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Modern cancer research on prognostic and predictive biomarkers demands the integration

of established and emerging high-throughput technologies. However, these data are mean-

ingless unless carefully integrated with patient clinical outcome and epidemiological infor-

mation. Integrated datasets hold the key to discovering new biomarkers and therapeutic

targets in cancer. We have developed a novel approach and set of methods for integrating

and interrogating phenomic, genomic and clinical data sets to facilitate cancer biomarker

discovery and patient stratification. Applied to a known paradigm, the biological and clin-

ical relevance of TP53, PICan was able to recapitulate the known biomarker status and

prognostic significance at a DNA, RNA and protein levels.

ª 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights

reserved.
1. Introduction departments globally store many millions of tissue samples
High-throughput (HT) techniques elevate the volume of

genomic information in molecular pathology, with increasing

cohort sizes offering molecular and phenotypic sub-

classifications. This is driving a more holistic understanding

of the phenotypic traits that underpin disease. Such data gen-

eration, its convergence with other data and the need to fast-

track biomarker discovery and evaluation is causing a major

bottleneck in interpretation. Diagnostic pathology
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across different cancer types and patient populations in the

form of formalin-fixed paraffin-embedded (FFPE) blocks. This

in itself provides an enormously rich cohort of samples which

can be used in molecular discovery and translational medi-

cine in solid tumours. For example, many studies utilise pa-

thology archives to generate tissue microarrays (TMAs) for

the HT-analysis of tissue biomarkers across multiple patient

samples in a single assay. However, the handling, preparation

and storage of tissue samples can be highly variable,
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potentially impacting on the quality of downstreammolecular

evaluation that is sensitive to these pre-analytical variables.

The goal of biobanks or bio-repositories is to overcome vari-

ability by planned prospective collection of samples where

several samples per patient are collected concomitantly with

fully controlled variables, specifically for the purposes of

research. Collating clinical and analytical data on these sam-

ples using dedicated informatics-based methods provides us

with unique opportunities to understand these complex

clinico-genomic data sets. What impact this HT-integrative

approach has on treatment has been the focus of many recent

seminal papers and is the foundation of stratified medicine

(Garnett et al. 2012; Misale, S. et al. 2012; Diaz et al. 2012).

In an interpretative context, clinical/genomic resources are

becoming increasingly conspicuous, such as the cancer

genome atlas (Cancer Genome Atlas Research Network,

2008) offering large data collections on multiple cancer types.

Kristensen and colleagues discuss in their recent review the
Figure 1 e Overarching view of the PICan system. Resolving data to minim

implement into database tables which can be resolved to hold molecular an

analyse data using stratified selections. These are streamlined and instantly

order to place new biomarkers in a molecular pathology context.
tools and complexity required in order to analyse integrative

genomic methodologies to discover patient subgroups for

prognostic and diagnostic insight (Kristensen et al., 2014).

Recent publications in cancer research from an integrative

context are starting to depict a landscape of increased scru-

tiny, complexity and discovery (Ding et al. 2014; Schroeder

et al. 2013; Wang et al. 2013). Synergistically, it is also possible

to analyse HT-tissue biomarker data by uploading and analy-

sing with TMANavigator (Lubbock et al. 2013) as well as cohort

data analysis by designing an open platform for web based

biomedical queries (Pennington et al. 2014). However, we still

have a dearth of methods supporting the merger of disparate

data sets spanning patients, their samples, tissue and

genomic biomarkers and the interrogation of these complex

data sets for biomarker discovery, translational research and

patient stratification.

An additional issue with developing an integrated data

analysis system is that clinical phenogenomic data tends to
al information templates allows the creation of a knowledge base we

d digital pathology information. We can then, in turn, statistically

expandable both on the cohort level as well as at a data entry level, in
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be dynamic. Most studies are longitudinal, requiring on-going

patient follow-upwhere new data is constantly being added to

the system. Digital image evaluation is also an important

component in tissue-based research, particularly in heteroge-

neous biomarkers requiring HT-evaluation where data inte-

gration and concordance are of particular interest in

biomarker discovery, adding performance, robustness and

reproducibility. In addition, new analytical methods are

constantly evolving, requiring analysis and re-analysis of the

sample cohort. As such, the statistical approaches to data-

mining would also need to be updated constantly and with a

modern adaptable framework designed to support it.
2. Materials and methods

We have adopted an integrative “omics” (‘integromics’)

method that allows the streamlined merging of data from

diverse sources (Searles, 2005; Lê Cao et al. 2009). This we

have called PICan (Pathology Integromics in Cancer). PICan is a

comprehensive clinical genomics data management

approach for molecular tissue pathology using MySQL and

ASP.Net (supp methods 1), allowing seamless integration

and analysis of carefully defined, cancer specific clinical
Figure 2 e Digitally scanned IHC TMA information can be seamlessly mat

select cores from the map interface or scoring interface to retrieve the core i

both maps. B) Also, as cores are virtually de-arrayed we can rank the cores b

resource in collaboration, consistency and training.
data sets with associated tissue biomarker data and molecu-

lar genomics (Figure 1). With ethical approval in place, pa-

tient clinical and pathological information can be collated

from biobanks, where data-exchange is possible between

platforms through unique identifiers (Supp Methods 1).

Upon data-exchange completion, we have a collection that

we integrate with the digital and molecular derived informa-

tion generated from on-going studies using HT-data and sin-

gular biomarker tests (Figure 2A) (Supp Methods 3 & 4). With

this, we have a scaffold to support the analysis of high-

dimensional data for expression signatures, which are shift-

ing the current paradigm in cancer research (Sadanandam

et al. 2013; Mulligan et al. 2014).

With PICan offering a browser based interface, we segre-

gate the data collections into separate navigational browser

pages for data interpretation and digital image assessment

(Figure 3B) (supp methods 2). PICan’s utility differentiates it

from statistical software packages in its capacity to integrate

different types of patient, sample and biomarker analytic

data, facilitating the concatenation of data into a single

searchable interface where molecular and phenotypic data

can be combined to generate new signatures of disease. The

system will not only run routine statistical tests, but with

the added HT-data we can perform supervised and
ched to the patient clinical and pathological information. A) Users can

n higher resolution and supporting information, progress is tracked on

y their associated scoring metrics across multiple maps, an important

http://ASP.Net
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Figure 3 e A) Resolved patient information, includes clinical and pathological data matched to genomic and transcriptomic information with

interactive graphical functionality (inset). B) Navigational pages for: data-exchange/upload (Top); HT-analysis for differential expression and

supervised analysis (Middle); and single biomarker statistical analyses (Bottom).
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unsupervised analytical techniques factoring in other known

molecular information. This approach will tolerate research

flexibility in prognostic evaluation and the selection of a

‘best scoring metric criteria’ in IHC either using receiver oper-

ator characteristic curves, Kaplan Meier curves or Cox propor-

tional hazards models (Supp Methods 5). The integration of

digital pathology technology within PICan allows us to review

tissue morphology and protein expression profiles within the

system. Patient stratification will resolve the difference in fre-

quencies in protein biomarkers and transcriptomic signatures

integrating in additional mutational knowledge.
3. Results and discussion

As an example of the power and the utility of the PICan

methodwe used this approach as the primary data integration

and analysis platform for a large breast cancer tissue

biomarker study (Boyle et al. 2014). Taking one of the best

known genes and proteins in cancer biology, p53, we address
two main test hypotheses. Firstly, that a PICan driven analysis

of image related information in TMAs is able to achieve the

same biological and clinical relevance in breast cancer, after

the IHC results are digitally scanned, de-arrayed and informa-

tion resolved so that it can be analysed against other baseline

biomarkers (Figure 3A) and from here it becomes a marker

that can be used in other browser pages (i.e. stratifying HT-

data) or downloaded for the researcher to use elsewhere

(Figure 3B). Secondly, we explore if known HT-genomic signa-

tures of p53 biology hold their statistical relevance when ana-

lysing, in the PICan context, on independent sets of HT-

generated results in breast cancer. The latter is one of the

most important uses of this method, which we demonstrate

here by way of understanding the p53 correlations at the 3

levels of the central dogma of molecular biology (DNA muta-

tion, RNA gene amplification and protein expression), and un-

derstand the clinical relevance of such holistic analysis for

individual cases and for the whole cohort.

With the number of scoring metrics (H Score, percentage,

quick score, allred score, intensity scores or user defined

http://dx.doi.org/10.1016/j.molonc.2015.02.002
http://dx.doi.org/10.1016/j.molonc.2015.02.002
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scores) being easily integrated into the platform (because we

can resolve TMA maps against the patient information) we

obtain in this instance 288 p53 IHC cores from the 293 patients.

The cores digitally de-arrayed and matched to the individual

can be visualised, integrating the p53 IHC data by direct

data-exchange and linked by unique identifiers to the individ-

ual. It can then seamlessly integrate our associated scoring

metrics against the clinical cohort and across TMA maps as

can be achieved with leading digital pathology software (Leica

http://www.leicabiosystems.com/, PathXL http://

www.pathxl.com/, Definiens http://www.definiens.com/or

Visiopharm http://www.visiopharm.com/). All de-arrayed

cores can be virtually remapped into ascending/descending

order to ensure consistency in scoring (Figure 2B) allowing vir-

tual de-arraying as demonstrated by Quintayo and colleagues

(Quintayo et al. 2014). From here, ROC curve, Kaplan Meier

survival analysis and digital image immunohistochemistry

thresholding is performed, which allows us to directly inter-

pret the best settings for IHC analysis statistically. This allows

us to assess the diagnostic threshold for use in downstream

analysis (Figure 4C). In this instance, we corroborate the find-

ings by Boyle et al. of low aberrant expression adding to the

prognostic interpretation of p53 in breast cancer and include

this cohort with themore traditional high aberrant expression

(Boyle et al. 2014). Utilising the streamlined analyses we can

further corroborate the kappa concordance between original

baseline marker clinical assessment and TMA baseline
Figure 4 e A) We use the patient integromics analysis to reveal candidates

et al. paper in 2005, we examined the 18/20 identifiable genes from their sign

with the highest variance of each gene (if more than one) to examine the i

mutation: Green e Mt; Blue e Wt; second column bar IHC: Red e Aber

patterns in IHC). C) The clinical significance of this data is obtained demo

p53, which can be visualised by the thresholded de-arrayed cores. D) Pvclu

evaluated in B. with bootstrap n [ 1000.
makers, and correlate with histopathological parameters

and Fisher’s and chi-square tests obtained in the original

study. At this point, it is possible to measure the frequency

of this marker in sub-classifications (such as triple negative

cancers) against other markers using our marker charting

functionality, seen in Figure 1, see ‘Clinical relevance’. In

turn, we can then evaluate its prognostic relevance

(Figure 4C). This can be concluded with an exploratory anal-

ysis using Cox regression proportional hazards of the new

marker against histopathological parameters and other estab-

lished markers on the system.

This new ‘integromic’ framework allows us to test HT-

signatures and confirm their biological value when correlating

the resulting taxonomy with the mutation and aberrant pro-

tein status for the same biomarker. To do so, we query which

patients in our breast cancer cohort had mutational aberra-

tions in TP53 (Figure 4A) based on the TP53 signature hypoth-

esis and mutational analysis by Miller et al. (Miller et al. 2005).

This summarises patients individually by their genomic and

clinical/pathological/treatment profiles and call upon muta-

tional information such as Sanger sequencing or NGS vari-

ants. Employing this additional information we can create a

new analysis framework by A) stratifying and clustering the

expression data deriving differential expression signatures

and B) submitting gene lists for unsupervised signature vali-

dation (Figure 4B and D). Our analysis, using the signature

stated above was able to differentiate p53 mutant versus
with specific mutations of interest. B) In line with the seminal Miller

ature in our microarrays that survived a median filter, using the probe

ntegrated information clustered in our data. Top column bar P53

rant extreme (by Boyle et al.); Black e non-extreme (intermediate

nstrating a significant prognostic IHC threshold for aberrant extreme

st bootstrap resampling for the estimation of uncertainty in the data

http://www.leicabiosystems.com/
http://www.pathxl.com/
http://www.pathxl.com/
http://www.definiens.com/
http://www.visiopharm.com/
http://dx.doi.org/10.1016/j.molonc.2015.02.002
http://dx.doi.org/10.1016/j.molonc.2015.02.002
http://dx.doi.org/10.1016/j.molonc.2015.02.002


M O L E C U L A R O N C O L O G Y 9 ( 2 0 1 5 ) 1 2 3 4e1 2 4 0 1239
wild-type cases, which also correlated with the aberrant pro-

tein status and with patient survival.

The PICan method has a wide range of emerging applica-

tions, improving the resolution of the complex, multivariate,

multiplex analysis of modern tissue-based research and its

role in the delivery of personalised medicine. Over time,

the expansion of PICan will demand the incorporation of

new technologies and their associated datatypes, as and

when these techniques become available. In our setting,

this has led to the need to expand our translational bioinfor-

matics team. In addition, safeguarding and expanding high

quality curated clinical and pathological data has required

dedicated resource to support expansion. Ensuring high

quality data expansion and well defined ontologies are going

to be in high demand for data integromics in the future, and

where lack of control across different analytical platforms

may decrease analytical sensitivity. In our setting, the fact

that the clinical/pathological data is collected and curated

by in-house pathologists and clinicians, allows us to control

statistical selection and safe-guard data analysis. However,

the system is designed for exploratory mining of the multi-

variate data where findings will hopefully enhance discov-

ery, but where validation and more sophisticated statistical

interrogation will be required. This approach is, however,

flexible across all cancer types and analytical tools and will

allow researchers to statistically analyse complex datasets

within or across different diseases. This novel approach

would be beneficial to other molecular pathology labora-

tories and clinical trials facilities as the method to support

data integration, improve tissue-based analysis and fast-

track biomarker discovery and validation (Salto-Tellez

et al., 2014).
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