly, combining the sublethal concentration of

SB743921 with either Alisertib or MK-5108 restored monoas-

tral mitosis. As expected, the controls of Alisertib or MK-

5108 alone did not induce monoastral mitosis. These data

indicate that combining KIF11i with AURKAi produced an ef-

fect that is consistent with an inhibition of the KIF11

pathway.

We further used live-cell imaging to investigate the effects

of targeting KIF11 and AURKA together at single cells level.

The fates of individual cells stably expressing histone H2B-

GFP were tracked (Figure 3F). While incubation with sublethal

concentrations of KIF11i or AURKAi alone only increased the

mitotic duration marginally, combining KIF11i and AURKAi

dramatically increased the mitotic duration. Normal

anaphase was inhibited and the majority of cells eventually

succumbed to cell death during the prolonged mitotic block

(summarized in Figure 3G).

We further evaluated if the cell death triggered by co-

inhibition of KIF11 and AURKA involved apoptosis. As ex-

pected, the cell cycle profile was not significantly altered in

cells growing in sublethal concentrations of KIF11i or AURKAi

alone (Figure 4A). In contrast, combining KIF11i with either of

the two AURKAi promoted mitotic arrest as revealed by flow

cytometry (Figure 4A) and increase of histone H3Ser10 phos-

phorylation (Figure 4B). Apoptosis was suggested by an in-

crease in sub-G1 population (Figure 4A). As sub-G1

population is relatively less sensitive in detecting apoptosis,

we also used PARP1 cleavage (Figure 4B) as a further indictor

of apoptosis throughout this study.

It should be noted that at the concentrations used here, the

Aurora kinase inhibitors should only target AURKA. Using an-

tibodies against the activated forms of Aurora kinases and

other functional assays, we found that while MK-5108 exclu-

sively inhibits AURKA, Alisertib inhibits AURKA at relative

low concentrations and inhibits both AURKA and AURKB at

higher concentrations (Marxer et al., 2013). Unlike Alisertib,

the AURKB-specific inhibitor Barasertib did not act synergisti-

cally with KIF11i (Figure S3). An addition control including a

small-molecule inhibitor of CDK1 (RO3306) (Vassilev et al.,
AURKA together. Cells were treated and analyzed with time-lapse microscop

normal anaphase (upper panel) or mitotic cell death (lower panel) is shown
2006) further support the specificity of AURKAi in synergism

with KIF11i.

The synergistic actions between inhibitors of KIF11 and

AURKAwere not limited to one type of KIF11i. Another classic

KIF11i (monastrol) also acted in concerted with AURKAi to

promote mitotic catastrophe, as indicated by flow cytometry

(Figure 4C) and immunoblotting analysis (Figure 4D).

To further verify that the effective target of Alisertib and

MK-5108 in our assays was indeed AURKA, the inhibitors

were replaced with a siRNA specific for AURKA (siAURKA).

As we aimed to mimic the conditions in which sublethal con-

centrations of AURKAi were used, a relatively low concentra-

tion of siAURKAwas used in order to deplete AURKA partially.

Figure 4E shows that while neither siAURKA nor SB743921

affected the cell cycle, combination of the two treatments

inducedG2/M arrest and apoptosis. Protein analysis confirmed

the downregulation of AURKA as well as themitotic block and

apoptosis (Figure 4F). Conversely, we also used a siRNA to

partially deplete KIF11 (siKIF11) and demonstrated that

combining siKIF11 with AURKAi could promote G2/M arrest

and apoptosis (Figures 4G and 4H).

Collectively, these results indicate that AURKAi acts syner-

gistically with KIF11i to inducemonoastral spindle, mitotic ar-

rest, and eventually cell death.

3.4. KIF11-independent growth in SB743921-resistant
cell lines

Drug resistance is one of the major obstacles that impairs the

usefulness of many chemotherapeutic drugs. We generated

SB743921-resistant cells by exposing HeLa cells to progres-

sively increasing concentrations of SB743921 (Figure 5A), simi-

larly as previously described for another KIF11i called STLC

(Raaijmakers et al., 2012). After selection with 5 nM of

SB743921, some individual colonies were still sensitive to

10 nM of SB743921 (working concentration) similarly as the

parental HeLa cells. However, several cell lines (e.g. SBR1

and SBR4) were unaffected by 10 nM of SB743921 as indicated

by their cell cycle profiles (Figure 5B). Moreover, there was no

increase in histone H3Ser10 phosphorylation and PARP1 cleav-

age in SBR1 and SBR4 following SB743921 challenge

(Figure 5C). As expected, the SB743921-resistant cells were

able to formbipolar spindle (Figure 5D) and underwent normal

anaphase (Figure 5E) even in the presence of SB743921.

It is reasonable to surmise that the SB743921-resistant cell

lines could undergo KIF11-independent mitosis. To test this

hypothesis, we depleted KIF11 in these cells with siRNA

(siKIF11). In contrast to normal HeLa cells, which underwent

G2/M arrest and cell death, SB743921-resistant cell lines were

unaffected by siKIF11 (Figure 5F). Depletion of KIF11 in all

the cell lines was confirmed by immunoblotting (Figure 5G).

In agreement with the flow cytometry results, neither histone

H3Ser10 phosphorylation nor PARP1 cleavage was induced by

siKIF11 in the SB743921-resistant cell lines.

Collectively, these results indicate that SB743921-resistant

cell lines can undergo mitosis without KIF11.
y as described in panel (F). The percentage of cells that could undergo

(n [ 50). Mean ± max/min of two independent experiments.
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Figure 4 e Mitotic catastrophe is induced by pharmacological or siRNA-mediated disruption of AURKA and KIF11. (A) Disruption of the cell

cycle by inhibitors of KIF11 and AURKA. HeLa cells were incubated with a combination of SB743921 (1.25 nM), Alisertib (62.5 nM), and MK-

5108 (125 nM). After 18 h, the cells were harvested and analyzed with flow cytometry. The percentage of sub-G1 cells is indicated. (B) Inhibition of

KIF11 and AURKA promotes mitotic catastrophe. Cells were treated as described in panel (A). Cell-free extracts were prepared and

phosphorylated histone H3Ser10 and cleaved PARP1 were detected with immunoblotting. Uniform loading of lysates was confirmed by

immunoblotting for actin. (C) Monastrol acts synergistically with AURKAi. HeLa cells were incubated with monastrol (25 mM) in the presence of

Alisertib (62.5 nM) or MK-5108 (125 nM). After 18 h, the cells were harvested and analyzed with flow cytometry. (D) Combination of monastrol

and AURKAi promote mitotic catastrophe. Cells were treated as described in panel (C). Cell-free extracts were prepared and analyzed with

immunoblotting. Actin analysis was included to assess protein loading and transfer. (E) Downregulation of AURKA sensitizes cells to SB743921.

HeLa cells were transfected with either control or a relatively low concentration of siRNA against AURKA (siAURKA) (22 pM). After 24 h, the
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3.5. Compensation of KIF11 in SB743921-resistant cells
by KIF15

What is molecular basis of KIF11-independent growth? The

expression of KIF11 itself probably was not a major factor as

it was either unchanged or marginally decreased in some

SB743921-resistant clones (Figures 5G and 6A). One possibility

is that KIF11 functions may be compensated by the kinesin

KIF15 as previously reported (Tanenbaum et al., 2009). We

found that KIF15 was indeed overexpressed in a subset of

the SB743921-resistant cell lines (e.g. SBR4) (Figure 6A).

Consistent with this finding, the mRNA of KIF15 in SBR4 was

increased in comparison to HeLa cells (Figure 6B). But KIF15

overexpression did not occur in all SB743921-resistant cell

lines (e.g. SBR1).

To test directly if KIF15 was involved in compensating for

the activity of KIF11 in SB743921-resistant cells, KIF15 was

depleted before SB743921 was added. While control SBR1

and SBR4 were resistant to SB743921-mediated G2/M arrest,

they became sensitized to the drug after KIF15 was downregu-

lated (Figure 6C). This was also reflected by the increase in his-

tone H3Ser10 phosphorylation and PARP1 cleavage (Figure 6D).

Neither the cell cycle progression (Figure 6C) nor cell death

(Figure 6D) was affected by siKIF15 alone.

These data indicate that while a subset of SB743921-

resistant cell lines were characterized by an increase

in KIF15, others contained similar levels of KIF15 as

control cells. Nevertheless, depletion of KIF15 could sensi-

tize these SB743921-resistant cell lines to mitotic catastro-

phe, suggesting that KIF11 functions were in part taken

over by KIF15.

3.6. KIF11 drug-resistance can be overcome by targeting
AURKA

Given that no specific inhibitor of KIF15 has been developed

yet, we next tested if AURKAi could promotemitotic cell death

in SB743921-resistant cells (Figure 7A). As shown above, SBR1

and SBR4 did not respond to 10 nM of SB743921. Notably,

SB743921 alone was incapable to induce mitotic catastrophe

in SB743921-resistant cells even when used at 100 nM

(Figure 7B). Co-treatment with AURKAi, however, induced

mitotic arrest in these cell lines (Figure 7A). Mitotic arrest

and cell death were confirmed by histone H3Ser10 phosphory-

lation and PARP1 cleavage, respectively (Figure 7B). In agree-

ment with the inhibition of KIF11 pathway, targeting AURKA

promoted monoastral formation in SB743921-resistant cells

(Figure 7C). As expected, the long-term cell survival of

SB743921-resistant cells treated with SB743921 was also

reduced upon co-incubation with AURKAi (Figure 7D).
cells were treated with either buffer or SB743921 (1.25 nM). After 18 h, th

Downregulation of AURKA sensitizes cells to SB743921. Cells were transf

prepared and analyzed with immunoblotting. Depletion of AURKA and un

AURKA and actin respectively. (G) Downregulation of KIF11 sensitizes c

relatively low concentration of siRNA against KIF11 (siKIF11) (66 pM). Aft

5108 (125 nM). After 18 h, the cells were harvested and analyzed with flow

Cells were transfected and treated as described in panel (G). Cell-free extr

KIF11 and uniform loading of lysates were confirmed by immunoblotting
To ensure that the ability of AURKAi to overcome

SB743921-resistance was not limited to HeLa cells, we also

used a similar strategy to generate SB743921-resistant cell

lines based on the lung carcinoma H1299 cells. In contrast to

the parental cells, the SB743921-resistant H1299 cells were

insensitive to 10 nM of SB743921 (Figure S4A). Treatment of

these cells with AURKAi sensitized them to SB743921

(Figure S4B), indicating that co-inhibition of KIF11 and AURKA

could overcome KIF11i-resistant cell lines from different

origins.

Taken together, these results indicate that targeting

AURKA and KIF11 together can overcome drug-resistance

developed against KIF11i.
4. Discussion

KIF11 has been the focus of several drug candidates in devel-

opment. However, results from clinical trials of the best-

characterized compound, Ispinesib (SB715992), have been un-

impressive (Rath and Kozielski, 2012). Encouraging results

have been obtained with the second-generation Ispinesib

analog SB743921, with partial response in a cholangiocarci-

noma patient and stable disease in patients with relapsed

lymphoma or advanced solid tumors (Holen et al., 2011). Rea-

sons that KIF11i in general are only marginally successful in

clinical studies may include the lack of potency and develop-

ment of drug-resistance. Both of these problems can in princi-

ple be tackled by combinatorial treatment with another

antimitotic drug. Tests of combinatorial treatment with

KIF11i have so far been limited to traditional genotoxic agents

(Rath and Kozielski, 2012). Here we discovered that the effi-

cacy of KIF11i could be markedly increased by combination

with AURKAi (Alisertib and MK-5108). Both Alisertib and MK-

5108 are themselves drug candidates undergoing Phase I and

II clinical trials (Marzo and Naval, 2013).

Synergism between SB743921 and AURKAi was demon-

strated using a number of approaches, including infrared-

(Figure 2D) and WST-1-based (Figure 3A) cell proliferation as-

says, isobologram analysis (Figure 2D), clonogenic survival as-

says (Figures 3B and 3C), monoastral spindle formation

(Figures 3D and 3E), live-cell imaging (Figures 3F and 3G),

flow cytometry (Figure 4A), and protein analysis (Figure 4B).

The specificity of the combinatorial treatment for KIF11 was

verified with two different KIF11i (Figures 4C and 4D) and a

siRNA against KIF11 (Figures 4G and 4H). Likewise, the speci-

ficity for AURKA was validated with two different AURKAi

(Figures 3 and 4) and siRNA against AURKA (Figures 4E and

4F). It was further supported by the fact that an AURKB-
e cells were harvested and analyzed with flow cytometry. (F)

ected and treated as described in panel (E). Cell-free extracts were

iform loading of lysates were confirmed by immunoblotting for

ells to AURKAi. HeLa cells were transfected with either control or a

er 24 h, the cells were treated with buffer, Alisertib (62.5 nM), or MK-

cytometry. (H) Downregulation of KIF11 sensitizes cells to AURKAi.

acts were prepared and analyzed with immunoblotting. Depletion of

for KIF11 and actin respectively.
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Figure 5 e KIF11-independent growth in SB743921-resistant cell lines. (A) Isolation of SB743921-resistant cell lines. HeLa cells were treated with

a schedule of increasing concentrations of SB743921 as depicted. Individual colonies that could grow in 5 nM of SB743921 were isolated and

designated as SBR1-6. (B) SB743921-resistant cells are insensitive to SB743921-mediated mitotic arrest. The parental HeLa cells and different

SB743921-resistant cell lines were treated with 10 nM of SB743921 for 18 h. The cells were then harvested for cell cycle analysis with flow

cytometry. (C) SB743921-resistant cells are insensitive to SB743921-mediated mitotic catastrophe. The parental HeLa cells and different

SB743921-resistant cell lines were treated with 10 nM of SB743921 for 18 h. Cell-free extracts were prepared and the indicated proteins were

detected by immunoblotting. (D) SB743921-resistant cells do not form monoastral spindle upon SB743921 challenge. HeLa, SBR1, and SBR4

cells were treated with SB743921 (10 nM) for 3 h. MG132 was added for another 2 h to trap cells in mitosis. The cells were then fixed and stained

with antibodies against g-tubulin and a-tubulin. The percentage of mitotic cells containing monoastral spindle was quantified using fluorescence

microscopy (n [ 80). Mean ± SD of three independent experiments. (E) SB743921-resistant cells can undergo normal anaphase in the presence of

SB743921. HeLa and SBR1 cells were transfected with a plasmid expressing histone H2B-GFP. The cells were either untreated or incubated in

with SB743921 (10 nM) as indicated, and analyzed using live-cell imaging. Representative time-lapse images of mitotic cells are shown. (F)

SB743921-resistant cells can undergo KIF11-indepenent cell cycle progression. HeLa, SBR1, and SBR4 cells were transfected with control or

siKIF11. After 48 h, the cells were harvested and analyzed with flow cytometry. (G) Depletion of KIF11 in SB743921-resistant cells does not

induce mitotic catastrophe. HeLa, SBR1, and SBR4 cells were transfected with control or siKIF11. After 48 h, the cells were harvested and

analyzed with immunoblotting.
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Figure 6 e Compensation of KIF11 activity by KIF15. (A) Increase of KIF15 in a subset of SB743921-resistant cell lines. Protein expression inHeLa,

SBR1, and SBR4 cells was detectedwith immunoblotting. Actin analysis was included to assess protein loading and transfer. (B)ThemRNAofKIF15

is elevated in a subset of SB743921-resistant cell lines. The levels of mRNA ofKIF15 and TPX2 in HeLa, SBR1, and SBR4 cells were measured with

RT-PCR.Mean ± SD of six samples (two sets of triplicates). (C)Downregulation of KIF15 overcomes SB743921-resistance. HeLa, SBR1, and SBR4

cells were transfected with either control or siKIF15. After 24 h, the cells were incubatedwith either buffer or SB743921 (10 nM) for another 24 h. The

cells were then harvested and analyzed with flow cytometry. (D) Downregulation of KIF15 overcomes SB743921-resistance. HeLa, SBR1, and SBR4

cells were transfected and treated as described in panel (C). Cell-free extracts were prepared and analyzed with immunoblotting.
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specific inhibitor (Barasertib) did not cooperate with KIF11 in-

hibition (Figure S3).

These results are consistent with some available data on

KIF11i and AURKA. In a study using a KIF11i called KSP-1A,

Jackson et al. found that genes predicting resistance to the

KIF11i are enriched on chromosome 20q, a region frequently

amplified in tumors (Jackson et al., 2008). Moreover, siRNAs

targeting genes in this chromosomal region revealed that

disruption of AURKA, TPX2, and MYBL2 enhances response

to KIF11i.

What is the mechanistic basis of the link between KIF11

and AURKA? One possibility is that AURKA acts directly on

KIF11 (Figure 7E, Model I). Although in Xenopus, the AURKA-

related protein Eg2 associates with and phosphorylates

KIF11 (Giet et al., 1999), direct evidence of interaction between

human KIF11 and AURKA has yet to be demonstrated. Never-

theless, KIF11 is phosphorylated by other mitotic kinases

including CDK1 (Blangy et al., 1995), NEK6 (Rapley et al.,

2008), and NEK9 (Bertran et al., 2011). Hence the regulation

of KIF11 by AURKA (if any) is unlikely to be exclusive. Unlike

the inhibition of KIF11, which induced monoastral spindle,

complete inhibition of AURKAmainly resulted inmitotic block

with bipolar spindle, with w25% of cells showing monopolar

andmultipolar spindle (Figure S5). This indicates that a simple
linear mechanism such as Model I is not sufficient to explain

the data.

AURKA itself localizes to centrosomes (Gopalan et al.,

1997); and several lines of evidence indicate that AURKA is

an important regulator of centrosome function. For example,

AURKA is required for centrosomematuration and separation

in Drosophila (Berdnik and Knoblich, 2002; Glover et al., 1995).

Several proteins, including TACC, LATS2, cyclin BeCDK1,

and CDC25B are targeted to the centrosome by AURKA

(Fukasawa, 2007). It is possible that due to the distinct func-

tions of AURKA and KIF11 on the centrosome, targeting both

proteins together resulted inmore extensive defects in centro-

some maturation and separation (Figure 7E, Model II).

Remarkably, concurrent inhibition of AURKA and KIF11

also sensitized SB743921-resistant cells to mitotic catastro-

phe. A number of underlying mechanisms could be envisaged

to account for KIF11i-resistance. Overexpression of multidrug

transporters including P-glycoprotein is a common mecha-

nism of multidrug-resistance. Mutations of KIF11 could also

render it less sensitive to KIF11i. In this connection, it was re-

ported that Ispinesib-resistant HCT116 cells contain two point

mutations in the KIF11 allosteric binding pocket, D130V and

A133D, generating inhibitor-resistant but otherwise catalyti-

cally competent KIF11 (Knight and Parrish, 2008).
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Figure 7 e Inhibition of AURKA overcomes KIF11 drug-resistance. (A) AURKAi and SB743921 act synergistically on SB743921-resistant cells.

HeLa, SBR1, and SBR4 were treated with SB743921 in the presence of either Alisertib (62.5 nM) or MK-5108 (125 nM) for 18 h before analyzed

with flow cytometry. (B) AURKAi and SB743921 overcome SB743921-resistance. SBR1 cells were treated with SB743921 in the presence or

absence of Alisertib (62.5 nM) for 24 h. Cell-free extracts were prepared and analyzed with immunoblotting. Note that even at a very high

concentration, SB743921 (100 nM) alone did not overcome SB743921-resistance. (C) Targeting AURKA promotes monoastral spindle formation

in SB743921-resistant cells. HeLa, SBR1, and SBR4 were treated with SB743921 (10 nM), Alisertib (62.5 nM), and MK-5108 (125 nM) for 3 h.

The proteasome inhibitor MG132 was added for another 2 h to prevent mitotic exit. The cells were fixed, stained with antibodies against a-tubulin

and g-tubulin, and analyzed with fluorescence microscopy. The percentage of mitotic cells containing monoastral spindle is shown (n [ 80).

Mean ± SD of three independent experiments. (D) Long-term cell survival of SB743921-resistant cells is reduced by targeting KIF11 and AURKA.

HeLa, SBR1, and SBR4 were plated at low density and cultured in the presence of SB743921 (10 nM), Alisertib (62.5 nM), and MK-5108

(125 nM). After one week, the cells were fixed and visualized with crystal violet staining. (E) Models of the relationship between AURKA, KIF11,

and KIF15 in the regulation of centrosomal functions. In KIF11i-sensitive cells, AURKA could act upstream of KIF11 (Model I) or in parallel

pathways (Model II) in regulating centrosome maturation and separation. In KIF11i-resistant cells, some of KIF11’s functions are compensated by

KIF15. AURKA could act upstream of KIF11 and KIF15 (Model III). Alternatively, AURKA could act on the centrosome independently (Model

IV). The models are not necessary mutually exclusive.
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Interestingly, the mutations do not act through conventional

steric effects at the binding site, but through reduction of flex-

ibility and allosteric transmissions after inhibitor binding

(Talapatra et al., 2013). Finally, another process specific for

antimitotic drug-resistance is mitotic slippage, by which cells

exit mitosis prematurely without sister chromatid separation.

We believe that the above processes (transporter, KIF11

mutation, and mitotic slippage) were unlikely to be explana-

tions for KIF11i-resistance described here. It is because the

SB743921-resistant cells were insensitive to siRNA-mediated

depletion of KIF11 (Figures 5F and 5G), indicating that they

could grow independently of KIF11. Furthermore, KIF11 was

still important if KIF15 function was compromised (Figures

6C and 6D). Under these conditions, KIF11 was still sensitive

to 10 nM of SB743921 (arguing against the involvement of

multidrug transporters and KIF11 mutations) and underwent

mitotic arrest (arguing against mitotic slippage).

Several mechanisms that act in parallel to KIF11 in regu-

lating centrosome separation have been described. For

example, dynein-dependent mechanisms may counteract

KIF11 in microtubule sliding (Tanenbaum et al., 2008),

although there is evidence that dynein may antagonize

KIF11 indirectly rather than through a simple pushepull

mechanism at the spindle equator (Florian and Mayer, 2012).

Other mechanisms that act parallel with KIF11 include EGFR

signaling (Mardin et al., 2013), a nuclear envelope-associated

dynein pathway (Raaijmakers et al., 2012), and KIF15

(Tanenbaum et al., 2009). SB743921-resistance appeared to

be due to compensation of KIF11 functions by KIF15. Intrigu-

ingly, not all SB743921-resistant clones contained overex-

pressed KIF15 mRNA and protein (Figures 6A and 6B). Both

types of SB743921-resistant cells became sensitive to

SB743921 after KIF15 was depleted (Figures 6C and 6D). How

the unchanged level of KIF15 substituted for KIF11 functions

remained to be deciphered. Our data are consistent with a

model that in the SB743921-resistant cells, the usual functions

of KIF11 was partially taken over by KIF15. The reasoning is

based on the fact that while KIF11i or siKIF15 separately was

unable to promote mitotic catastrophe, inhibition of both

KIF11 and KIF15 together induced mitotic catastrophe.

Our findings also support that SB743921 does not target

KIF15; otherwise SB743921 should be able to trigger a mitotic

arrest in SB743921-resistant cells. The cells were insensitive

even when challenged with 100 nM of SB743921, 10x the con-

centration normally required to induce mitotic arrest

(Figure 7B).

As no specific inhibitor of KIF15 has been developed yet,

our data indicate that targeting AURKA is an effective option

to overcome KIF11i-resistance (Figure 7). Co-treatment of

SB743921-resistant cells with AURKAi and SB743921 promoted

monoastral spindle formation, mitotic arrest, and cell death.

As in KIF11i-sensitive cells, AURKA could either act upstream

of KIF11 (and KIF15) or in an independent pathway (Figure 7E,

Models III and IV). Given the effects of AURKAi alone on

centrosome (Figure S5), Model IV is perhaps more favorable.

In conclusion, pharmacological inhibition of AURKA can

enhance mitotic catastrophe induced by KIF11i, most likely

because both AURKA and KIF11 regulate centrosome func-

tions independently. Moreover, targeting AURKA can also

overcome KIF15-dependent KIF11i-resistance.
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