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Identification of the primary tumor site in patients with metastatic cancer is clinically

important, but remains a challenge. Hence, efforts have been made towards establishing

new diagnostic tools. Molecular profiling is a promising diagnostic approach, but tissue

heterogeneity and inadequacy may negatively affect the accuracy and usability of molec-

ular classifiers. We have developed and validated a microRNA-based classifier, which pre-

dicts the primary tumor site of liver biopsies, containing a limited number of tumor cells.

Concurrently we explored the influence of surrounding normal tissue on classification. Mi-

croRNA profiling was performed using quantitative Real-Time PCR on formalin-fixed

paraffin-embedded samples. 278 primary tumors and liver metastases, representing nine

primary tumor classes, as well as normal liver samples were used as a training set. A sta-

tistical model was applied to adjust for normal liver tissue contamination. Performance

was estimated by cross-validation, followed by independent validation on 55 liver core bi-

opsies with a tumor content as low as 10%. A microRNA classifier developed, using the sta-

tistical contamination model, showed an overall classification accuracy of 74.5% upon

independent validation. Two-thirds of the samples were classified with high-confidence,

with an accuracy of 92% on high-confidence predictions. A classifier trained without ad-

justing for liver tissue contamination, showed a classification accuracy of 38.2%. Our re-

sults indicate that surrounding normal tissue from the biopsy site may critically

influence molecular classification. A significant improvement in classification accuracy
or based classifier; CCM classifier, contamination model based classifier; CCM þ CB clas-
iopsy based classifier.
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was obtained when the influence of normal tissue was limited by application of a statistical

contamination model.

ª 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights

reserved.
1. Introduction contamination by non-malignant tissue in the specimens af-
Current cancer treatment strategies are based on the anatom-

ical site of the primary tumor. Therefore, a correct diagnosis of

the primary tumor site remains an essential first step in dis-

ease management. Since more specific treatment regimens

have emerged for many solid tumors, correct primary tumor

site identification has become increasingly important.

Despite improvements in imaging techniques and the use

of immunohistochemical (IHC) markers, cancer patients pre-

senting with metastatic disease at the time of diagnosis still

represent a diagnostic challenge and in 3e5% the primary tu-

mor site remains undetectable (Pavlidis et al., 2012). As a

result, these patients may be subjected to a time-

consuming and expensive diagnostic work-up, resulting in

treatment delay or even a suboptimal or incorrect treatment

strategy.

In recent years, effort has been made towards establishing

new supplementary diagnostic tools for primary tumor site

identification. Molecular profiling is a promising diagnostic

approach, which has the potential to provide an objective

classification of uncertain or unknown metastatic cancers

and render the diagnostic work-up of cancer patients more

time- and cost-effective.

For the majority of patients with metastatic cancer, classi-

fication of the primary tumor site relies on formalin-fixed and

paraffin-embedded (FFPE) core biopsies from metastatic le-

sions. Standard specimen sampling methods result in hetero-

geneous specimens, consisting of varying amounts of

malignant cells and normal tissue (Cheng et al., 2013). A mo-

lecular classifier for primary tumor site identification in pa-

tients with metastatic disease must therefore be compatible

with FFPE biopsy specimens, representing metastatic tissue

with limited tumor content. Furthermore, the possible influ-

ence on classification by normal tissue contamination must

be considered. Essentially, the classifier performance must

be assessed on representative samples for which the classifier

is intended to perform.

Several molecular classifiers, based on either messenger

RNA (mRNA) or microRNA (miRNA) analysis, have been devel-

oped for primary tumor site identification. These classifiers

show promising cross-validation and independent validation

results. However, validation is often performed on a sample

set predominantly constituted by primary tumors (Ma et al.,

2006; Meiri et al., 2012; Pillai et al., 2011; Ramaswamy et al.,

2001; Su et al., 2001; Talantov et al., 2006). Primary tumors

and their corresponding metastases may exhibit significant

molecular differences due to altered biology or diversity in

specimen sampling, which may influence classification accu-

racy. Such an influence may potentially be overlooked if met-

astatic samples represent a small part of the total validation

set. Additionally, it is not well established to which extend
fects molecular classification.

The primary objective of this study was to develop a classi-

fier able to identify the primary tumor site of FFPE liver core bi-

opsies. Additionally, the classifier should be easy to apply in

the daily clinic. Hence, the classifier should be able to perform

on limited tumor tissue without the need for prior microdis-

section. We used miRNA, which is a class of small (21e24 nu-

cleotides) non-coding RNA molecules (Finnegan et al., 2013),

since these are highly stable in FFPE tissue (Hall et al., 2012).

The biopsy site was limited to a single organ in order to

explore the influence of surrounding (“contaminating”) non-

malignant tissue on primary tumor site classification. A statis-

tical contamination model was incorporated to allow classifi-

cation of core biopsies even in the presence of normal liver

tissue (Vincent et al., 2014). Furthermore we explored if the

miRNA profile of metastases provides additional information

necessary for correct classification, when compared to pri-

mary tumors.
2. Materials and methods

2.1. Clinical samples

Tissue samples from 338 patients, corresponding to one of the

following ten predefined assay classes, were obtained from

tissue archives at the Department of Pathology, Copenhagen

University Hospital, Denmark: Lung cancer, breast cancer,

gastric/cardia cancer (GC), colorectal cancer (CRC), bladder

cancer, pancreatic cancer, hepatocellular carcinoma (HCC),

cholangiocarcinoma (CCA), squamous cell cancers (SCC) of

different origin, and non-malignant (“normal”) liver tissue

(Table 1).

The study was conducted according to national guidelines.

The selection of primary tumor classes in the present

study was made to encompass: (i) primary tumors that often

metastasize to the liver, (ii) primary tumors difficult to diag-

nose with conventional diagnosticmethods and (iii) common

primary tumors for which an effective systemic treatment is

available, making a correct tumor classification clinically

important.

When selecting samples, the following issues were consid-

ered: (i) a single confident reference diagnosis was required.

The reference diagnosis was established based on the original

pathology report, clinical data, radiological findings or, when

available, autopsy reports. Primary tumors were assigned a

differentiation grade, according to international guidelines.

In addition, all samples were independently reviewed by an

expert pathologist to confirm the reference diagnosis. Meta-

static samples with several primary tumor sites suggested

by histopathology were included, if one of those suggestions
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Table 1 e Selected characteristics of samples included in classifier training and validation. The tissue of origin, histology and number (no.) of
samples used for classifier training (TR) and independent validation (V) are listed. Normal liver was subdivided into reactive and cirrhotic liver,
but was regarded as one class. Squamous cell carcinoma was regarded as one class of mixed population. Resection, primary tumor and normal liver
resections; Biopsy, liver core biopsies consisting of liver metastases, primary liver cancer and normal liver.

Tissue of origin Histology Resection no. (TR) Biopsy no. (TR) Biopsy no. (V)

Bladder Urothelial carcinoma 17 2 5

Breast Invasive ductal, lobular, medullar 17 7 5

Billiary tract Adenocarcinoma 20 4 5

Colorectal Adenocarcinoma, mucinous adenocarcinoma 20 12 5

Gastric/cardia Adenocarcinoma, signet ring cell carcinoma 18 12 5

Liver Hepatocellular carcinoma 17 3 5

Normal liver Reactive 20 7 5

Normal liver Cirrhotic 17 8 5

Lung Adenocarcinoma, Mixed type, Large cell 17 2 5

Pancreas Adenocarcinoma 20 10 5

Cervix, Lung, Anal,

Esophagus, Head

and Neck

Squamous cell carcinoma 16 12 5

Total 199 79 55
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was in agreement with the clinical and radiological findings;

(ii) the training set should include themost common histolog-

ical subtypes and represent a varied spectrum of dedifferenti-

ation; (iii) each patient could only be represented by one

sample, hence primary tumor samples and metastatic sam-

ples were unmatched.

Samples were formalin-fixed and paraffin-embedded

(FFPE) tissue specimens archived in the time period 2000-

2012. The sample set consisted of 199 surgical resections

(162 primary tumors and 37 normal liver samples) and 134

liver core biopsies (109 primary liver cancers and liver metas-

tases of known origin, and 25 normal liver samples). Normal

liver samples, defined as liver samples without tumor tissue,

were obtained from large surgical liver resections for colo-

rectal metastases or from explanted livers. These samples

were subdivided into: (i) liver samples containing mild reac-

tive changes due to the presence of a tumor in the proximity

and (ii) cirrhotic liver. Cirrhosiswas included in order to differ-

entiate non-neoplastic fibrosis from the desmoplastic stromal

reaction of metastatic lesions. Characteristics of the samples

are shown in Table 1.

All samples were assigned an estimated tumor percentage

by an expert pathologist. The percentage of tumor tissue in

resected samples (primary tumors) was defined as the relative

amount of tumor cells. In core biopsies, the tumor tissue con-

tent was defined as the relative area of combined tumor cells

and desmoplastic stroma. The tumor percentage was esti-

mated from a hematoxylin and eosin-stained section.

From each surgical resection, one 10-mm section was cut.

To obtain tumor specific miRNA expression profiles, primary

tumor samples were microdissected using the Arcturus XT

Microdissection System (Applied Biosystems, Foster City, CA)

to ensure a tumor cell content of �60%. The influence of

non-malignant cells was limited by excluding samples with

�50% fibrosis, hemorrhage or necrosis (arbitrary cut-off).

Two sections of 5-mm were cut from each liver core biopsy.

No microdissection was performed on these samples. The

only requirement was a minimum of 10% tumor tissue

without further limitations, regarding fibrosis, hemorrhage

or necrosis.
2.2. RNA extraction

Total RNA was extracted from FFPE tissue using a combina-

tion of ReCover All Total Nucleic Acid Isolation Kit

(Ambion, Austin, Tx) and RNAqueous Micro Kit (Ambion).

Briefly, the microdissected sections were deparaffinized by

first adding 1 ml 100% xylene and subsequently 1 ml

100% ethanol. The later RNA extraction steps were similar

for all dissected and non-dissected samples. The tissue

was digested using 100 ml digestion buffer and 4 ml Proteina-

seK (ReCover All) at 50 �C for 15 min and 80 �C for 15 min

according to the manufacturer’s instructions. RNA was sub-

sequently purified on columns and eluted in 15 ml elution

solution (RNAqueous) according to the manufacturer’s pro-

tocol. Total RNA yield and quality was evaluated using

Nanodrop ND-1000 spectrophotometer (NanoDrop Technol-

ogies, Wilmington).

2.3. miRNA quantitative real-time PCR profiling

miRNA profiling was performed using TaqMan low density

array (TLDA) cards, human MicroRNA array A (Applied Bio-

systems) according to the manufacturer’s instructions. A

detailed description of material and methods used for miRNA

profiling is provided as Supplementary Data.

Successful analysis was performed for 333 samples (98.5%).

The PCR data has been deposited at the Gene Expression

Omnibus (GEO), accession number GSE51429.

2.4. Study design

Samples were initially split into a training set, consisting of

the 199 surgical resections and 79 core biopsies (2-12 biopsies

in each class), and a validation set consisting of 55 liver core

biopsies (5 samples in each class).

Following miRNA expression profiling, a stepwise develop-

ment of three different classifiers was performed, as illus-

trated in Figure 1. First, a primary tumor based classifier

(PRIM classifier) was developed. This classifier was trained

exclusively on normalized miRNA expression data from
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Figure 1 e Development and validation of three different miRNA classifiers for primary tumor site classification of liver core biopsies. The PRIM

classifier was trained on 162 primary tumor resections and 37 normal liver resections. Primary tumor resections represented the following 9 tumor

classes: bladder, breast, biliary tract, colorectal, gastric/cardia, liver, pancreatic, lung and a class of mixed squamous tumors. Each class was

represented by 16e20 samples. Normal liver resections consisted of 20 reactive liver resections and 17 cirrhotic liver resections. The CCM classifier

was trained by applying a statistical contamination model to the same 162 primary tumor resections and 37 normal liver resections before classifier

training, resulting in a set of computationally constructed samples mimicking liver core biopsies. The CCM D CB classifier was trained on the

same computationally constructed samples together with 79 liver core biopsies. Core biopsies consisted of 57 metastatic samples, 7 primary liver

cancer samples and 15 normal liver samples. An initial cross-validation/test was performed for each of the three classifiers, using the 79 liver core

biopsies. Finally, an independent validation was performed for each of the three classifiers using 55 liver core biopsies, consisting of 35 metastatic

samples, 10 primary liver samples and 10 normal liver samples.
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primary tumor- and normal liver resections. Second, a

contamination model based classifier (CCM classifier) was

developed, using the same sample set as for PRIM classifier

training. However, for the CCM classifier a contamination

model was applied before classifier training, to adjust for

normal liver contamination. The statistical contamination
model (Vincent et al., 2014) uses the original training samples

to produce a set of computationally constructed samples

mimicking liver core biopsies. The computationally con-

structed samples constituted the CCM classifier training set.

Third, a contamination model and liver core biopsy based

classifier (CCM þ CB classifier) was developed. This classifier

http://dx.doi.org/10.1016/j.molonc.2014.07.015
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was trained on the same sample set as the CCM classifier,

together with the 79 liver core biopsies.
2.5. Data preparation, sample construction and
normalization

TaqMan array controls and miRNAs not expressed in primary

tumor and liver samples were removed.

Using the 199 training samples (primary tumors and

normal liver resections), a new data set was constructed, by

applying a statistical contamination model (Vincent et al.,

2014). The constructed samples were a mixture of miRNA ex-

pressions from primary tumor and normal liver samples ac-

cording to:

a�primary tumor signatureþð1�aÞ�normal liver signature

where a denotes the tumor percentage. The tumor percentage

was taken to follow a beta distributionwith first shape param-

eter equal to four and second shape parameter equal to three.

Due to non-linearity of the PCR amplification, the model was

not applied on the observed scale but on a suitable trans-

formed scale (Vincent et al., 2014). The contamination model

uses random sampling with replacement of the primary tu-

mor and the normal liver samples in the training data set, as

well as random sampling of a to construct miRNA expression

profiles mimicking liver core biopsies.

All samples were normalized by centering and scaling the

individual samples to mean 0 and variance 1.
2.6. Multinomial logistic regression model training and
validation

Themultinomial group lassomethod (Vincent et al., 2014) was

used to train three different multinomial logistic regression

models (Hosmer et al., 2013) for classification, reflecting the

three different training data sets. In our set-up, the multino-

mial logistic regression model is a model of the probability

of the 10 assay classes given the observed 377 miRNA expres-

sion measurements from each sample. The log-probability of

each class is, up to a constant, a weighted sum of the miRNA

expressions. The model provides an estimate of the class

probability and not just a classification. As a consequence of

the multinomial group lasso method, the weights for some

miRNAs will be 0 for all classes. The method thus automati-

cally selects those miRNAs that are most relevant for classifi-

cation. Standardization of miRNA expressions across samples

was done internally in the training algorithm to avoid that dif-

ference in scale could influence the miRNA selection.

The multinomial group lasso method produces a sequence

of 100 models, each consisting of different combinations of

miRNAs. To select a finalmodel, an additionalmodel selection

procedure was performed. For the PRIM and CCM classifiers,

both exclusively trained on primary tumor and normal liver

resections, the 79 liver core biopsies were used as a test set.

The model with the best classification performance,

measured by negative log-likelihood, was selected as the final

classifier. For the CCMþ CB classifier, the 79 liver core biopsies

were included in the training set and the negative log-

likelihood was estimated by cross-validation.
An unbiased assessment of the PRIM and CCM classifica-

tion accuracies was obtained by cross-validating the entire

training and model selection procedure. Since the 79 liver

core biopsies were included in the CCM þ CB training data,

the classification accuracy of the CCM þ CB classifier was ob-

tained by nested cross-validation. To strengthen the perfor-

mance assessment of each of the three classifiers (PRIM,

CCM and CCM þ CB); an independent validation was per-

formed, using the 55 liver core biopsy validation set.
3. Results

3.1. MicroRNA classifier based exclusively on primary
tumors misclassifies core biopsies

To investigate whether a miRNA profile obtained exclusively

from primary tumor and normal liver resections was able to

classify the primary tumor site of liver core biopsies, predom-

inantly consisting of metastases, a classifier based on 55

miRNA expression profiles (PRIM classifier) was developed

only using the 199 primary tumor and normal liver resections

as a training set. The PRIM classifier showed a 90% overall ac-

curacy upon 10-fold cross validation (Supplementary

Figure S1). When applied to the 79-core biopsy test set, the ac-

curacy dropped to 44.3% (Table 2) with a pronounced differ-

ence in classification accuracy across the different assay

classes. The PRIM classifier performed well on core biopsies

consisting of normal liver, but generally poor on metastases

from non-liver derived primary tumors. Liver metastases

from colorectal cancer constituted an exception, with 67% be-

ing classified correctly. A complete list of classifier predictions

is given in Supplementary Table S1. Approximately 40% (17/

43) of themisclassified sampleswere classified as normal liver

(reactive liver or cirrhosis) and 35/40 misclassified metastases

from non-liver derived primary tumors were classified as

either primary liver cancer or normal liver. This strongly indi-

cated that contamination with normal liver in core biopsies

impeded correct classification. A principal component plot

(Supplementary Figure S2) illustrates how core biopsies inde-

pendent of class clustered together with liver derived

samples.

3.2. Application of a contamination model for classifier
training improves classification of core biopsies

To improve classification of liver core biopsies, we applied

a statistical contamination model as part of classifier devel-

opment. Based on the contamination model, computation-

ally constructed samples, mimicking liver core biopsies,

were developed. These samples were constructed for each

assay class, only using miRNA profiles of normal liver and

primary tumor resections from the 199-sample training

set. By exchanging the original primary tumors with the

computationally constructed samples as a training set, a

classifier consisting of 104 miRNAs (CCM classifier) was

developed.

To test the performance of the CCM classifier on liver core

biopsies, we applied the 79-liver core biopsy test set. The accu-

racy showed an improvement across most assay classes, with

http://dx.doi.org/10.1016/j.molonc.2014.07.015
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Table 2 e Performance of the PRIM classifier, CCM classifier and CCMDCB classifier on the 79-core biopsy sample set. Each assay class was
represented by 2e15 samples, as marked in brackets. The number of correctly classified samples according to the reference diagnosis is listed for
each assay class. The sample set constituted a test set for the PRIM andCCM classifier. For the CCMDCB classifier, performance was estimated
by eight-fold cross validation. Squamous, squamous cell carcinoma (mixed population). Normal liver, 8 cirrhotic and 7 reactive liver samples.
CCA, cholangiocarcinoma; CRC, colorectal carcinoma; GC, gastric or cardia carcinoma; HCC, hepatocellular carcinoma.

Reference site

Bladder
(2)

Breast
(7)

CCA
(4)

CRC
(12)

GC
(12)

HCC
(3)

Lung
(2)

Pancreas
(10)

Squamous
cell (12)

Normal
liver (15)

Overall
accuracy

Classifier PRIM 0 2 4 8 2 1 1 1 2 14 44.3%

CCM 0 0 2 9 8 1 1 3 8 14 58.2%

CCM D CB 1 4 4 8 8 1 1 4 9 13 67.1%
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a pronounced effect on non-liver derived malignancies,

resulting in an overall accuracy of 58.2% (Table 2). The

improved classification accuracy was largely due to a reduc-

tion in samples being misclassified as normal liver (8/32) and

fewer metastases from non-liver derived primary tumors be-

ing misclassified as derived from the liver (11/30)

(Supplementary Table S1).

3.3. Metastases may feature important information for
correct classification

miRNA signatures may differ between primary tumors and

metastases, not only due to normal tissue contamination

but also due to underlying biological differences. Such bio-

logical differences will obviously not be present in the

computationally constructed samples. Therefore, to encom-

pass a potential molecular difference between primary tu-

mors and metastases, we used the same computationally

constructed training samples as described for the CCM
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classifier together with the 79 liver core biopsies. From this

combined training set, we developed a classifier consisting

of 116 miRNAs (CCM þ CB classifier). To estimate the perfor-

mance of this CCM þ CB classifier, 8-fold cross-validation

was performed, which showed 67.1% overall accuracy

(Table 2 and Supplementary Figure S3). Further, an indepen-

dent validation using 55 liver core biopsies was performed,

demonstrating an overall accuracy of 74.5%. The lowest per-

formance upon independent validation was obtained for

cholangiocarcinomas (CCA), while an intermediate perfor-

mance was achieved for bladder-, gastric-, lung and squa-

mous cell cancers (SCC). Figure 2 shows the independent

validation results of the CCM þ CB classifier illustrated by

a confusion matrix. CCA were generally misclassified

as normal liver (reactive or cirrhotic), while the remaining

errors occurred randomly. We observed no difference in

classification accuracy due to primary tumor site, sample

age or tumor percentage, as presented in Supplementary
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Table 3eResults of the independent validation of the PRIM classifier, CCM classifier and CCMDCB classifier. The performance of each of the
three classifiers on the independent validation set consisting of 55 liver core biopsies is shown. Each class was represented by 5 samples, except the
Normal liver class, which consisted of 5 reactive liver samples and 5 cirrhotic liver samples. The number of correctly classified samples according to
the reference diagnosis is listed for each assay class. Squamous, squamous cell carcinoma (mixed population); CCA, cholangiocarcinoma; CRC,
colorectal carcinoma; GC, gastric or cardia carcinoma; HCC, hepatocellular carcinoma.

Reference site

Bladder
(5)

Breast
(5)

CCA
(5)

CRC
(5)

GC
(5)

HCC
(5)

Lung
(5)

Pancreas
(5)

Squamous
cell (5)

Normal
liver (10)

Overall
accuracy

Classifier PRIM 1 1 1 3 1 3 0 0 2 9 38.2%

CCM 3 4 3 4 2 4 3 0 4 10 67.3%

CCM D CB 3 4 1 4 3 5 3 5 3 10 74.5%
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For comparison, we applied the independent validation set

to the PRIM classifier and the CCM classifier and obtained

overall accuracies of 38.2% and 67.3%, respectively. A compar-

ison of validation results between the three classifiers is

shown in Table 3.

An important feature of a clinical applicable classifier is the

ability to deliver a single high-confidence prediction. By pro-

posing two or more differential diagnoses, uncertainty and

subjectivity may be imposed. Due to these considerations,

the 79 training biopsies were used to establish a threshold

for high-confidence predictions. Based on this threshold, a

prediction was defined as high-confidence if the class proba-

bility was equal to or larger than 0.6. When applied to the in-

dependent validation set, 65% of the samples were high-

confidence predictions, with 92% being classified according

to the reference diagnosis. The positive percentage agreement

reached 100% for all classes except CCA, GC and SCC (Table 4).

The miRNAs included in the 55-miRNA PRIM classifier, the

104-miRNA CCM classifier and the 116-miRNA CCM þ CB

classifier are listed in Supplementary Table S2. Forty-two

miRNAs were included in all three classifiers, whereas 5 miR-

NAs were represented only in the PRIM classifier, including

miR-122, which is known to be specifically expressed in liver

tissue. Supplementary Figure S4 illustrates how two selected

miRNAs (miR 122 and miR 196-b) were expressed in primary

tumor and normal liver resections, in samples constructed

using the contamination model and in liver core biopsies,

respectively.
Table 4eHigh confidence predictions of the CCMDCB classifier. The n
and the number of high confidence predictions in agreement with the refer
independent validation set. The overall positive percentage agreement an
Squamous, squamous cell carcinoma (mixed population); CCA, cholangio
carcinoma; HCC, hepatocellular carcinoma.

Re

Bladder
(5)

Breast
(5)

CCA
(5)

CRC
(5)

GC
(5)

High confidence

predictions

3 3 2 3 3

Agreement with

reference diagnosis

3 3 1 3 2

100% 100% 50% 100% 67%

Positive percentage agreement
4. Discussion

We have developed and validated amicroRNA (miRNA) classi-

fier, designed as a supplementary diagnostic tool to histopath-

ological evaluation and imaging, during the diagnostic work-

up of patients suspected of a malignant liver tumor (either

metastases or primary liver cancer). The classifier is trained

on primary tumors, liver metastases and normal liver tissue

and consists of expression profiles from 116 miRNAs. The

classifier performs on formalin-fixed and paraffin-embedded

(FFPE) liver core biopsies with limited amounts of tumor tissue

and varying amounts of normal liver tissue. It distinguishes

between eight primary tumor classes, squamous cell cancer

(mixed population) and normal liver tissue with an overall ac-

curacy of 67.1% upon cross-validation and 74.5% upon an in-

dependent validation. Sixty-five % of the validation samples

in the present study were classified with high confidence,

and classification accuracy of those samples reached 92%

(Table 4).

To mimic the daily diagnostic routine, we validated the

classifier using small sections of liver core biopsies with as lit-

tle as 10% tumor tissue and refrained from microdissection.

As opposed to previously reported classifiers, we limited the

application to a single biopsy site. This allowed us to study

the impact of surrounding normal tissue on primary tumor

site classification, avoiding classification bias caused by bi-

opsy site and reducing the number of validation samples
umber of high confidence predictions (estimated class probability ‡ 0.6)
ence diagnosis are listed for the 55 liver core biopsies constituting the
d the positive percentage agreement for each class was calculated.
carcinoma; CRC, colorectal carcinoma; GC, gastric or cardia

ference site

HCC
(5)

Lung
(5)

Pancreas
(5)

Squamous
cell (5)

Normal
liver (10)

Total
(55)

5 2 1 4 10 36

5 2 1 3 10 33

100% 100% 100% 75% 100% 92%

http://dx.doi.org/10.1016/j.molonc.2014.07.015
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needed. The liver was chosen because: (i) it is a common site

for metastatic disease and the most common single site of

metastatic involvement in patients with carcinoma of un-

known primary site (Pavlidis et al., 2012); (ii) it represents

themost commonmetastatic site for gastrointestinal (GI) can-

cers (Hess et al., 2006) and (iii) the liver is easily accessible for a

biopsy.

Tumor samples contain varying amounts of malignant

cells, stromal cells and surrounding (contaminating) normal

tissue from the biopsy/resection site. The influence of sur-

rounding normal tissue on molecular classification is not

clear, although a potential systematic classification bias,

caused by normal tissue, has been reported (Elloumi et al.,

2011; Staub et al., 2010). Most previously developed diagnostic

classifiers require a high tumor content (�50% tumor) (Meiri

et al., 2012; Pillai et al., 2011; Ferracin et al., 2011; Kerr et al.,

2012; Rosenfeld et al., 2008; Rosenwald et al., 2010) and use

microdissection for tumor cell enrichment, prior to gene

expression analysis. Although microdissection reduces the

surrounding normal tissue, it also holds several disadvan-

tages. Most importantly, microdissection is time consuming,

costly and it may not always be possible due to a relatively

small number of tumor cells located dispersedly in the core bi-

opsy (Cheng et al., 2013). Secondly, microdissection precludes

use of potentially important information hidden in the stro-

mal cells surrounding the neoplastic cells.

To investigate the influence of normal liver tissue contam-

ination, we constructed a miRNA classifier (PRIM classifier)

trained on primary tumor and normal liver resections.

Although a high cross-validation accuracy of 90% was

achieved, the PRIM classifier showed a disappointing classifi-

cation accuracy of 38.2% on the independent validation set

consisting of liver core biopsies. The low classification accu-

racy was predominantly caused by samples being misclassi-

fied as normal liver or primary liver malignancies. By

adjusting for liver contamination, the accuracy improved

significantly to 67.3% upon independent validation. Hence,

our results indicate that a miRNA signature is sustained in

metastases compared to corresponding primary tumors, but

contamination with surrounding normal tissue must be

considered a potential cause of error in molecular primary tu-

mor site classification based on miRNA.

Increasing evidence support a key role for miRNAs in can-

cer cell invasion, migration and metastasis (Baranwal et al.,

2010), and studies have reported altered miRNA signatures

in metastases compared to matched primary tumors (Chen

et al., 2012; Gravgaard et al., 2012). By including metastatic

liver core biopsies in the training set, we observed an increase

in classification accuracy from 67.3% to 74.5% upon indepen-

dent validation (Table 3), with a notable effect on pancreatic

cancer classification. This improvement could be due to

different genetic information in metastases, compared to pri-

mary tumors.

Metastases from the GI tract, especially pancreatic and

gastric cancers, are usually difficult to distinguish from one

another and from cholangiocarcinomas by histopathology

alone (Oien 2009; Park et al., 2007). As illustrated in

Supplementary Figure S3, our classification demonstrates a

similar tendency, especially upon cross-validation. This ten-

dency is less clear from the independent validation results
(Figure 2). Still, a significant proportion of GI tract cancers

were correctly classified from their miRNA signature.

Cholangiocarcinomas constituted an exception, since only

1 out of 5 validation sampleswas correctly classified. The poor

classification accuracy was predominantly due to misclassifi-

cation as normal liver.

We included a class of squamous cell cancers (SCC) defined

by histology and not by site of origin. A correct classification

was obtained for 9/12 SCC samples in the test set and 3/5

SCC samples in the validation set. Among the 17 SCC samples

included, only one sample was misclassified according to the

primary tumor site, since a test sample representing SCC of

the esophagus was misclassified as GC. The two misclassified

validation samples represented a metastatic cervix cancer

classified as breast and a metastatic esophagus cancer classi-

fied as cirrhotic liver. Indeed, the later sample constituted a

substantial amount of cirrhosis. A complete list of classifier

predictions is given in Supplementary Table S1.

In recent years, several molecular tissue of origin classi-

fiers have been developed, of which two are based onmiRNAs

(Meiri et al., 2012; Ferracin et al., 2011). The second generation

tissue classifier developed by Rosetta Genomics uses 64 miR-

NAs to distinguish between 42 tumor types (Meiri et al.,

2012). This classifier requires samples with a minimum of

50% tumor tissue and it uses two algorithms to predict the tis-

sue of origin.With this classifier, the authors reached an over-

all accuracy of 85% upon independent validation (Meiri et al.,

2012). However, this overall accuracy reflects the union of

the predictions made by the two algorithms, and with meta-

static samples constituting 30% of the validation set, a directly

comparison to results obtained by our classifier is difficult.

Ferracin et al. (Ferracin et al., 2011) identified a 47 miRNA

signature, which predicts the primary tumor site of metasta-

ses belonging to 10 different tumor classes. Independent vali-

dation performed on 45 microdissected metastases, reached

an overall accuracy of 73.3%. The validation set included sam-

ples from 9 tumor classes, with a preponderance of metasta-

ses originating from the lower gastrointestinal tract. A

second validation, performed on a publically available data

set (Rosenfeld et al., 2008), resulted in an overall classification

accuracy of 69%.

We have previously shown, how the ANOVA þ PAM classi-

fier reported in the study by Ferracin et al. (Ferracin et al.,

2011), like the multinomial group lasso classifier applied in

our study, was unable to generalize from primary tumor sam-

ples to non-microdissected liver core biopsies with a hetero-

geneous tumor content distribution. Applying the

contamination model improved classification accuracy for

both classifiers (Vincent et al., 2014).

Performance comparison across different classifiers must

be interpreted with caution, due to different configurations

of assay classes. Obviously, differences in number and sample

distribution among the included assay classes affect the per-

formance estimate, but other important considerations need

to be highlighted. First, the performance of most classifiers

is often estimated on a combination of primary tumor sam-

ples and metastatic samples (Ma et al., 2006; Meiri et al.,

2012; Pillai et al., 2011; Kerr et al., 2012; Rosenfeld et al., 2008;

Rosenwald et al., 2010), with metastases contributing merely

1/3 of the total validation set. In the present study, we showed

http://dx.doi.org/10.1016/j.molonc.2014.07.015
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that primary tumor site classification from primary tumor

samples reached a 90% overall accuracy but only 38.2% accu-

racy was achieved when the classifier was applied to an inde-

pendent set of liver core biopsies, predominantly constituting

metastases. Second,most classifiers are validated on a combi-

nation of resections and biopsies. Since the relative amount of

normal surrounding tissue often is higher in biopsies than in

resections, the influence of normal tissue contamination

may be overlooked by this approach. The importance of vali-

dating a molecular classifier on representative samples on

which it is intended to perform, remains essential in order

to avoid potential overestimation of classifier performance.

Histopathology remains the cornerstone in primary tumor

site identification, but metastatic disease constitutes a persis-

tent diagnostic challenge (Oien et al., 2012). The efficacy of IHC

analysis in determining the primary site of metastatic tumors

is difficult, since few controlled, blinded studies are available.

Though, a meta-analysis based on a small number of older se-

ries, reported amean accuracy of 65.6% (Anderson et al., 2010).

Increasing evidence support superior overall accuracy of gene

expression profiling compared to IHC in primary tumor site

identification of metastases (Handorf et al., 2013; Weiss

et al., 2013). Hence, molecular classifiers have the potential

to improve primary tumor site classification in patients with

metastatic disease when conventional diagnostics draw a

blank, when IHC provides inadequate classification (none or

multiple diagnoses) or when histopathology and imaging of-

fers discordant diagnostic suggestions.

The perhaps most important use of molecular classifiers is

to define the tumor of origin in patients with carcinoma of un-

known primary site (CUP) (Hainsworth et al., 2014). The feasi-

bility of primary tumor site classification by gene expression

profiling has been shown for CUP (Greco et al., 2010, 2013;

Monzon et al., 2010; Varadhachary et al., 2011) and recently

a possible benefit of site-specific treatment in CUP patients

directed by gene expression profiling was suggested

(Hainsworth et al., 2013).

The aim of this study was to develop and validate a clinical

applicable diagnostic tool, which predicts the primary tumor

site of liver core biopsies. The classifier was developed with

CUP in mind, although not restricted to this group of patients.

With an overall accuracy of 74.5% and an accuracy of 92%

on high-confidence predictions upon independent validation,

our classifier compares favorably to what is reported by histo-

pathology alone (Anderson et al., 2010) and the overall accu-

racy is in line with first prediction accuracies obtained in

former studies (Meiri et al., 2012; Ferracin et al., 2011;

Rosenfeld et al., 2008; Rosenwald et al., 2010). Notably, we per-

formed a validation on small sections of liver biopsies, with

limited tumor content, predominantly representing metasta-

tic tumors. A prospectively conducted study is planned to

explore if the miRNA classifier improves the diagnostic accu-

racy, reduces the diagnostic work-up time and the number

of investigations needed.

In conclusion, we have developed a miRNA classifier,

which is able to determine the primary tumor site of FFPE liver

core biopsies. Based on our data set, the signal provided by the

surrounding normal liver hampered correct classification

significantly. We show that application of a statistical model

which adjusts for the signal provided by normal liver tissue
is essential for obtaining a valid classification. Notably, the

statistical contamination model ensured that classification

could be established on samples containing limited tumor tis-

sue, making prior microdissection redundant.
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