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A B S T R A C T

High-risk human papillomavirus (HPV) infection is the principal risk factor for the develop-

ment of cervical cancer. The HPV E6 oncoprotein has the ability to target and interfere with

several PSD-95/DLG/ZO-1 (PDZ) domain-containing proteins that are involved in the con-

trol of cell polarity. This function can be significant for E6 oncogenic activity because a defi-

ciency in cell polarisation is a marker of tumour progression. The establishment and

control of polarity in epithelial cells depend on the correct asymmetrical distribution of

proteins and lipids at the cell borders and on specialised cell junctions. In this report, we

have investigated the effects of HPV E6 protein on the polarity machinery, with a focus

on the PDZ partitioning defective 3 (Par3) protein, which is a key component of tight junc-

tions (TJ) and the polarity network. We demonstrate that E6 is able to bind and induce the

mislocalisation of Par3 protein in a PDZ-dependent manner without significant reduction

in Par3 protein levels. In addition, the high-risk HPV-18 E6 protein promotes a delay in TJ

formation when analysed by calcium switch assays. Taken together, the data presented

in this study contribute to our understanding of the molecular mechanism by which

HPVs induce the loss of cell polarity, with potential implications for the development

and progression of HPV-associated tumours.
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Published by Elsevier B.V. All rights reserved.
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Oncogenic HPV functions depend on the combined and

complementary action of both HPV E6 and E7 oncoproteins,

whose continuous expression is required for the maintenance

of the transformed phenotype in carcinoma-derived cell lines

(Yoshinouchi et al., 2003; Jonson et al., 2008). High-risk HPV

E6 is a multifunctional protein that has the ability to bind

and interfere with key cellular proteins, and these interactions

are required for E6 to demonstrate full transforming activity.

An interesting characteristic of HPV E6 oncoproteins is the

presence, in the carboxy terminal region, of a conserved PDZ-

binding motif (PBM) that is able to recognise and bind PDZ

interaction domains (Thomas et al., 2008; Pim et al., 2012).

PDZ-containing proteins are involved in diverse biological pro-

cesses and many of them are scaffolding proteins that allow

the assembly of multiprotein complexes at the cell membrane

(Humbert et al., 2003, 2008). There is a growing list of PDZ pro-

teins that are targeted by E6, including human Disc Large 1

(DLG1), Scribble (Scrib), PALS1-associated tight junction protein

(PATJ), and membrane-associated guanylate kinase with

inverted domain structure 1 (Gardiol et al., 1999; Nakagawa

and Huibregtse, 2000; Storrs and Silverstein, 2007; Kranjec

and Banks, 2011). Most of these proteins are involved in cell

junction assembly, control of cell signalling and establishment

of apicobasal polarity, and have been characterised as poten-

tial tumour suppressor proteins (Facciuto et al., 2012). Interest-

ingly, the interaction of E6 with certain of these PDZ proteins

can result in their degradation and/or mislocalisation, which

has implications for polarity deregulation andHPV carcinogen-

esis (Thomas et al., 2008; Pim et al., 2012). Moreover, this activ-

ity is restricted to E6 derived from high-risk HPV because the

PBM is absent in low-risk HPV-derived E6 proteins (which are

associated with benign lesions), highlighting the fact that

disruption of cell polarity is potentially a key event in the pro-

gression toward malignancy (Banks et al., 2012).

Epithelial cell polarity is defined by the interplay of three

protein complexes: the Scribble, the Crumbs, and the Par com-

plexes, which determine the basolateral domain, apical

domain, and apical-lateral cell border, respectively (Assemat

et al., 2008). The mammalian Par complex comprises the

Par3, Par6, and atypical protein kinase C (aPKCs) proteins

and is required for the establishment and maintenance of

cell polarity (Goldstein and Macara, 2007). Among these com-

ponents, Par3 is the central organiser for complex assembly; it

contains three PDZ domains and is necessary for both TJ for-

mation and spatial regulation of important signalling path-

ways (Feng et al., 2007; Goldstein and Macara, 2007;

Pieczynski and Margolis, 2011). Par3 is a multi-modular scaf-

fold protein that interacts with diverse cell polarity regulators

and these specific interactions ensure that Par3 is localized at

specific membrane domains (Chen and Zhang, 2013).

Furthermore, recent findings emphasise the importance of

Par3 in cancer development (Facciuto et al., 2012). Reduced

Par3 expression, in association with tumour progression and

poor prognosis, was observed in several human cancers,

including primary oesophagus tumours, glioblastomas, breast

carcinomas, and skin cancer (Zen et al., 2009). Recently, two

studies have reported that Par3 protein is an important sup-

pressor of tumourigenesis andmetastasis, highlighting its sig-

nificant role in human breast cancer progression (McCaffrey

et al., 2012; Xue et al., 2012).
Additionally, it is important to note that Rhesus papilloma-

virus (RhPV), which causes anogenital malignancy in Rhesus

Macaque monkeys, presents a PBM in the C- terminus of the

E7 protein instead of E6, as it is for HPV. This motif confers

PDZ-binding activity and directs the interaction of RhPV E7

with Par3, suggesting that the targeting of cell polarity compo-

nents isevolutionaryconservedamongPVs (Tomaicetal., 2008).

Considering i) that Par3 is critical for the establishment of

TJs and apicobasal polarity and appears to be an oncosuppres-

sor, ii) that HPV E6 is able to target and interfere with PDZ pro-

teins involved in polarity machinery and, specifically, to

members of the polarity protein complexes (e.g., Scrib, DLG1,

and PATJ), and iii) that a finely tuned interplay among the

different components of such complexes has been estab-

lished, we initiated a series of studies to investigate the effect

of HPV E6 on the Par polarity complex.

Weshowthat the expressionofhigh-riskHPVE6 results in a

dramatic change in Par3 cellular distribution in a PBM depen-

dent manner. We observe that HPV-18 E6 oncoprotein and

Par3 interact in vivo and that this protein binding does not

result in a significant reduction in Par3 protein level.Moreover,

HPV E6 interferes with TJ formation in calcium switch assays.

Overall, the data presented in this study contribute to the un-

derstanding of HPV E6 activities as they relate to interference

of cell polarity during HPV-mediated cell transformation.
2. Materials and methods

2.1. Cell culture and transfection

HEK293, HaCaT and HeLa cells were grown in Dulbecco’s

modified Eagle’s medium DMEM (Gibco, NY, USA) supple-

mented with 10% fetal bovine serum (PAA Laboratories

GmbH, Pasching, Austria). HEK293 and HaCaT cells were

transfected using calcium phosphate precipitation

(Matlashewski et al., 1987) or EcoTransfect reagent, respec-

tively (OZ Biosciences, Marseille, France). To generate stable

cell lines expressing HA-E6 fusion proteins (Influenza Virus

Hemagglutinin epitope [HA] tagged-HPV E6 proteins), HaCaT

cells were transfected with pcDNA3-HA-E6 and selected with

G418 (Sigma Aldrich, Saint Louis, USA, 500 mg/ml). Single col-

onies were analysed for HA-E6 expression by RT-PCR and

immunofluorescence (IF) analysis. Parallel transfections and

selections were performed using an empty expression vector

as a control. For 3D Matrigel culture, HaCaT cells were grown

using Matrigel Basement Membrane Matrix (BD Biosciences,

San Jose, USA). Briefly, cells were trypsinised and suspended

in complete medium containing 2% Matrigel to a concentra-

tion of 1.2 � 105 cells/dish. Cell suspensions were seeded

into 35 mm plastic tissue culture plates containing coverslips

pre-coated with Matrigel. The cells were then covered with

complete medium and grown at 37 �C under 5% CO2 for 72 h

(Debnath et al., 2003).

For the delivery of all siRNAs (Dharmacon, Thermo Fisher

Scientific, Rockford, USA), the cells were seeded on six well

dishes at a confluence of 1.2 � 105 and were transfected using

Lipofectamine 2000 (Invitrogen, Grand Island, NY, USA)

with siRNA against either luciferase, HPV-18 E6/E7 (50-
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CAUUUACCAGCCCGACGAG), HPV-18 E6 (50-CUCUGUGUAUG-

GAGACACATT) or E6AP (relevant Dharmacon Smart Pools).

2.2. Plasmids

The respective HA-E6 protein was cloned under the control of

the CMV promoter into the pCDNA-3 expression plasmid

(Invitrogen, Grand Island, NY, USA) and its identity was

confirmed by DNA sequencing. Specific point mutations

were introduced into the PBM of the HPV-18 E6 protein by

PCR-directed mutagenesis. Plasmids encoding myc tagged-

mouse Par3 was generously provided by Dr. Mathieu Coureuil

(Universit�e Paris Descartes, Facult�e de M�edecine) (Joberty

et al., 2000; Coureuil et al., 2009).

2.3. Antibodies

Antibodies used were mouse monoclonal anti-g tubulin

(T6557), mouse anti-a tubulin (T6199) (Sigma Aldrich, Saint

Louis, USA), mousemonoclonal anti-HA (12CA5) (Roche, Man-

nheim, Germany), rabbit polyclonal anti-Par3 (H70), rabbit

polyclonal anti zonula occludens 1 (ZO-1) (H-300), mouse

monoclonal anti-p53 (DO-1), mousemonoclonal anti-a actinin

(H-2), mouse monoclonal anti-vimentin (V-9), mouse anti-c

Myc (9E10), mouse anti-transferrin receptor (3B82A1) (Santa

Cruz Biotechnology, California, USA), rabbit polyclonal anti-

Par3 (07-330) (Millipore, Temecula CA, USA), mouse mono-

clonal anti-p84 (5E10) (Abcam) and anti-b-galactosidase (b-

Gal) (Promega, Wisconsin, USA).

2.4. Western blotting

Western blot analyses were carried out as described previ-

ously (Gardiol et al., 1999). Briefly, cells were harvested in

extraction buffer (250 mM NaCl, 0.1% NP40, 50 mM HEPES pH

7.0, 1 mM MgCl2) containing Halt Protease Inhibitor single

use cocktail (Thermo Scientific Pierce, Rockford, USA). Equal

amounts of proteins were separated by SDS-PAGE and trans-

ferred to nitrocellulose. Specific protein levels were deter-

mined by immunoblot analysis using the appropriate

primary antibodies, as indicated in the text. Blots were devel-

oped using the SuperSignalWest Pico Chemiluminescent Sub-

strate reagent (Thermo Scientific Pierce, Rockford, USA).

When specified, cells were treated with the proteasome inhib-

itor N-CBZ-LEU-LEU-LEU-AL (CBZ), 40 mM (SigmaAldrich, Saint

Louis, USA) 2 h prior to protein extraction (Gardiol et al., 1999).

Subcellular fractionation was performed using the ProteoEx-

tract Fractionation Kit (Calbiochem, Darmstadt, Germany) ac-

cording to the manufacturer’s instructions. Protein band

intensities were quantitated using the Image J quantification

program.

2.5. Immunofluorescence and microscopy

Cells were grown on glass coverslips and fixed using 2% form-

aldehyde in phosphate-buffered saline for 20 min at room

temperature and processed, as previously described

(Massimi et al., 2003). Endogenous Par3, p53 and ZO-1 proteins

were visualised using anti-Par3, anti-p53 and anti-ZO-1,

respectively. HA- E6 expression was visualised using anti-HA
antibody. Secondary antibodies used were Alexa 488-

conjugated goat anti-rabbit IgG (green, Molecular Probes,

Grand Island, NY, USA) and Cy3 conjugated anti-mouse IgG

(red, Chemicon International, Temecula, USA). Slides were

analysed with the laser Confocal microscope Nikon C1

(CLSM, Japan). When appropriate, z-axis reconstructions of

HaCaT cells grown on Matrigel were generated.
2.6. Immunoprecipitation

For co-immunoprecipitation assays, HEK293 cells co-

transfected with myc-Par3 and HA-E6 expression plasmids

were lysed in RIPA buffer (50 mM TriseHCl [pH 7.4], 150 mM

NaCl, 0.1% NP-40, 1% NaDC, 1 mM EDTA, and 1 mM PMSF).

The supernatants were subsequently incubated with anti-

HA antibody and with Protein A-Sepharose beads CL-4B

(Sigma Aldrich, Saint Louis, USA) for the precipitation of HA-

E6 proteins or with anti-myc resins (Sigma Aldrich, Saint

Louis, USA) for the precipitation of Par3. Immunocomplexes

were collected, washed extensively, eluted from the beads,

analysed by SDS-PAGE, and immunoblotted using anti-Par3

or anti-HA antibodies as indicated, for the detection of E6-

bound Par3 protein.
2.7. Calcium switch assays and TJ assembly

Highly confluent HaCaT or G418-resistant HaCaT-HAE6.18

cells grown on glass coverslips were incubated with serum-

free DMEM for 2 h. Afterwards, extracellular Ca2þ was

chelated with 2 mM EGTA at 37 �C for 20 min. Cells were

then washed and switched back to complete DMEM medium

and either fixed immediately (Time 0) or at different time

points for TJ restoration analysis by IF using anti- ZO-1 as

the primary antibody (Massimi et al., 2012). To quantify the

average ZO-1 expression on cell borders, five to seven fields

of cells were randomly selected from at least three indepen-

dent experiments.
2.8. Statistical analysis

The statistical significance of the data from the quantification

of ZO-1 expression at cell borders in calcium switch assays

was obtained by the Mann Whitney test. A P value <0.05

was considered to be significant.
3. Results

3.1. High-risk HPV-18 E6 protein interferes with Par3
protein localisation in a PDZ-binding dependent manner

Although a number of PDZ domain-containing proteins have

been identified as targets of HPV E6, scarce information exists

on the potential interference of these viral proteinswith the TJ

Par polarity complex (Pim et al., 2012). Considering that Par3

seems to be the principal PDZ cellular target of E7 protein

derived from RhPV (Tomaic et al., 2008), we initiated a series

of studies to analyse the expression of Par3 protein, the key

component of the Par complex, in the presence of HPV E6.

http://dx.doi.org/10.1016/j.molonc.2014.01.002
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We focused on the high-risk HPV-18 E6 (E6.18) protein since

HPV-18 was demonstrated as the most aggressive mucosal

high-risk HPV type tested in cultures (Lace et al., 2009) and a

number of reports indicate poorer prognosis and a more

aggressive clinical behaviour for tumours containing HPV 18

DNA rather that HPV16 DNA (Walker et al., 1989; Zhang

et al., 1995). First, we evaluated the effect of the silencing of

E6.18 protein upon the expression of Par3 in HPV-18 positive

HeLa cells that constitutively express E6.18. The E6 ablation

was verified by analysing by IF the expression of a well-

characterized target of the high-risk E6 proteins, the p53

tumour suppressor (Scheffner et al., 1993). As can be seen in

Figure 1A, the levels of p53 were strongly increased in the nu-

cleus of most of the siRNA E6 and siRNA E6/E7 treated cells,

demonstrating the efficient silencing of E6 expression, which

is in agreement with previous reports (Scheffner et al., 1993;

Kranjec and Banks, 2011). The recovery of p53 in the nucleus

was stronger in the si18E6/E7 cells than in the siE6 cells, indi-

cating that the ablation of E6 protein expression is more effi-

cient using siRNA E6/E7 than siRNA E6, and this is in

agreement with previous studies (Figure 1A). The expression

and subcellular distribution of endogenous Par3 protein was

also assessed by IF. As shown in Figure 1A, Par3 exhibits a

diffuse pattern of staining in the cytoplasm and nucleus and

is veryweakly expressed at the cell borders of cells transfected

with control siRNA luciferase (Figure 1A) or no transfected
Figure 1 e Expression of high-risk HPV-18 E6 oncoprotein is associated wi

E6.18 restores Par3 expression at the cellecell contacts in HeLa cells. HeLa

18 E6/E7 siRNA, E6.18 siRNA or luciferase siRNA. Cells were grown fo

counterstained with fluorescent secondary antibodies (Par3, green; p53, re

The silencing of E6.18 was corroborated by the rescuing of p53 expressio

The images shown are representative of three independent experiments. B

HaCaT control cell line and HaCaT cell clones stably expressing HA-E6

and yellow arrows indicate Par3 expression at cell borders or diffuse redist

images were taken at wavelengths of 450 and 515 nm. Scale bars: 5 mm.
HeLa cells (Figure 1S). However, in those E6 and E6/E7-

silenced/p53-positive cells Par3 exhibited some increased

cytoplasmic staining but is significantly enriched at the cell

junctions, with this being more striking in the E6/E7-silenced

cells. This Par3 localization at the cell junctions is in agree-

ment with previously reported studies where Par3 is also

found at cell junctions in other epithelial cell types (Joberty

et al., 2000). This result suggests that Par3 is mislocalized in

HPV positive cells in an E6-dependent manner.

In an attempt to confirm these findings, we generated

HaCaTederived clones stably expressing HA-tagged E6.18

and for comparison the low risk HPV-11 E6 (E6.11). We used

immortalised HaCaT epithelial cells because they have been

shown to be a good system for analysing TJ formation (Aono

and Hirai, 2008).

Expression of the transgenes was confirmed by RT-PCR

(data not shown) and IF (Figure 1B). E6.18 protein was stably

expressed and accumulated predominantly in the nucleus,

whereas low-risk HPV-11 E6 could be found in both the nu-

cleus and cytoplasm, as previously reported (Guccione et al.,

2004; Mesplede et al., 2012). However, diffuse staining for

E6.18 protein could be also observed in the cytoplasm of the

stably transfected cells. Figure 1B shows that in HaCaT

mock-transfected cells, Par3 was predominantly localized at

the cell borders in concordance with its normal localization

and functions (Joberty et al., 2000). However, Par3 was
th the loss of normal Par3 localisation at cell junctions. A) Silencing of

cells were seeded on glass coverslips and were transfected with HPV-

r 48 h, fixed, incubated with anti-Par3 and anti-p53 antibodies, and

d). Confocal images were taken at wavelengths of 450 and 515 nm.

n in the nucleus (white arrow for representative E6-silenced cells).

. IF staining for Par3 (green) and nuclear DAPI staining (blue) for

from low-risk HPV-11 or high-risk HPV -18 (anti-HA, red). White

ribution in high-risk HPV E6-expressing cells, respectively. Confocal

http://dx.doi.org/10.1016/j.molonc.2014.01.002
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diffusely redistributed to the cytoplasm with a marked reduc-

tion at cell junctions in E6.18-expressing cells. The presence of

E6.11 did not compromise the targeting of Par3 to cellecell

contacts when compared to control cells (Figure 1B). Even

more striking, Par3 expression could be observed in the nu-

cleus of 75% of the E6.18-expressing cells (Figure 1B), in agree-

ment with the data from experiments performed in HeLa cells

and shown in Figure 1A.

Having shown that E6.18 oncoprotein can perturb Par3 dis-

tribution, we next performed experiments growing the cells

on reconstituted basement membrane culture Matrigel. This

system mimics the tissue architecture, resulting in a more

relevant model in which to elucidate changes in the protein

expression at cell junctions, generating well-organized mem-

brane domains with an apical-basal polarity (Debnath et al.,

2003; Chen and Zhang, 2013). We then performed Par3 IF anal-

ysis using cells grown on Matrigel for 72 h. As can be seen in

Figure 2A, Par3 is expressed at cell junctions in HaCaT cells.

The z-axis reconstructions indicate that it is enriched at the

apical domain of cellecell contacts, most likely as a compo-

nent of the TJ, as has been reported for other epithelial cell

lines (Horikoshi et al., 2009). The same Par3 localisation was

observed for E6.11-expressing cells, whereas for E6.18-

derived clones, though some Par3 expression can be still

observed at cell borders, Par3 has a clear redistribution to

the cytoplasm. Interestingly, the Par3 localisation at the apical

domain seemed to be lost in E6.18 clonal cells, where complete

diffuse cytoplasmic and nuclear Par3 expression could be

observed (Figure 2B). This observation can also be appreciated

from the three dimensional reconstruction of the Z-stack

data, which is shown in Supplementary Figure 2 (Figure 2S).

We next wanted to investigate if this effect is dependent on

the ability of E6 oncoproteins to interact with PDZ domains. To

do this, we generated an E6.18 mutant (E6.18 Mut) derivative

where the E6 PBM sequence ETQV was mutated to EDQA

because these amino acid changes were previously demon-

strated to abolish PDZ interaction (Figure 3A) (Gardiol et al.,
Figure 2 e Expression of high-risk HPV-18 E6 promotes the loss of Par3

(green) and nuclear DAPI staining (blue). Image reconstruction along the z-

control) or derivative clones stably expressing HA-E6 proteins (B) that wer

from the x-y axis is shown. The lower panel presents an individual x-z section

bars: 5 mm.
1999; Zhang et al., 2007). We transiently transfected HaCaT

cells with either wild type or mutant E6.18, and endogenous

Par3 distribution was analysed by IF. Interestingly, whilst

the wild type E6.18 promotes Par3 mislocalisation from cell

borders to the cytoplasm, the expression of E6.18 Mut did

not induce any significant changes in the Par3 cellular distri-

bution when compared to untransfected cells (Figure 3B).

Taken together, the results presented above suggest that

E6.18 oncoprotein has the ability to interfere with the proper

distribution of Par3 in a PDZ-binding dependent manner,

with potential consequences for TJ organisation and polarity

establishment.

3.2. HPV-18 E6 oncoprotein interacts with Par3 protein
in vivo without inducing proteasome-mediated degradation

We then performed experiments to determine if the effect of

HPV E6 on Par3 distribution described above implies protein

interactions between both proteins. Tomaic et al. had previ-

ously described a weak interaction of E6.18 with Par3 in vitro

by GST-pull down assays (Tomaic et al., 2008), so the interac-

tion of E6.18 with Par3 in vivowas addressed by performing co-

immunoprecipitation assays. HEK293 cells were transiently

co-transfected with myc- tagged Par3-expressing plasmid

together with HA-E6.11, HA-E6.18 or HA-E6.18 Mut expression

constructs. As it can be appreciated, Par3 can be immunopre-

cipitated with anti-HA antibody when co-expressed with HA-

E6.18 but not with HA-E6.11, which lacks the PBM (Figure 4 A,

left panel). Mutating the PBM of E6.18 disrupted its association

with Par3, indicating that this E6 region is involved in the

interaction (Figure 4A). The same result was obtained when

cell extracts were immunoprecipitated with anti-myc anti-

body. In this case, HA-E6.18 protein was identified in the

myc tagged-Par-3 immunoprecipitates, but not with the PBM

E6 mutant derivative (Figure 4B).

It is important to note that E6 was shown to be able to

interact with and degrade several PDZ proteins belonging to
protein from the apical domain of cell junctions. IF staining for Par3

axis was performed from Z stacks of mock-transfected HaCaT cells (A,

e cultured on Matrigel for 72 h. In each case, a representative section

along the position indicated in the upper image (orange arrow). Scale

http://dx.doi.org/10.1016/j.molonc.2014.01.002
http://dx.doi.org/10.1016/j.molonc.2014.01.002
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the polarity complexes, including DLG1, Scrib and PATJ

(Gardiol et al., 1999; Nakagawa and Huibregtse, 2000; Storrs

and Silverstein, 2007). We observed some changes in Par3

abundance in the presence of E6 oncoproteins by IF but we

wanted to assess this matter using a more quantitative

in vivo degradation assay. HEK293 cells were co-transfected

with the Par3 expression plasmid plus empty vector, HA-

E6.11, or HA-E6.18 or HA-E6.18 Mut constructs. After 24 h,

cells were treated with the proteasome inhibitor CBZ for

2 h prior to protein extraction. The cells were then harvested

and Par3 protein expression was analysed by western blot-

ting using anti-Par3 antibodies. The results shown in

Figure 4C (upper panel) indicate that the level of Par3 was

not significantly affected by the presence of any of the E6 pro-

teins. The addition of the proteasome inhibitor did not cause

an increase in Par3 protein levels, suggesting that Par3 is not

regulated to any substantial degree by the proteasome

pathway. We corroborated the CBZ effect and the functional

expression of the E6 oncoprotein by performing degradation

assays for a well-studied PDZ target of E6.18, DLG1 (Fig. S3)

(Gardiol et al., 1999). Next we analysed the expression of

endogenous Par3 protein using HaCat (HPV-negative) or

Hela (HPV-18-positive) epithelial cells, after incubation with

CBZ. As it can bee seen in Figure 4D, and in agreement with

the transfection experiments, the levels of Par3 protein did

not change significantly in response to proteasome inhibitor

treatment.
Figure 3 e HPV-18 E6 protein induces Par3 delocalisation in a PBM-depe

proteins used in this study. The consensus PBM of E6.18 protein is highli

E6.18 Mut are shown with respect to the wild type E6.18 sequence and are

E6.18 or HA-E6.18 Mut were fixed and immunostained for Par3 (green) and

yellow arrows indicate Par3 expression at cell borders in E6-negative an

respectively. The picture shown is representative of four independent expe
These results suggest that Par3 is not normally subject to

proteasome degradation in epithelial cells in the presence or

absence of HPV sequences.

In order to confirm the data presented above we used

siRNA to block the expression of either E6 or the E6-

associated protein (E6AP) ubiquitin-ligase in HeLa cells

(Scheffner et al., 1993), considering that E6AP was shown to

be involved in the degradation of several E6 cellular targets.

Protein extracts from these cells were analysed by Western

blotting. The E6 and E6AP ablation was verified by analysing

the level of the p53 protein, a target of the E6-E6AP complex

(Scheffner et al., 1993; Kranjec and Banks, 2011). As can be

seen in Figure 4E, the levels of p53 were increased in siRNA

E6 and siRNA E6AP treated cells when comparedwith the con-

trol siRNA luciferase treated cells. Interestingly, Par3 levels did

not change significantly after the silencing of E6 or E6-AP indi-

cating that E6 is not stimulating the proteasome-mediated

degradation of this particular E6.18 cellular partner.

Taken together, E6.18 can interact with Par3 through a

PBM-dependent mechanism in vivo without significantly

affecting the levels of Par3 protein expression.

3.3. HPV-18 E6 protein induces a redistribution of Par3
subcellular pools

Having found that E6.18 has the ability to alter Par3 cell locali-

zation without affecting significantly the total protein levels,
ndent manner. A. Sequence of the C terminal domain of the HPV E6

ghted with blue letters. The amino acid substitutions introduced into

indicated with red letters. B. HaCaT cells transiently expressing HA-

HA-E6 (red). Nuclear DAPI staining (blue) is also shown. White and

d E6.18 Mut, or diffuse redistribution in E6.18 transfected cells,

riments. Scale bar: 5 mm.
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http://dx.doi.org/10.1016/j.molonc.2014.01.002
http://dx.doi.org/10.1016/j.molonc.2014.01.002


M O L E C U L A R O N C O L O G Y 8 ( 2 0 1 4 ) 5 3 3e5 4 3 539
we also compared the relative levels of expression of Par3 in

different subcellular fractions in E6 positive and E6-depleted

HeLa cells. The cells were grown for 48 h and protein extracts

were separated into cytosolic, membrane, nuclear and cyto-

skeletal fractions, and the pattern of endogenous Par3 expres-

sion was ascertained by western blotting. The results in

Figure 5 show that Par3 levels are slightly reduced in the cyto-

plasmic fraction of E6 depleted cells in comparison to the siRNA

luciferase treated cells. However, more interestingly, it can be

observed an increase in Par3 levels in the membrane fraction

together with a clear reduction in the nuclear fraction of the

E6-depleted,when comparingwith control cells. Again, thema-

jor increase of p53 levels in the nucleus indicates the efficient

ablation of E6 expression in the siRNA E6 treated HeLa cells.

This experiment, together with the results presented above, in-

dicates that E6.18 induces a subcellular redistribution of Par3

from the cell borders to the cytoplasm and nucleus with poten-

tial consequences over Par3 biological activities.
Figure 4 e HPV-18 E6 oncoprotein targets Par3 protein in vivo without i

proteins in vivo interact with Par3. HEK293 cells were transfected with m

E6.18 Mut. Equal amounts of protein, extracted after 24 h, were either re

followed by binding to Protein A-Sepharose affinity beads. Following SD

Sepharose bound complexes (upper panel) were probed with anti-Par3 antib

Par3 and HA- E6 protein inputs or immunoprecipitated with anti-myc res

levels. HEK293 cells were transfected with the Par3 expression plasmid in

24 h, cells were incubated for 2 h with or without CBZ proteasome inhibit

separated by SDS-PAGE. Protein levels were ascertained by western blotti

(as loading control, lower panel). The expression of b-Gal was used as a co

are not regulated by the proteasome pathway. HaCat and HeLa cells wer

inhibitor CBZ. The level of Par3 proteins were then ascertained by weste

were determined as loading control, lower panel. E. The levels of Par3 pr

were transfected with siRNA directed against luciferase, E6AP or E6.18.

western blotting using anti-Par3 antibody, anti-p53 (for control of E6.18 sile
3.4. High-risk HPV-18 E6 protein interferes with TJ
restoration

The Par complex plays a critical role in both the establishment

of cell asymmetry and TJ formation, and perturbation of its

components results in alteration of TJ organisation (Aono

and Hirai, 2008). Having demonstrated that HPV E6 oncopro-

teins can target Par3 protein, a key factor in TJs, we wanted

to know how E6 could influence the formation of such inter-

cellular junctions. Calcium switch assays were used to eval-

uate and compare the capacity of the cells to rescue TJ

organisation and regulate apicobasal polarity. HaCaT control

cells or stable E6.18-expressing cells (Figure 1B) were cultured

on coverslips overnight, serum depleted, and treated with

EGTA to promote depolarisation and TJ disassembly

(Figure 6A). After removal of the quelling agent and addition

of complete medium, the TJs started to reorganise, and repo-

larisation was assayed over time by analysing ZO-1
nducing proteasome-mediated degradation. A. High-risk HPV-18 E6

yc-Par3 plasmid in the presence of HA-E6.11, HA-E6.18 and HA-

solved directly (input) or immunoprecipitated with anti-HA antibody

S-PAGE, whole cell lysates (inputs, lower panel) and Protein A-

ody. B. The same as panel A but cell extracts were analysed for myc-

in. C. Expression of E6.18 oncoprotein does not affect Par3 protein

the absence (mock) or presence of E6.11, E6.18, or E6.18 Mut. After

or as indicated. Proteins were then extracted and equal amounts were

ng analysis with anti-Par3 (upper panel) or anti-g tubulin antibodies

ntrol for transfection efficiency (middle panel). D. Par3 protein levels

e incubated in the presence (D) or absence (L) of the proteasome

rn blotting using anti-Par3 antibody (upper panel). g tubulin levels

otein do not change in HeLa cells upon E6.18 ablation. HeLa cells

After 48 h, cells were harvested and protein levels were assessed by

ncing) and anti-g tubulin or a-actinin, for monitoring protein loading.

http://dx.doi.org/10.1016/j.molonc.2014.01.002
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expression, which is a reliable marker of TJ assembly (Aono

and Hirai, 2008). For control cells, TJ restoration started at

30 min and increased over time with strong ZO-1 staining at

cell borders after 60 min, indicating eventual polarisation

(Figure 6B). However, the expression of high-risk E6.18 signif-

icantly delayed repolarisation after the calcium switch when

compared to control cells (Figure 6B). In contrast, ZO-1 expres-

sion was comparable in the presence or absence of E6.18 6 h

after the calcium switch, indicating that E6 may disturb polar-

ity factors required for the initial steps in TJ formation.
4. Discussion

In this study, we have provided further evidence of how high-

risk HPV E6 proteins can modulate the control of cell polarity.

These studies are relevant for understanding HPV activities

that lead to malignant progression because alterations in the

maintenance of cell polarity are associated with a consequent

loss of epithelial tissue architecture. High-risk HPV E6 proteins

were shown to interact with PDZ-containing proteins through

a PBM domain present at the C-terminal region, which is

conserved in all oncogenic mucosal HPV types. Several PDZ

proteins belonging to the polarity control machinery have

been shown to be targets of E6; however, the relevance of

each E6-PDZ interaction for viral replication and for the devel-

opment of associated tumours is still unclear. Two members

of the Par polarity complex, Par3 and Par6, belong to the PDZ

protein family. This complex has traditionally been shown

to be involved in different types of polarisation and signal

transduction pathways; and several studies have shown that
Figure 5 e Subcellular fractionation shows that Par3 is redistributed in

transfected with siRNA against either luciferase or E6.18. After 48 hs

cytosolic, membrane, nuclear and cytoskeletal fractions. The expression of

western blotting. Expression of vimentin, p84, a-tubulin, and transfer

cytoskeleton, nucleus, cytosolic and membrane fractions, respectively. Th

nuclear fraction. The results shown are representative of three independe

depleted cells with respect to the luciferase siRNA control (considered as

loading control in the different subcellular fraction.
deregulation of Par complex activity is a key factor in the initi-

ation of transformation (Aranda et al., 2008).

We demonstrated that the expression of high-risk HPV-

18 derived E6 protein altered the proper localisation of

Par3 at cell borders in a PDZ-dependent manner (Figures 1,

2 and 3).

Interestingly, depletion of E6.18 in HPV þ HeLa cells

restored the expression of Par3 at the cells contacts when

compared with mock silenced cells (Figure 1A). More strik-

ingly, some Par3 expression could be observed in the nucleus

of E6-expressing cells, both in HeLa and in stably transfected

E6.18-HaCat cells (Figures 1 and 2). Moreover, the subcellular

fractionation experiment shown in Figure 5 demonstrated a

clear redistribution of endogenous Par3 pools in the presence

of E6.18 expression, with Par3 levels reduced at themembrane

fraction together with an increase in the cytosolic and nuclear

fractions. Par3 nuclear localisation in HeLa cells was previ-

ously reported by Fang et al. (2007). These researchers associ-

ated this nuclear distribution with a potential scaffolding role

for Par3 in DNA-dependent protein kinase activation during

DNA repair following DNA damage (Fang et al., 2007).

Sequence analysis of Par3 reveals the presence of potential

nuclear localization signals, nevertheless whether Par3 can

direct its own nuclear entry or uses an associated partner re-

mains to be determined (Fang et al., 2007). Nonetheless, the

contribution of E6 to Par3 redistribution, the biological signif-

icance, especially in the context of HPV-positive cells, and the

mechanismof Par3 translocation to the nucleus, remains to be

elucidated andmerit further investigation. Recently, it was re-

ported that oncogenic HPV proteins trigger themislocalization

of the ZO-2 TJ protein from the cell borders to the cytoplasm
HPV-positive cells in an E6-dependent manner. HeLa cells were

, cells were harvested and protein extracts were fractionated into

Par3 and markers for the four subcellular fractions were assessed by

rin receptor (TR) were used as control for the integrity of the

e ablation of E6.18 was monitored by the expression of p53 in the

nt experiments. Numbers are folds of band intensity for Par3 in E6

1). The intensity of each band was normalized to the corresponding

http://dx.doi.org/10.1016/j.molonc.2014.01.002
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Figure 6 e High-risk HPV E6 compromises tight junction formation during calcium switch assays. A) HaCaT mock-transfected cells or stable

HA-E6.18-expressing cells were subjected to a calcium switch assay and stained for ZO-1 (green) at various times after return to complete

medium. Nuclear DAPI staining (blue) is also shown. Scale bar: 5 mm. B) ZO-1 levels at cell junctions were normalised with respect to

cytoplasmic expression using the MacBiophotonics ImageJ 1.43 m software (Wayne Rasband, National Institutes of Health, USA). Normalised

quantification of ZO-1 border localisation in control (dark bars) and HaCaT E6.18 (light bars) cells after re-addition of calcium at the

indicated time points is represented. Values are mean data ±standard deviation of randomly selected fields from imaging slides from at least

three independent experiments. Asterisks denote significant difference among E6.18 and control cells (*p < 0.05, **p < 0.01, ***p < 0.001).
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and nucleus in MDCK cells (Hernandez-Monge et al., 2013);

suggesting that delocalization of TJ proteins is an important

mechanism for HPV-mediated cell transformation and the

development of cervical cancer.
More strikingly, the observations presented here are in

agreement with our and other laboratories studies using cer-

vical cancer tissues, where other PDZ polarity proteins, such

as DLG1 and Scrib, instead of being localized at the epithelial

http://dx.doi.org/10.1016/j.molonc.2014.01.002
http://dx.doi.org/10.1016/j.molonc.2014.01.002
http://dx.doi.org/10.1016/j.molonc.2014.01.002


M O L E C U L A R O N C O L O G Y 8 ( 2 0 1 4 ) 5 3 3e5 4 3542
cellecell contacts are diffusely misdistributed into the cyto-

plasm (Cavatorta et al., 2004; Nakagawa et al., 2004).

We also demonstrated that the mislocalisation of Par3 in

the presence of E6.18wasmost likely due to the ability of these

proteins to complex in vivo (Figure 4). However, at this stage

we cannot rule out the possibility that E6.18 binds indirectly

to Par3 through interaction via a common partner that allows

the formation of multiprotein complexes, as long as both pro-

teins have the ability to interact with several cell junction

proteins.

Interestingly, no significant changes in Par3 levels were

observed, which is in agreement with the notion that not all

PDZ-containing targets of E6 are equally susceptible to E6-

induced degradation in vivo (Figure 4). In fact, proteolytic

degradation by E6 of its PDZ containing partners is highly spe-

cific, and interactions of E6 with some PDZ substrates can

modulate their binding abilities or cell localization, thereby

interfering with the PDZ protein function.

TJ formation is considered to be one of the critical steps in

establishing cellular asymmetry in polarised cells, and defects

in TJ formation can reflect defects in polarity establishment

(Aono and Hirai, 2008). Par3 and other PDZ-containing targets

of E6 have been shown to be important components of TJs.

Here, we performed classical calcium switch assays to eval-

uate the rescue of cell depolarisation in epithelial cells

expressing E6.18 protein. The results shown in Figure 6

demonstrate that over a short period of time, E6-expressing

cells have an impaired ability to reform TJs with a delay in

ZO-1 accumulation at the cell borders, when compared with

control cells. In contrast, longer after the calcium switch,

ZO-1 expression was comparable in the presence or absence

of E6.18, indicating that E6 may disturb polarity factors

required in the initial steps of TJ formation. It is tempting to

speculate that the mislocalisation of Par3 in E6-expressing

cells contributes to this observation because it has recently

been shown that the loss of Par3 impairs TJ maturation in

early phases of junction formation (Iden et al., 2012).

During the last years a series of studies have reported the

role for TJ proteins in cell proliferation, differentiation, trans-

formation, and metastasis, connecting TJ factors to the carci-

nogenic process (Runkle and Mu, 2013). Though, due to the

participation of the TJ in the control of cell proliferation and

differentiation, the interference of E6 with TJ components,

like Par3 protein, may be required for both virus replication

and cell transformation. As localisation to the TJ in epithelia

cells is a hallmark of Par3 activity, we could hypothesise

that the expression of E6 is detrimental to the multiple func-

tions of Par3, with negative consequences upon cell prolifera-

tion control and apico-basal polarity.
5. Conclusions

In summary, we have shown that E6 is able to alter proper Par3

localisation. As Par3 protein expression has been shown to be

important for tumour suppression, these findings signifi-

cantly impact our understanding ofmalignant transformation

in HPV-infected cells. The change in Par3 localisation, primar-

ily its absence from cell borders and loss of expression at the

apical domain, can have a dramatic effect on the ability of Par3
to control the polarisation of epithelial cells. Par3 protein

expression is frequently altered in a variety of human cancers

(Facciuto et al., 2012) and has been associated with metastasis

inhibition in breast cancer (Iden et al., 2012; McCaffrey et al.,

2012). The targeting of Par3 by high-risk HPV E6 proteins could

have important consequences during the progression of HPV

epithelial lesions; however, more in-depth studies are needed

to elucidate the HPV-mediated mechanisms that interfere

with the polarisation machinery and the signalling network

during virus replication and tumour development.
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