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Basal cell carcinomas (BCCs) and a subset of medulloblastomas are characterized by loss-

of-function mutations in the tumor suppressor gene, PTCH1. PTCH1 normally functions by

repressing the activity of the Smoothened (SMO) receptor. Inactivating PTCH1 mutations

result in constitutive Hedgehog pathway activity through uncontrolled SMO signaling. Tar-

geting this pathway with vismodegib, a novel SMO inhibitor, results in impressive tumor

regression in patients harboring genetic defects in this pathway. However, a secondary

mutation in SMO has been reported in medulloblastoma patients following relapse on vis-

modegib to date. This mutation preserves pathway activity, but appears to confer resis-

tance by interfering with drug binding.

Here we report for the first time on the molecular mechanisms of resistance to vismodegib

in two BCC cases. The first case, showing progression after 2 months of continuous vismo-

degib (primary resistance), exhibited the new SMO G497W mutation. The second case,

showing a complete clinical response after 5 months of treatment and a subsequent pro-

gression after 11 months on vismodegib (secondary resistance), exhibited a PTCH1

nonsense mutation in both the pre- and the post-treatment specimens, and the SMO

D473Y mutation in the post-treatment specimens only. In silico analysis demonstrated

that SMOG497W undergoes a conformational rearrangement resulting in a partial obstruc-

tion of the protein drug entry site, whereas the SMO D473Y mutation induces a direct effect

on the binding site geometry leading to a total disruption of a stabilizing hydrogen bond

network. Thus, the G497W and D473Y SMO mutations may represent two different mech-

anisms leading to primary and secondary resistance to vismodegib, respectively.

ª 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights

reserved.
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1. Introduction Exons 1-23 of PTCH1 and 8-10 of SMO were amplified by
Basal cell carcinoma (BCC) is the most frequent skin cancer

with a recognized increasing incidence in the last 30 years.

(Flohil et al., 2013) Treatment of BCC mainly consists of local

approaches, surgery being the most effective one, followed

by radiotherapy, photodynamic therapy, and imiquimod as

alternative therapeutic strategies. (Rubin et al., 2005) Systemic

therapy for metastatic and locally advanced BCCs not

amenable to curative surgery or radiotherapy has been

recently added to the therapeutic arsenal, with the approval

by FDA and EMA of vismodegib, a small molecule inhibitor

of the Hedgehog (Hh) pathway. Indeed, BCC pathogenesis is

based on an inappropriate activation of the Hh pathway.

The Hh ligand binds the transmembrane receptor PatchedHo-

molog 1 (PTCH1) that in turn prevents the inhibition of the

transmembrane Smoothened (SMO) receptor. SMO signaling

results in the activation of GLI family zinc finger transcription

factors and their target genes such as Cyclin D1. PTCH1 inacti-

vatingmutations, characterizing>90% of BCCs, and activating

SMO mutations, even if less frequent, (Reifenberger et al.,

2005) can act as ligand-independent oncogenic drivers of

this disease. (Rubin et al., 2005) Vismodegib binds and inhibits

SMO, thus preventing systemic activation of the forward

signaling. Also, the significant antitumor activity of vismode-

gib in BCC strongly suggests the addiction of this tumor to

SMO activity. (Von Hoff et al., 2009).

Results of the pivotal phase II trial with vismodegib in met-

astatic or locally advanced BCCs showed a response rate of

30% and 43% in the two settings of disease, respectively.

(Sekulic et al., 2012) Median duration of response was 7.6

months.

Acquired resistance to vismodegib has been reported in

medulloblastomas where the drug, after an initial dramatic

response, rapidly turned into resistance. (Yauch et al., 2009)

This happened through the acquisition of the SMOD473Hmu-

tation which, according to the authors, prevents vismodegib

from binding without altering the ability of the receptor to

activate the downstream Hh pathway. (Yauch et al., 2009) To

our knowledge, however, no evidence of molecular mecha-

nisms associated with primary or acquired resistance to vis-

modegib in BCCs has been reported to date. Accordingly, in

this study we present and discuss for the first time clinical,

molecular and in silico evidence of primary and acquired

SMO mutation-mediated resistance to vismodegib in BCCs.
2. Materials and methods

2.1. PTCH1 and SMO mutational analysis

Formalin-fixed paraffin-embedded (FFPE) tumor specimens of

pre-treatment liver metastasis, primary tumor and node

metastasis (first case), and of both pre-treatment primary tu-

mor and recurrence arisen on vismodegib regimen (second

case) were reviewed and subjected to micro-dissection under

microscopy control. Genomic DNA was extracted using the

Qiamp FFPE DNA kit (Qiagen, Chatsworth, CA), followingman-

ufacturer’s instructions.
PCR; all PCR primer sequences are available upon request.

The PCR products were subjected to direct sequencing using

an ABI Prism 3500 DX Genetic Analyzer (Applied Biosystems,

Foster City, CA, USA), and then evaluated by means of the

ChromasPro software.

2.2. In silico experiments

The Amber ff03 force field (Duan et al., 2003) was used to

parametrize all protein structures. The atomic partial charges

for vismodegibwere obtained using the RESP procedure (Bayly

et al., 1993), and the electrostatic potentials were produced by

single-point quantummechanical calculations at the Hartree-

Fock level with a 6-31G* basis set, using the Merz-Singh-

Kollman van der Waals parameters. (Singh and Kollman,

1984; Besler et al., 1990) Eventual missing force field parame-

ters for the inhibitor molecule were generated using the Ante-

chamber tool (Wang et al., 2006) of Amber 12 (Case et al., 2012)

and the general AMBER force field (GAFF) (Wang et al., 2004) for

rational drug design.

The structures of each SMOproteins in complexwith vismo-

degib were obtained exploited a well-validated procedure re-

ported in details in our previous works. (Bozzi et al., 2013;

Laurini et al., 2013; Conca et al., 2013; Dileo et al., 2011; Pierotti

et al., 2011) However, since SMO is a transmembrane receptor

protein, each protein/drug complex was inserted into a lipid

membrane structure prior to solvation in an explicit water envi-

ronment. To the purpose, the CHARMM-GUI Lipid Builder web

application was employed. (Woolf and Roux, 1996; Jo et al.,

2007) The lipidic bilayer consisted in a 2:2 proportion of 1-

palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and 1-

palmitoyl-2-oleoyl-sn- glycero-3-phosphoethanolamine (POPE).

The two sides (top and bottom) of the membrane were consti-

tutedby125and115 lipidmolecules, respectively.Theentiresys-

tem was parameterized using the lipid11 library (Skjevik et al.,

2012) of the ff03 force field.

Each system was then allowed to relax in a box of TIP3P

water molecules. (Jorgensen et al., 1983) The solvated systems

were minimized with a gradual decrease in the position re-

straints of the protein atoms. Finally, to achieve electroneu-

trality, a suitable number of neutralizing ions were added;

further, the solution ionic strength was adjusted to the phys-

iological value of 0.15 M by adding the required amounts of

Naþ and Cl� ions. After energy minimization of the added

ions for 1500 steps, the entire water/ion box was equilibrated

via 2ns constant volume/constant temperature (NVT)molecu-

lar dynamics (MD) simulations. Further unfavorable interac-

tions within the structures were relieved by imposing

progressively smaller positional restraints on the protein/in-

hibitor complex (from 25 to 0 kcal/(mol �A2) for a total of 5 ns

of MD simulations. Each hydrated complex system was then

gradually heated to 310 K in three intervals, allowing a 2 ns in-

terval per each 100 K, and then equilibrated for 5 ns at 310 K.

Finally, starting from each MD equilibrated system 50 ns of

data collection runs were carried out to estimate the corre-

sponding free energy of binding.

The production MD simulations were performed in the

constant pressure/constant temperature (NPT) ensemble at

http://dx.doi.org/10.1016/j.molonc.2014.09.003
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T ¼ 310 K using the Berendsen et al. algorithm (Berendsen

et al., 1984) with an integration time step of 2 fs, and the appli-

cations of the Shake algorithm. (Ryckaert et al., 1977) Long-

range nonbonded van der Waals interactions were truncated

by using a dual cutoff of 9 and 13 �A, respectively, where en-

ergies and forces due to interactions between 9 and 13 �A

were updated every 20-time steps. The particle mesh Ewald

method (Toukmaji et al., 2000) was used to treat the long-

range electrostatics. For the calculation of the binding free en-

ergy between SMO and vismodegib in water, a total of 50,000

snapshots were saved during the MD data collection period

described above.

The free energies of binding DGbind for the wild-type (WT)

and mutant SMO/vismodegib complexes were obtained using

an extensively validated procedure based on the Molecular

Mechanics/PoissoneBoltzmann Surface Area (MM-PBSA)

methodology. (Bozzi et al., 2013; Laurini et al., 2013; Conca

et al., 2013; Dileo et al., 2011; Pierotti et al., 2011; Gibbons

et al., 2014) Accordingly, DGbind values were calculated for

equilibrated structures extracted from the corresponding MD

trajectories. The average value of DGbind was estimated as

the sum of different energetic contributions, corresponding

to the average molecular mechanics energies

(DEMM ¼ DEele þ DEvdW), the average solvation free energy

(DGsolv ¼ DGsolv,pol þ DGsolv,nonpol), and the entropic contribu-

tion (�TDS). The molecular mechanics energies (DEMM) were

evaluated from a single 50 ns MD trajectory of each recep-

tor/inhibitor complex. The solvation energies were obtained

solving the PoissoneBoltzmann equation for the polar part

(DGsolv,pol) plus a non-polar contribution (DGsolv,nonpol), propor-

tional to the solvent-accessible surface area and including the

entropy cost of creating a solute-size cavity in the solvent.

Finally, the variation of entropy upon binding was evaluated

by utilizing the quasi-harmonic approach. (Andricioaei and

Karplus, 2011).

A per residue binding free energy decomposition was per-

formed exploiting the MD trajectory of each complex. This

analysis was carried out using the MM/GBSA approach, (Tsui

and Case, 2000; Onufriev et al., 2000) and was based on the

same snapshots used in the binding free energy calculation.

The steered molecular dynamics (SMD) simulations

(Isralewitz et al., 2001) required to pull off the inhibitor from

its binding site were performed using snapshots randomly

taken from the MD equilibrated runs as initial structures.

The center of mass of vismodegib was chosen as the acting

point for the pulling force. Harmonic constraints were applied

to the Ca atoms of all helices in the SMO, while the exponent

appearing in the harmonic constraint energy functions was

set to the value of 2. The force constant and velocity used in

all SMD simulations were 4 kcal mol�1 �A�2 (277.9 pN �A�1)

and 0.0001 �A timestep�1 (0.030 �A ps�1), respectively. With

these settings, 3.0 nmwere covered in 1000 ps of SMD simula-

tion. The same parameters were exploited to simulate the en-

try process of vismodegib into the SMO binding pocket.

The entire MM/PBSA computational procedure was opti-

mized by integrating AMBER 12 in modeFRONTIER, (http://

www.esteco.com/home/mode_frontier/mode_frontier.htm) a

multidisciplinary and multi-objective optimization and

design environment, and run on the EURORA supercomputer

(CINECA, Bologna, Italy).
3. Results

Two patients enrolled in a phase II trial with vismodegib for

metastatic and locally advanced BCC (ClinicalTrials.gov Iden-

tifier: NCT01367665) are reported and discussed in thiswork as

examples of primary and acquired resistance to the vismode-

gib, respectively.

3.1. Patient 1: a case of vismodeginb primary resistance
in BCCs

The first patient was an 82-years oldwoman presentingwith a

BCC metastatic to liver, lung and bones. After histological

confirmation of liver metastasis, she received radiation ther-

apy to lumbar (L2-L4) and cervical (C3) secondary lesions

and she started vismodegib 150 mg/die. After 2 months of

continuous treatment, CT scans showed disease progression

at all sites (primary resistance).

3.2. Patient 2: a case of vismodegib acquired resistance
in BCCs

The second patient was a 78-years oldman presenting with a

large (12 cm), ulcerated lesion of the supra-scapular skin on

which a diagnosis of BCCwas rendered (Figure S1, left panel).

Because a surgical approach would have led to substantial

morbidity, this patient was started on a 150 mg/day vismo-

degib regimen. The lesion dramatically reduced after the

first month, and a complete clinical response was obtained

5 months later (Figure S1, right panel). However, after 11

months on vismodegib, two subcutaneous nodules appeared

in the area of the previous lesion. Both lesions were

surgically removed and the histology was consistent with

recurrent BCC suggesting the development of an acquired

resistance.

3.3. PTCH1 is wild type in vismodegib primary
resistance and mutated in acquired resistance to SMO in
BCC

To explore possible mechanisms of Hh pathway activation in

these two BCC cases considered, we first performed PTCH1

sequencing. In the pre-treatment BCC liver metastasis of the

case showing primary resistance (patient 1), no PTCH1 muta-

tion was observed (Figure 1A). By contrast, the pre-treatment

primary biopsy of the case showing acquired resistance

(patient 2) revealed the PTCH1 nonsense mutation

CAG > TAG creating a premature STOP codon (pQ84) in the

exon 2 (Figure 1B). This PTCH1 mutation predicts translation

to a heavily truncated protein, causing loss of function of

the protein and preventing inhibition of SMO. As expected,

the same PTCH1mutationwas also observed in the recurrence

sample taken during vismodegib (Figure 1B).

3.4. Two distinct missense SMO mutations characterize
primary and secondary vismodegib resistance in BCCs

Next, we evaluated the SMO mutational status. In the case

showing primary resistance (patient 1), the analysis of pre-

http://www.esteco.com/home/mode_frontier/mode_frontier.htm
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Figure 1 e Pre-treatment BCC liver metastasis of the first case (patient 1, primary resistance) showed PTCH1 wild type gene (A) and the SMO

G49W mutation (C). Pre-treatment primary tumor and BCC recurrence of the second case (patient 2, acquired resistance) carried the nonsense

Q84Stop PTCH1 mutation (B) while the SMO D473Y mutation was observed only in the recurrence BCC sample (D).
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treatment liver metastasis revealed the SMO missense muta-

tion GGG > TGG at exon 9, leading to the amino acid substitu-

tion G497W in the corresponding protein (Figure 1C). Primary

tumor and node metastasis also exhibited the same SMO

missense mutation GGG > TGG at exon 9. By contrast, in the

pre-treatment primary BCC of the second case (acquired resis-

tance, patient 2), no SMO mutations were detected (Figure 1D,

left panel); however the sample obtained from the recurrence

on vismodegib showed the missense mutation GAC > TAC at

exon 8, leading to the single amino acid substitution D473Y

(Figure 1D, right panel) confirming the acquired resistance to

the inhibitor.

3.5. SMOG497W: a distal mutation that obstructs
vismodegib entry to SMO binding site leading to primary
BCC resistance

To gain mechanistic insight regarding the resistance posed by

the mutant SMO proteins we performed a thorough in silico

analysis of the wild type and both clinically relevant SMO

mutant alleles (Figure 2).

As shown in Table 1, the MM/PBSA-derived IC50 for the

SMOG497W/vismodegib complex is 69 nM, a value slightly

higher than the experimental/calculated IC50 derived for the

wild-type (WT) receptor (3 and 2.5 nM, respectively). This

result indicates only a moderate direct effect of the mutation

G497Won the protein affinity for the inhibitor, in keepingwith

a distal position of G497W with respect to the protein drug

binding site.

However, in the presence of the mutant residue the entire

protein region undergoes a conformational rearrangement,

ultimately resulting in a partially obstructed drug entry site.
Our simulations of the binding process of vismodegib to

SMO indeed shows that the vismodegib link with the protein

binding pocket is substantially hindered in the presence of

the G497W mutation (Figure 3AeB and movies).

Supplementary data related to this article can be found

online at http://dx.doi.org/10.1016/j.molonc.2014.09.003

This fundamentally implies that, in time, the effective vis-

modegib concentration within the SMOG497W binding site is

significantly lower than in the case of the WT receptor.

Accordingly to our simulation, other molecular mechanisms

are likely contributing to the resistance of SMOG497W to vismo-

degib. A direct comparison of the WT/mutated protein struc-

tures in the area surrounding position 497 revealed that, in

the presence of the tryptophan mutant residue, the entire re-

gion undergoes a conformational rearrangement, thus result-

ing in a narrowing of the protein drug entry site (Figure 3A).

For this reason, in the presence of the G497Wmutation vismo-

degib might be less able to reach the protein binding pocket

and, hence, less effective in its inhibitory activity. Further,

as we can see from Figure 3B and 3C, not only quite a higher

force (and hence energy) is required to vismodegib to reach

its binding site in the presence of the mutant residue

(Figure 3C) but also, and perhaps even more interestingly,

contrarily to the WT case, for SMOG497W the drug has not yet

reached its correct orientation within the protein binding

pocket after the same time lag (Figure 3B andmovies). In prac-

tical terms this fundamentally might imply that, in time, the

effective vismodegib concentration within the SMOG497W

binding site is significantly lower than in the case of the WT

receptor and this, is our opinion, constitutes a novel and effec-

tive mechanism of drug primary resistance.

http://dx.doi.org/10.1016/j.molonc.2014.09.003
http://dx.doi.org/10.1016/j.molonc.2014.09.003
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Figure 2 e Cross section of the 3D structure of the SMO receptor

embedded in a 1-hexadecanoyl-2-[(9Z)-octadecenoyl]-sn-glycero-3-

phosphocholine (POPC)/1-palmitoyl-2-oleoyl-sn-glycero-3-

phosphoethanolamine (POPE) (2:2) membrane model. Water is

shown as a light cyan surface, while NaD and ClL ions are visible as

green and purple spheres, respectively. Lipids are portrayed as ball-

and-sticks, the polar heads of POPC and POPE depicted in white

and cyan, respectively, while the corresponding hydrophobic tails are

colored green and salmon, respectively. The membrane solvent

accessible surface area is highlighted in transparent forest green. The

SMO receptor protein is shown as a red ribbon, the inhibitor binding

region being evidenced by a yellow sphere.

Table 1 e In silico estimation of free energy of binding (DGbind) for
wild type (WT), SMOD473H and SMOG497W mutant receptors in
complex with vismodegib. Errors are given in parenthesis as
standard errors of the mean (SEM).

SMO
complex

DGbind

(kcal/mol)

aDDGbind

(kcal/mol)

bIC50,calc

(kcal/mol)
IC50,exp

(kcal/mol)

WT �11.75 (0.11) e 2.5 3

D473H �9.27 (0.10) �2.48 159 e

G497W �9.78 (0.10) �1.97 69 e

a DDGbind ¼ DGbind,WT � DGbind,mutant. By definition, a negative

value of DDGbind indicates that the WT/vismodegib complex is

favored with respect to the mutated one, and vice versa.

b DGbind and the concentration of ligand that inhibits the kinase

activity by 50% (i.e., IC50) are related by the following fundamental

equation: DGbind ¼ -RTln 1/IC50. Thus, once DGbind for a given ki-

nase/inhibitor couple is estimated by MM-PBSA simulations, the

relative IC50 value is also known by virtue of this relationship.
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3.6. SMOD473Y: a binding site mutation that directly
interferes with vismodegib binding and leads to secondary
BCC resistance

When considering vismodegib in complex with SMOD473Y, the

alternative mutant isoform of SMO detected in the patient

specimen with acquired BCC resistance, the calculated IC50

value is 159 nM. This translates into an almost two orders of

magnitude decrease in protein affinity to vismodegib with

respect to the WT receptor (Table 1), clearly revealing a direct

effect of the mutated residue on vismodegib binding. Notably,

D473 is involved with other two residues (R400 and H470) in a

pivotal network of hydrogen bonds that keeps the SMO bind-

ing pocket in the proper shape and stabilizes vismodegib bind-

ing (Figure 4AeB). The aromatic side chain of the 473Y residue

induces a considerable effect on the binding site geometry and

leads to the total disruption of the stabilizing hydrogen bond

network; hence, the inhibitor is shifted from its optimal
position (Figure 4B). In details, in the presence of the D473Y

mutation, a considerable effect on the binding site geometry

is induced, required for the proper accommodation of the res-

idue aromatic side chain, ultimately leading to the total

disruption of the stabilizing hydrogen bond network. The in-

hibitor is hence shifted from its optimal position, the only sur-

viving interaction with the receptor being an intermitted

hydrogen bond with Y394.

These evidences are substantiated by the corresponding

per residue energy deconvolution of the free energy of bind-

ing, as shown in Figure 4CeD. As we see, all receptor residues

mainly involved in vismodegib binding undergo a severe

reduction in the stabilizing contribution to inhibitor binding

in the presence of the mutation (Figure 4C). Analogously,

upon disruption of the hydrogen bond network among the

SMO triad residues, the relevant, favorable contribution to re-

ceptor/inhibitor binding plummets drastically (Figure 4D).
4. Discussion

This study presents for the first time clinical, molecular and in

silico evidence of primary and acquired SMO mutation-

mediated resistance to vismodegib in BCC. Indeed, the true-

cut based assessment of the SMO G497W missense mutation

in the liver pre-treatmentmetastasis of the first patient exhib-

iting a progression of disease after twomonths on vismodegib

provides a good example of primary resistance to the drug. To

our knowledge, this SMO mutation has never been previously

described. However, its location in the most frequently

mutated SMO region in BCC (exons 8e10) where other SMO

mutations have already shown a constitutive ligand-

independent signal transduction, argues in favor of its onco-

genic role. (Xie et al., 1998) Furthermore, since the lack of a

PTCH1 inactivating mutation reinforced this assumption, we

sought to explore the effects exerted by this mutation on the

inhibitor binding to the mutated SMO protein. By in silico ex-

periments we demonstrated that in the presence of the

W497 residue the entire protein region undergoes a conforma-

tional rearrangement, which ultimately results in a partial

obstruction of the protein drug entry site. This obstruction,

http://dx.doi.org/10.1016/j.molonc.2014.09.003
http://dx.doi.org/10.1016/j.molonc.2014.09.003
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Figure 3 e (A) Zoomed view of the SMOG497W binding site in complex with vismodegib. The receptor is shown as a secondary-structure colored

ribbon (orange, a-helices; purple, b-sheets; gray, coils). Vismodegib is portrayed as atom-colored sticks-and-balls (red, O; blue, N; green, Cl; S,

sulfur; gray, C). Residue W497 is evidenced as dark red sticks. Hydrogen atoms, water molecules, ions and counterions are omitted for clarity. (B)

SMD snapshots of vismodegib entering the receptor binding pocket. Vismodegib is highlighted by its green/red van der Waals surface. Hydrogen

atoms, ions, counterions and water molecules are omitted for clarity. (C) Rupture force vs. time during the entry process of vismodegib within the

WT (green) and SMOG497W (red) binding site.
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leading to a significant decreasing of the effective vismodegib

concentration within the SMOG497W binding site (lower than

that in the case of theWT receptor), gives amechanistic expla-

nation for a novel effective drug resistance. In this respect, the

presence of such a SMO mutation in BCC candidate to vismo-

degib should definitely be assessed in a greater number of tu-

mors with primary resistance to the inhibitor. This would

eventually allow defining SMOG497W as a possible biomarker

for drug resistance, ultimately resulting in the avoidance of

unnecessary toxicity effects and costs limitation to non-

responding patients.

Concerning the second patient, the presence of the PTCH1

inactivating mutation in the pre-treatment primary lesion

along with absence of SMO mutation could explain the com-

plete clinical response obtained after 6 months of continuous

vismodegib treatment. Indeed, loss of PTCH1 function by inac-

tivating mutations relieves normal SMO inhibition leading to

the activation of Hh targets genes. By contrast, the secondary

drug resistance observed after 11months is likely to be ascrib-

able to the appearance of the missense SMO D473Y substitu-

tion in the recurrence sample. Notably, another amino acid
substitution of the same SMO aspartic acid (D473H) was desig-

nated as themechanism of vismodegib resistance inmedullo-

blastoma. (Yauch et al., 2009) More recently, the detrimental

role of D473 in SMO function has been found out by an elegant

in vitro study where, by replacing this aspartic acid residue

with every other amino acid, all mutants were resistant to vis-

modegib. (Dijkgraaf et al., 2011) In keepingwith these findings,

our analysis of the structural effects of the SMO D473Y clearly

revealed a direct and significant effect on the binding site ge-

ometry. The inhibitor is shifted from its optimal position

because the aromatic side chain of the 473Y residue causes

the total disruption of the stabilizing hydrogen bond network

involving the D473 with other two residues (R400 and H470).

As for G497W, this SMO point mutation should also be

confirmed inagreater seriesof BCCs inorder todefinitely claim

its role in secondary resistance to vismodegib. As a general

remark, we acknowledge that the presented evidences could

be considered only reasonably correlated to the resistance

phenotype, and indeed our analysis requires further confirma-

tion through functional analysis. Under this perspective, in vi-

tro and in vivo experiments are underway in our laboratories to

http://dx.doi.org/10.1016/j.molonc.2014.09.003
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Figure 4 e (A) Zoomed views of the wild type (WT) and (B) SMOD473Y mutant binding sites in complex with vismodegib. In both panels, the

receptor secondary structure is outlined as a semi-transparent ribbon (orange, a-helices; purple, b-sheets; gray, coils). Vismodegib is portrayed as

atom-colored sticks-and-balls (red, O; blue, N; green, Cl; S, sulfur; gray, C). The triad of residues involved in the hydrogen-bond network are

highlighted colored sticks: R300, dark magenta; H470, olive drab; D/Y473, dark cyan. Y394 is also shown as dark red sticks. H-bonds are evidenced

as black lines. (C) Comparison of vismodegib binding energy contributions from WT (green) and D473Y (red) SMO residues. (D) Comparison

between hydrogen bond network stabilization energies for SMO residues belonging to the WT (green) and SMOD473Y triad residues in the relevant

vismodegib complexes. X denotes either D or Y residue at position 473.
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definitively assess the role of these two SMO mutations as

possible biomarkers for vismodegib resistance.

Similarly to medulloblastoma, our data further raise the

issue of overcoming the resistance due to mutation of the

drug target. Under this perspective, efforts aimed at identi-

fying second-generation drugs showing potent activity

against SMO mutants are mandatory. To this goal, a panel of

compounds has already been screened in vitro. Several prom-

ising antagonists able to inhibit tumor growth mediated by

drug-resistant SMOs were selected in murine allograft model

of medulloblastoma, (Dijkgraaf et al., 2011) that could be

tested also in BCC.

Another strategy worth pursuing is the inhibition of the Hh

pathway through other mechanisms, the activity of itracona-

zole or arsenic oxide in blocking vismodegib-resistant BCC

both in vitro and in vivo being prime examples. (Kim et al.,

2013, 2014).

A further alternative approach for facing vismodegib resis-

tance could consist in exploring other pathways interacting

with Hh signaling in BCC and leading to an SMO-

independent stimulation of Gli1 such as EGFR, (Eberl et al.,

2012) the atypical protein kinase C i/l, (Atwood et al., 2013)

the protein kinase A (Makinodan and Marneros, 2012) and,
similarly to medulloblastoma, the PI3K pathway. (Dijkgraaf

et al., 2011; Buonamici et al., 2010).

Finally, a clinical point to be stressed is that our two cases

of vismodegib resistance occurred in patients who had not

received previous radiation therapy. We cannot exclude

that Hh inhibitor resistance outbreak could be higher in pa-

tients having received a radiation insult, as well as it is

possible that alternative therapeutic schedules may alter

resistance mechanism development. (Buonamici et al.,

2010).

In this report we discussed two different SMO mutations

representing examples of primary or secondary resistance

respectively to vismodegib in two distinct BCC cases. The

screening for the reported SMO mutations and the search for

new therapeutic strategies to overcome related resistance

mechanisms represent a priority in the treatment of patients

with advanced BCCs.
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