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Risk factors indicate the importance of oxidative stress during ovarian carcinogenesis. To

tolerate oxidative stress, cells activate the transcription factor Nrf2 (Nfe2l2), the master

regulator of antioxidant and cytoprotective genes. Indeed, for most cancers, hyperactivity

of Nrf2 is observed, and siRNA studies assigned Nrf2 as therapeutic target. However, the

cancer-protective role of Nrf2 in healthy cells highlights the requirement for an adequate

therapeutic window. We engineered artificial transcription factors to assess the role of

Nrf2 in healthy (OSE-C2) and malignant ovarian cells (A2780). Successful NRF2 up- and

downregulation correlated with decreased, respectively increased, sensitivity toward

oxidative stress. Inhibition of NRF2 reduced the colony forming potential to the same

extent in wild-type and BRCA1 knockdown A2780 cells. Only in BRCA1 knockdown A2780

cells, the effect of Nrf2 inhibition could be enhanced when combined with PARP inhibitors.

Therefore, we propose that this combination therapy of PARP inhibitors and Nrf2 inhibition

can further improve treatment efficacy specifically in BRCA1 mutant cancer cells without

acquiring the side-effects associated with previously studied Nrf2 inhibition combinations

with either chemotherapy or radiation. Our findings stress the dual role of Nrf2 in carcino-

genesis, while offering approaches to exploit Nrf2 as a potent therapeutic target in ovarian

cancer.

ª 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights

reserved.
element; ATF, artificial transcription factor; BER, base excision repair; CRISPR/Cas9, clus-
c repeats associated 9 protein; EOC, epithelial ovarian cancer; ER UPR, endoplasmatic retic-
logous recombination; KEAP1, Kelch like-ECH-associated protein 1; N4Py, ligand 1 of the
d N,N-bis(2-pyridylmethyl)-N-bis(2-pyridyl)-methylamine; NER, nuclear protein extract;
e 2; PARP, poly ADP ribose polymerase; ROS, reactive oxygen species; SKD, super KRAB
ffector; VP64, four copies of the Herpes Simplex Viral Protein 16; ZFP, zinc finger protein.
ax: þ31 503 9911.
mcg.nl (M.G.P. van der Wijst), kriztian.huisman@gmail.com (C. Huisman), a.mposhi@
oelfes), m.g.rots@umcg.nl (M.G. Rots).
3
ochemical Societies. Published by Elsevier B.V. All rights reserved.

mailto:m.g.p.van.der.wijst@umcg.nl
mailto:kriztian.huisman@gmail.com
mailto:a.mposhi@umcg.nl
mailto:a.mposhi@umcg.nl
mailto:j.g.roelfes@rug.nl
mailto:m.g.rots@umcg.nl
http://crossmark.crossref.org/dialog/?doi=10.1016/j.molonc.2015.03.003&domain=pdf
www.sciencedirect.com/science/journal/15747891
http://www.elsevier.com/locate/molonc
http://dx.doi.org/10.1016/j.molonc.2015.03.003
http://dx.doi.org/10.1016/j.molonc.2015.03.003
http://dx.doi.org/10.1016/j.molonc.2015.03.003
http://dx.doi.org/10.1016/j.molonc.2015.03.003


M O L E C U L A R O N C O L O G Y 9 ( 2 0 1 5 ) 1 2 5 9e1 2 7 31260
1. Introduction cells without increasing adverse effects in healthy cells. PARP
Oxidative stress is a well-established risk factor for cancer

(Sosa et al., 2013). It reflects an imbalance between production

and detoxification of reactive oxygen species (ROS) and causes

oxidative damage to biomolecules, including DNA. The cell

has several defense mechanisms to protect itself against

oxidative stress, including antioxidants, DNA-repair enzymes

and the endoplasmatic reticulum unfolded protein response

(ER UPR). The latter response is activated when cells accumu-

late an overload of (ROS-induced) unfolded or misfolded pro-

teins, causing ER stress (Walter and Ron, 2011). Activation of

the ER UPR results either in an adaptive response, in which

protein synthesis is inhibited and protein folding capacity is

increased, or, when not sufficient to overcome the ER stress,

a pro-apototic response (Rutkowski et al., 2006; Walter and

Ron, 2011). Oxidative stress and the ER UPR can activate cyto-

protective responses mediated by the master regulator Nrf2

(NFE2L2, nuclear factor erythroid 2-like 2) (Cullinan et al.,

2003; Kansanen et al., 2012).

Normally, Nrf2 is present in the cytoplasm where it is

bound by Kelch like-ECH-associated protein 1 (Keap1). There,

Keap1 mediates the ubiquitination of Nrf2, whereupon Nrf2

is targeted to the proteasomes for degradation. When cells

are exposed to oxidative stress, the cysteine residues of

Keap1 become oxidized, resulting in disruption of the bind-

ing between Keap1 and Nrf2 (van der Wijst et al., 2014).

Nrf2 then translocates to the nucleus and binds to antioxi-

dant response elements (AREs). Binding of Nrf2 to AREs re-

sults in the transcription of its target genes (Malhotra et al.,

2010).

Not only healthy cells, but also various tumor cells,

including ovarian tumors (Konstantinopoulos et al., 2011;

Liao et al., 2012; Martinez et al., 2014), can acquire protection

against oxidative stress by constitutively activating Nrf2

(Bauer et al., 2013; Jiang et al., 2010; Stacy et al., 2006; Wang

et al., 2010). Thus the role of Nrf2 in carcinogenesis is bivalent

as Nrf2 has been assigned a protective, but also a cancer pro-

moting role (Lau et al., 2008). Therefore, activation of Nrf2 can

be exploited for cancer prevention (Cornblatt et al., 2007; Kou

et al., 2013), whereas inhibition of Nrf2 can be of therapeutic

value (Homma et al., 2009; Lister et al., 2011; Ma et al., 2012;

Singh et al., 2008). However, the cancer-protective role of

Nrf2 in healthy cells highlights the requirement for an

adequate therapeutic window. Therefore, insights into differ-

ential effects of Nrf2 modulation in normal and malignant

cells are essential to allow optimal exploitation of Nrf2 as

therapeutic target.

Combination therapies provide an opportunity to enhance

the therapeutic window of Nrf2 inhibition in cancer. Previ-

ously, the cytotoxic effects of Nrf2 inhibition could be further

enhanced by chemotherapeutics (Cho et al., 2008; Lister et al.,

2011; Wang et al., 2008), including cisplatin, or gamma-

radiation (Lister et al., 2011). However, inhibition of Nrf2 has

also been shown to exacerbate chemotherapy-inducedmyelo-

suppression (Cao et al., 2012). This side-effect severely limits

the use of such combination therapies. The combination

with PARP inhibitors may be an alternative strategy to

enhance the efficacy of Nrf2 inhibition preferentially in cancer
inhibitors are small molecule inhibitors particularly effective

in tumors harboring a defect in double strand DNA (dsDNA)

break repair as they act by blocking single strandDNA (ssDNA)

repair by base excision repair (BER) (Banerjee and Kaye, 2011;

Fong et al., 2009). Interestingly, clinical trials have already

shown efficacy of PARP inhibitors as single agent in BRCA1

mutant ovarian tumors (Audeh et al., 2010; Fong et al., 2010).

Furthermore, the DNA damaging effect of PARP inhibitors

can be potentiated when combined with chemotherapy (as

reviewed in (Chen et al., 2013; Sessa, 2011)). In line with this,

we expect that Nrf2 inhibition combined with PARP inhibitor

treatment can enhance the DNA damaging effect of PARP in-

hibitors while diminishing the serious side-effects of

chemotherapeutics.

A unique approach to validate and obtain better insights

into the therapeutic potential of Nrf2 is the bivalent modula-

tion of NRF2 by artificial transcription factors (ATFs) targeted

to the NRF2 promoter region. ATFs contain a DNA-binding

domain, for example an engineered zinc finger protein (ZFP),

a transcription activator-like effector (TALE) protein or a clus-

tered regularly interspaced short palindromic repeats

(CRISPR) associated 9 (Cas9) protein (Gaj et al., 2013;

Gersbach and Perez-Pinera, 2014), fused to a transcriptional

activation or repression domain such as VP64 (four copies of

the viral protein VP16) or super KRAB domain (SKD), respec-

tively. ATFs have been successfully used to modulate gene

expression and study gene function in many disease models

both in vitro and in vivo (as reviewed in (Gaj et al., 2013;

Gersbach and Perez-Pinera, 2014; Sera, 2009)).

In the present study, we engineered ZFP-ATFs to modulate

NRF2 expression allowing investigation into the cancer-

preventive and therapeutic potential of Nrf2 in healthy (Nrf2

activation) and malignant ovarian epithelial cells (Nrf2 inhibi-

tion), respectively.We combined Nrf2 inhibition with PARP in-

hibitor treatment to further improve on the therapeutic

window of Nrf2 inhibition in cancer without acquiring the

side-effects associated with other previously studied combi-

nations such as chemotherapy and radiation.
2. Materials and methods

2.1. Reagents

Ligand 1 of the iron(II) complex of the pentadentate ligand

N,N-bis(2-pyridylmethyl)-N-bis(2-pyridyl)-methylamine

(Fe(II)-1-N4Py), from now on abbreviated as N4Py, was synthe-

sized according to literature procedures and all characteriza-

tion data are in agreement with those reported (Li et al.,

2010). N4Py is a synthetic mimic of the metal-binding domain

of bleomycin. It acts as a catalyst that converts less-reactive

primary ROS in highly reactive secondary ROS. The main

advantage of using N4Py over directly adding ROS, such as

H2O2, to the culture medium, is the more constant and stable

production of ROS (Bjorkman and Ekholm, 1995; Li et al., 2010).

L-Buthionine sulphoximine (BSO), L-glutathione reduced

(GSH), GSH reductase, 5,5’dithiobis-(2-nitrobenzoic acid)

(DTNB) and NADPH were bought from SigmaeAldrich.

http://dx.doi.org/10.1016/j.molonc.2015.03.003
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2.2. Cell culture

The human ovarian carcinoma cell lines A2780 and SKOV3,

and the human embryonic kidney cell line HEK293T were ob-

tained from the ATCC. The temperature-sensitive, condition-

ally immortalized human ovarian surface epithelial (OSE-C2)

cells were kindly provided by Dr. Richard Edmondson (New-

castle University, UK) (Davies et al., 2003). All cell lines were

cultured in Dulbecco’s modified Eagle’s medium (DMEM)

(Lonza) supplemented with 10% FCS (Perbio Hyclone), 50 mg/

mL gentamycine sulfate (Invitrogen), 2 mM L-glutamine (Bio-

Whittaker). A2780, SKOV3 and HEK293T cells were cultured

at 37 �C, whereas OSE-C2 cells were cultured at 33 �C, both un-

der humidified conditions and 5% CO2.
2.3. Engineering and delivery of artificial transcription
factors (ATFs)

The promoter region of NRF2 transcript variant 1 (NCBI-id:

NM_006164_4) surrounding its transcription start site (TSS)

was screened with the online tool www.zincfingertools.org

for potential target sites for engineering zinc finger proteins

(ZFPs) consisting of six fingers fused together to target a 18

bp DNA region (Mandell and Barbas, 2006). Six ZFPs, named

OX1-OX6 (Table 1), were selected based on predicted high af-

finity for its designed target region and uniqueness in the hu-

man genome, as confirmed by an NCBI BLAST search. ZFPs

were synthesized at Bio Basic Canada and were flanked by

SfiI restriction sites. Each ZFP was subcloned with SfiI restric-

tion enzymes into the pMX-IRES-GFP retroviral vector (Royer

et al., 2004), which contains an HA-tag, nuclear localization

signal (NLS) and either the transcriptional repressor (SKD),

the transcriptional activator (VP64) or no effector domain

(NoED). NRF2 transcript variant 1 cDNA was subcloned into

pMX-IRES-GFP with BamHI and NotI digestion enzymes. The

pMX-IRES-GFP (empty vector) and NRF2 cDNA constructs

functioned as controls. The OX2-SKD ATF, including its HA-

tag and NLS, was further subcloned into the lentiviral vector

pCDH-CMV-MCS-EF1-copGFP (System Biosciences) using

BamHI and NotI digestion.

In order to produce retroviral or lentiviral particles contain-

ing the ATFs, HEK293T packaging cellswere co-transfected us-

ing the calcium phosphate method with plasmids containing

the ATF, and viral packaging plasmids containing gag/pol

and the vesicular stomatitis virus G protein in a 3:2:1 ratio,

as described before (Huisman et al., 2013). Viral supernatant
Table 1 e Zinc finger protein (ZFP) target sequences.

ZFP DNA strand Target region (50e30)

OX1 Sense TGA GTA CGT GAA AAA GAA

OX2 Antisense GCA AAC GGA GAA GCC CCT

OX3 Antisense GTG GGC CCT GCC TAG GGG

OX4 Antisense GCC GGG GTG GGG GGG GCT

OX5 Sense GCG GTA AAG TGA GAT AAA

OX6 Sense GCA ACT CCA AAT CAG GGA
was collected 48 h and 72 h post transfection and was used

in combination with 6 mg/ml polybrene (SigmaeAldrich) to

infect ovarian host cells. Three days post transduction, effi-

cient viral delivery was evaluated in host cells by the percent-

age of GFP-positive cells using flow cytometry (FACSCalibur,

BD Bioschiences) or by fluorescent microscopy (Leica DC300).

Only transductions resulting in �90% GFP positive cells were

included for analysis (Suppl. Figure 1A). In order to further

improve the delivery of lentiviral particles in A2780, cells

were superinfected and the top 25% GFP positive cells was

sorted with the MoFlo XDP (Beckman Coulter). By minimizing

the variation in GFP positivity, variation in the multiplicity of

infection (MOI) was reduced and any toxicity associated with

GFP expression would be equal in all conditions analyzed.

2.4. Quantitative real-time PCR (qRT-PCR)

Total RNA was extracted using the GeneJET RNA purification

kit (Thermo Scientific) according to the manufacturer’s proto-

col, including a 15 min DNaseI (Roche) treatment to avoid

gDNA contamination. 1 mg of total RNA was reverse tran-

scribed to cDNA using the RevertAid First Strand cDNA syn-

thesis kit (Thermo Scientific). qRT-PCR reactions were

performed in triplicate, containing 10 ng of cDNA, ABsolute

qPCR SYBR Green ROX Mix (Thermo Scientific) and gene-

specific primers (Table 2). qRT-PCR reactions were conducted

on the ViiA7 Real time PCR (Applied Biosystems) for

15 min at 95 �C, followed by 40 cycles of 15 s at 95 �C, 30 s at

60 �C and 30 s at 72 �C. GAPDH was used as housekeeping

gene. Data was analyzed using ViiA7 RUO software and rela-

tive expression compared to controls was calculated using

the DDCt method (Livak and Schmittgen, 2001).

2.5. Chromatin immunoprecipitation (ChIP)

Three days after transduction, binding of the ZFP to its

designed target region and histone modifications associated

with ZFP binding in this regionwere determined by ChIP. Cells

were fixed with 1% formaldehyde for 8 min at RT. After two

PBS washes, cells were lysed and subsequently sonicated for

8 min using a Bioruptor (Diagenode; 4 cycles of 3000 on, 3000

off). Sheared chromatin was collected by centrifugation for

10 min at 13.000 rpm at 4 �C. 40 ml magnetic beads (Life tech-

nologies) were coated for 10min at RTwith 4 mg antibody (Rab-

bit IgG, Ab46540; HA-tag, Ab9110; H3K9me3, Ab8899 (Abcam);

H3K4me3, 07-473 (Millipore)). After washing the beads with

0.02% PBS-Tween, sheared chromatin of 25 � 104 cells was

added to the precoated magnetic beads and incubated O/N

at 4 �C. The following day, unbound chromatin was collected

from the IgG control IP. All beads were washed 3 times with

PBS and DNA was eluted with elution buffer (1% SDS,

100 mM NaHCO3). Eluted DNA was RNase (Roche) treated un-

der high salt conditions O/N at 62 �C. The next day, after a 1 h

incubation at 62 �Cwith proteinase K (Thermo Scientific), DNA

was purified with the Qiagen Qiaquick PCR Purification kit

(Qiagen). qRT-PCR was performed using primers specific for

the OX2 and OX5 ZFP target region (Table 2) to determine rela-

tive enrichment of the HA-tag and histone marks in these re-

gions with the formula: percentage input ¼ 2(Ctinput e CtChIP)

* dilution factor * 100.

http://www.zincfingertools.org
http://dx.doi.org/10.1016/j.molonc.2015.03.003
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Table 2 e qRT-PCR Primer sequences.

Gene Forward primer (50e30) Reverse primer (50e30)

NRF2 ACACACGGTCCACAGCTCAT CCGTCGCTGACTGAAGTCAAAT

NRF2 cDNA GGTTGCCCACATTCCCAAATC TGACTGAAACGTAGCCGAAGA

NQO1 GTGGAGTCGGACCTCTATGC AATATCACAAGGTCTGCGGCT

GCLC GCTGTTGCAGGAAGGCATTG AACAGTGTCAGTGGGTCTCT

HMOX1 GGGTGATAGAAGAGGCCAAGA AGCTCCTGCAACTCCTCAAA

OGG1 CCGAGCCATCCTGGAAGAAC GTCTAGGGCCATCAGGCAGA

BRCA1 TGCTCTTCGCGTTGAAGAAGT TGGTCACACTTTGTGGAGACA

GRP78 GTTCTTGCCGTTCAAGGTGG TGGTACAGTAACAACTGCATG

HERP CCAAAGCAGGAAAAACGGCAT TGTCCCCGATTAGAACCAGC

p58IPK CGTTTGCGTTCACAAGCACT CCCGTAGTTCTGCATCCCAA

ERp72 ACCGCAAGGTGTCAAACGAT CTCTAGGACTTTGCTCCGCC

GAPDH CCACATCGCTCAGACACCAT GCGCCCAATACGACCAAAT

OX2-ChIP6 GGAGACACGTGGGAGTTCAG TGCCTAGGGGAGATGTGGAC

OX5-ChIP5 AGGGCAAGGTTCTGCAACTC TGGAGTTCGGACGCTTTGAA
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2.6. Western blotting

Total protein extracts were collected in RIPA buffer (Thermo

Scientific). Nuclear (NER) protein extracts were obtained with

NE-PERNuclear and Cytoplasmic Extraction Reagents (Thermo

Scientific). Protein quantification was performed with the DC

BioRad Protein Assay (BioRad). 70 mg protein was loaded on a

7% SDS-PAGE gel for the detection of BRCA1, whereas 20 mg

of NER protein was loaded on a 10% SDS-PAGE gel for the

detection of Nrf2. Blots were blocked for 1 h with 5% skimmed

milk in TBS-Tween. For detection, the following antibodies

were used: 1:200 rabbit anti-BRCA1 (C-20: sc-642, Santa Cruz

Biotechnology) 1:1000 rabbit anti-Nrf2 (Ab31163, Abcam),

1:1000 mouse anti-lamin B1 (clone L-5, Invitrogen), 1:5000

mouse anti-Actin (clone C4 MAB15O1, Millipore), and 1:2500

horseradish peroxidase-conjugated rabbit anti-mouse (P0260,

Dako) and swine anti-rabbit (P0217, Dako). Western blot signal

was generated with Pierce ECL Plus Western blot substrate

(Thermo Scientific) and detected with the Biorad ChemiDoc

MP imaging system (Biorad). Western blots were analyzed

with the Image Lab 5.0 software (Biorad).

2.7. Luciferase reporter assay

The promoter region ofNRF2 transcript variant 1 (�288 toþ555

bp), containing both OX2 and OX5 target sites, was cloned into

pCpG-luc basic (promoterless) with BglII andHindIII restriction

sites. Two days after viral delivery of ATFs, host cells were

transiently transfectedwith lipofectamine LTX Plus (Life Tech-

nologies) in a 1:1:2 ratio of DNA (pCpG-luc NRF2 promoter):

plus reagent: lipofectamine LTX according to company’s in-

structions. Luciferase activity relative to empty vector was

determined 48 h post transfection with the Luciferase assay

system (Promega) on a Luminoskan ascent (Thermo Scientific).

For each condition, the total luciferase signal of 75,000 cells

was measured. Each experiment was performed in triplicate.

2.8. siRNA transfection

A2780 cells were reverse transfected with either BRCA1

esiRNA (EHU096311, SigmaeAldrich) or RLUC esiRNA
(EHURLUC, SigmaeAldrich) using Lipofectamine RNAiMAX re-

agent (Life Technologies) in a 10:3 ratio of DNA: Lipofectamine

RNAiMAX according to the manufacturer’s protocol. For every

experiment, BRCA1 knockdown was confirmed by qRT-PCR.

FACS analyses (ROS production, cell death analysis, dsDNA

breaks) were performed 4 days after transfection. Cells that

were used for the MTS assay and colony forming assay

(CFA), were reverse transfected a second time 2 days after

the first transfection. TheMTS assaywas performed 2 days af-

ter the second transfection, the CFAwas seeded 1 day after the

second transfection.

2.9. Metabolic activity

0.35 � 104 OSE-C2 cells (empty, OX2-SKD, OX5-SKD, NRF2

cDNA) were seeded and 2 � 104 A2780 cells were (for the sec-

ond time) siRNA reverse transfected (empty RLUC/BRCA1

siRNA, OX2-SKD RLUC/BRCA1 siRNA) in 96-well plates. The

following day, OSE-C2 cells were treated for 48 h with

200 mM H2O2 (SigmaeAldrich), 5 mM N4Py or 0.1% DMSO as a

control. A2780 cells were treated for 24 h with 1 mM or 5 mM

of the PARP inhibitor olaparib (AZD-2281, KU-0059436,

Cayman Chemical) or 0.1% DMSO. After treatment, metabolic

activity wasmeasured by incubating the cells with CellTiter 96

Aqueous One Solution (Promega) for 3 h at 33 �C (OSE-C2) or

37 �C (A2780). The absorbance at 490 nm was measured using

a Biorad iMark microplate reader (Biorad) and subtracted with

the absorbance of cell-free medium. For every experiment,

triplicates were measured of each condition.

2.10. Total glutathione assay

A2780 cellswere treatedwith 0, 0.5, 1, 2 and 10mMBSO for 48h.

After treatment, cells were lysed in 5% trichloroacetic acid. Af-

ter a 5 min centrifugation at 10,000 g, the supernatant was

collected and diluted 1:15 in GSH buffer (0.125 M phosphate

buffer, 5mMEDTA,pH7.5). Total glutathione levelsweredeter-

mined in the resulting supernatant by the Tietze enzymatic

recycling assay (Tietze, 1969). Standards of knownGSHcontent

were serial-diluted in order tomake a standard curve. TheGSH

content of all samples was determined by reference to this

http://dx.doi.org/10.1016/j.molonc.2015.03.003
http://dx.doi.org/10.1016/j.molonc.2015.03.003
http://dx.doi.org/10.1016/j.molonc.2015.03.003


M O L E C U L A R O N C O L O G Y 9 ( 2 0 1 5 ) 1 2 5 9e1 2 7 3 1263
standardcurve.Eachreactionmixturecontained150ml sample,

1.5 mM DTNB and 0.25 U GSH reductase. Just before reading,

0.6mMNADPHwas added to start the reaction. The formation

of reducedDTNBwas followedat 405nmfor10minusingaVer-

saMax ELISA microplate reader (Molecular Devices). All stan-

dards and samples were measured in duplicate.

2.11. ROS production and cell death analysis

OSE-C2 cells (empty, OX2-SKD, OX5-SKD, NRF2 cDNA) or

A2780 cells (empty, OX2-SKD) were seeded in 12-wells plates.

The next day, when cells were about 80% confluent, treatment

was started. 24 h after starting treatment, floating cells were

collected and remaining cells were incubated with 5 mM Cell-

ROX Deep Red Reagent (Life Technologies) for 30 min at

33 �C (OSE-C2) or 37 �C (A2780) in complete medium. After 3

PBS washes, cells were harvested and combined with the

floating cells. All together, the cells were stained with 5 mg/

mL propidium iodide (PI) (SigmaeAldrich) in PBS. After a

10 min incubation at 4 �C in the dark, PI fluorescence was

measured using the FL-3 channel and CellROX Deep Red fluo-

rescence was measured in the FL-4 channel of a FACScalibur

flow cytometer (Beckton Dickenson Biosciences). MFI of Cell-

ROX Deep Red and percentage PI positive cells was deter-

mined with Kaluza 1.3 software (Beckman Coulter).

2.12. dsDNA breaks

The amount of dsDNA damage induced by PARP inhibitor (co-)

treatment was analyzed using intracellular gH2AX staining

with FACS read-out as described before (Li et al., 2010). In

short, 12.5 � 104 A2780 cells (empty RLUC/BRCA1 siRNA,

OX2-SKD RLUC/BRCA1 siRNA) were seeded in 24-wells plates.

The next day, 1 mM olaparib or 0.1% DMSO treatment was

started. 24 h later, cells were harvested, fixed with 4% formal-

dehyde for 10min at 37 �C and permeabilized in 90%methanol

for 30 min on ice. Cells were stained for 30 min at RT in the

dark with 1:50 rabbit anti-phospho-histone H2A.X (ser139)

conjugated Alexa Fluor 647 (20E3, Cell Signaling) and 100 mg/

ml RNase A (Qiagen) in 0.5% BSA/PBS. After washing the cells

with PBS, cells were stained with 5 mg/mL PI in PBS for

10min at 4 �C in the dark. PI fluorescence wasmeasured using

the FL-3 channel and gH2AX fluorescence was measured in

the FL-4 channel of a FACScalibur flow cytometer (Beckton

Dickenson Biosciences). Cells in the subG1 population were

excluded from analysis of dsDNA breaks in early/non-

apoptotic cells. Percentage gH2AX positive cells in the early/

non-apoptotic cell population was determined with Kaluza

1.3 software (Beckman Coulter). The cutoff for a gH2AX posi-

tive cell was set based on a background level ofw3% positivity

in the empty vector, RLUC siRNA, 0.1% DMSO treated control.

2.13. Colony forming assay

A2780 cells (empty RLUC/BRCA1 siRNA, OX2-SKD RLUC/

BRCA1 siRNA) were treated for 24 h with 1 mM olaparib or

0.1% DMSO. After treatment, for every condition 1000 cells

were seeded in 6-wells plates containing fresh media. After

6e7 days, media was replaced by Coomassie brilliant blue

(Bio-Rad). The colony forming potential was determined by
counting the number of colonies (�50 cells) using phase-

contrast microscopy. Data was generated in two independent

experiments, performed in duplicate.

2.14. Statistical analysis

Statistical tests were performed with Graphpad Prism 5 soft-

ware (GraphPad Software). All experiments were performed

at least three times, unless stated otherwise. Data was evalu-

ated by one-way, two-way analysis of variance and Student’s

t-test. Multiple comparisons of ANOVA were followed with

post-hoc Bonferroni. A p-value of<0.05 was considered statis-

tically significant. All data are presented as the mean � SEM.
3. Results

3.1. NRF2 expression can be modulated by NRF2-
targeting ATFs in both healthy and malignant ovarian
epithelial cells

To modulate NRF2 expression, six different ZFP-SKD con-

structs (OX1-OX6), targeting the NRF2 promoter region

(Figure 1A), were engineered and virally delivered in three

ovarian cell lines: SKOV3, A2780 and OSE-C2. Successful deliv-

ery was confirmed by GFP FACS (Suppl. Figure 1A). OX2-SKD

and OX5-SKD modulated NRF2 expression about 1.5-fold and

up to twofold, respectively, in two out of three ovarian cell

lines tested (A2780 and OSE-C2) (Figure 1B). Unexpectedly,

expression of OX5 fused to the gene repressor SKD, resulted

in a twofold upregulation of NRF2 expression, in both A2780

and OSE-C2 cells. To find a possible explanation for this unex-

pected finding that OX5 when fused to a transcriptional

repressor (SKD) mediates activation, we performed a search

for transcription factor binding sites in MatInspector

(Genomatix). This search uncovered that binding of the tran-

scription factor YY2 partly overlaps (33%) with the OX5 ZFP

binding site. This opens up the possibility that YY2 binding

or function can be affected by an OX5-containing ATF.

To unravel the effects of OX2-SKD andOX5-SKD, validation

experiments were performed in OSE-C2 cells. ZFP binding to

its predicted target region was first confirmed by HA-tag

ChIP (Figure 2A). Binding competition with other gene regula-

tory proteins was assessed by analyzing the effects of ZFPs

only (NoED) and the ZFPs fused to the transcriptional activator

VP64. Successful viral delivery of all these constructs was

confirmed by GFP FACS (Suppl. Figure 1B). ZFPs without

effector domain did not affect NRF2 expression (Figure 2B).

OX2-VP64 showed a twofold upregulation, whereas OX5-

VP64 showed a 1.5-fold downregulation of NRF2 expression

(Figure 2B). So, VP64 ATFs showed the same level of modula-

tion as their SKD counterparts, but this time, in the opposite

direction. The opposite effects of OX2 and OX5 were

confirmed for the SKD fusions byNRF2 promoter luciferase re-

porter construct experiments (Figure 2C).

To gain more insights into the native chromatin state as

well as in the ATF-induced changes of the OX2 and OX5 tar-

geted region, a ChIP for the active histone mark H3K4me3

and repressive histone mark H3K9me3 was performed

(Figure 2D). These experiments indicated that the NRF2
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Figure 1 e Modulation of NRF2 gene expression in normal and malignant ovarian epithelial cells by NRF2-targeting ATFs. (A) Schematic

overview of the NRF2 promoter region (transcript variant 1) containing the TSS (transcription start site, D1) and the target regions for the 6

engineered zinc finger proteins (ZFP OX1-OX6). Histone modifications associated with ATF OX2 and OX5 were determined in ChIP region

OX2-ChIP6 and OX5-ChIP5, respectively. CpGs are shown as vertical lines. (B) Relative NRF2 expression compared to empty vector control

upon retroviral delivery of NRF2-targeting ZFPs (OX1-OX6) fused to the transcriptional repressor SKD in SKOV3, A2780 and OSE-C2 cells.

Relative NRF2 expression of the NRF2 cDNA control has only been determined in OSE-C2 cells. Data is presented as mean ± SEM of at least

three independent experiments. *p < 0.05.
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downregulating ATF OX2-SKD induced the repressive histone

mark H3K9me3, whereas theNRF2 upregulating ATF OX5-SKD

did not. Moreover, OX5-SKD associated upregulation of NRF2

did not result in an increase of the active histone mark

H3K4me3.

3.2. Gene-targeted modulation of NRF2 by ATFs results
in the modulation of downstream Nrf2 target genes

Before continuing to use the NRF2-ATFs as tool to study the

role of Nrf2 in ovarian carcinogenesis, they were further vali-

dated in healthy (OSE-C2) and malignant (A2780) ovarian cell

lines. Despite having about equal levels of GFP positive cells,

the average infection efficiency per cell was at least 10 fold

lower in A2780 compared to OSE-C2 cells (data not shown).

Therefore, in all subsequent experiments, average infection

efficiency in A2780 cells was further improved by using

lentivirally-superinfected, GFP sorted cells. Modulation of

NRF2 mRNA does not necessarily translate to functional

changes, as many post-translational factors regulate Nrf2

(van der Wijst et al., 2014), e.g. the cytoplasmic fraction of

Nrf2 can be bound by Keap1, and subsequently degraded.

Only when Nrf2 translocates to the nucleus, it can bind to

downstream target genes, but also here, the outcome is deter-

mined by the balance between repressive (e.g. Bach1, Src ki-

nases) and activating factors (Nrf2) (van der Wijst et al.,

2014). Moreover, some Nrf2 target genes are known to be

expressed only in certain tissues (Nakajima et al., 2011). A

quick screen on the expression of known Nrf2 target genes
in OSE-C2 cells transduced to express NRF2 cDNA (Suppl.

Figure 2A) or treated with the ARE-inducer tBHQ (Suppl.

Figure 2B), indicated that GCLC, an enzyme involved in gluta-

thione synthesis, and the vitagene HMOX1, an enzyme

involved in heme catabolism, but not the phase 2 detoxifica-

tion enzyme NQO1, were potent downstream targets of Nrf2

in these cells. Subsequently, it was confirmed in OSE-C2 cells,

that the OX5-SKD mediated upregulation of NRF2 mRNA

(Figure 1B) resulted in activation of three well-known Nrf2

target genes (GCLC, HMOX1, OGG1) (Malhotra et al., 2010;

Singh et al., 2013). Indeed an increased expression of these

downstream genes was observed in OX5-SKD expressing cells

compared to empty vector: GCLC was upregulated by 1.7-fold,

HMOX1 by 2.7-fold and OGG1 by 1.6-fold (Figure 3A). Vice-

versa, in A2780 cells the OX2-SKD mediated downregulation

of NRF2 mRNA (Figure 1B) resulted in decreased nuclear Nrf2

protein levels (detected at 110 kDa, see Suppl. Figure 3, as

described before in (Lau et al., 2013; Malloy et al., 2013)) up

to about 80% (Figure 3B). This translated to repression of

Nrf2 target genes: GCLC was inhibited by 1.9 fold and HMOX1

by 1.7 fold (Figure 3C). Remarkably, despite the lack of robust

NRF2 mRNA inhibition in A2780 cells by OX2-SKD (Figure 1B),

themRNA inhibitionwas efficient enough to profoundly affect

nuclear Nrf2 protein levels (Figure 3B) and downstream genes

(Figure 3C). In addition to the NRF2mRNA, many other factors

can modulate the nuclear Nrf2 protein fraction (Chowdhry

et al., 2013; Khalil et al., 2014; van der Wijst et al., 2014). These

factors might explain the seemingly discrepancy between

NRF2 mRNA and Nrf2 protein inhibition by OX2-SKD.
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Figure 2 e Validation of NRF2-targeting ATFs in normal ovarian epithelial cells. OSE-C2 cells were transduced to express OX2-and OX5-ZFP

fusions and both ATFs were validated (A) for ZFP binding; (B) for effector domain-specific effects; (C) for having a direct effect on the NRF2

promoter; (D) for epigenetic effects on their target region. (A) ZFP binding (HA-tag) in the OX2-ChIP6 region (left panel) and OX5-ChIP5

region (right panel) was validated by quantitative ChIP, IgG was used as negative control. (B) Relative NRF2 expression compared to empty vector

control upon retroviral delivery of NRF2-targeting ZFPs (OX1-OX6) fused to no effector domain (NoED), the transcriptional repressor SKD or

the transcriptional activator VP64. (C) Relative NRF2 promoter activity as measured by the luciferase activity of pCpG-NRF2 promoter-luciferase

of cells transduced to express OX2-SKD and OX5-SKD compared to cells expressing empty vector control. (D) Quantitative ChIP for an active

histone modification (H3K4me3), a repressive histone modification (H3K9me3) and IgG control of the OX2-ChIP6 region (left panel) and OX5-

ChIP5 region (right panel). Each bar represents the mean ± SEM of at least three independent experiments. *p < 0.05, ***p < 0.001.
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Although NRF2 mRNA was inhibited to the same extent by

OX2-SKD in A2780 and OSE-C2 cells, this did not result in sig-

nificant repression of Nrf2 downstream genes in OSE-C2 cells

(Figure 3AeB), with the exception of the 1.7-fold reduction in

OGG1 mRNA levels (Figure 3A). This gives us a first hint that

healthy ovarian cells (OSE-C2) might be less sensitive toward

the effects of NRF2 inhibition compared to malignant ovarian

cells (A2780), which would agree with current literature that

cancer cells in general are often more dependent on a high

(Nrf2-induced) antioxidant capacity for their survival

(Gorrini et al., 2013b).

3.3. Cytoprotective effect of NRF2 might be partly
exerted by induction of ER UPR genes

Nrf2 is the master regulator of antioxidant and cytoprotec-

tive genes, and as such protects cells towards ROS. It is
able to do so by activating downstream genes involved in

the stimulation of antioxidant production (GCLC, HMOX1)

and cytoprotection via the stimulation of the oxidative dam-

age DNA repair enzyme OGG1 (Figure 3A). We wondered

whether Nrf2 could also exert its cytoprotective function

by inducing an ER UPR. To this end, four genes involved in

this cytoprotective response were measured in OSE-C2 cells:

ERp72, HERP, Bip/GRP78, p58IPK. The expression of all these

ER UPR genes was increased in OX5-SKD expressing cells

compared to empty vector: ERp72 was upregulated by 1.7-

fold, HERP by 1.9-fold, Bip/GRP78 by 1.9-fold and p58IPK by

1.8-fold (Figure 4AeD). For all four genes a similar trend

was visible for NRF2 cDNA. On the other hand, NRF2 inhibi-

tion by OX2-SKD resulted in a trend towards reduction of

gene expression. The increased expression of ER UPR genes

in OX5-SKD expressing cells did not affect cell growth

(Suppl. Figure 4A).
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Figure 3 e NRF2-targeting ATFs modulate the expression of known downstream Nrf2 target genes. The effect of NRF2-targeting ATFs on known

downstream Nrf2 target genes was assessed in healthy (OSE-C2) and malignant (A2780) ovarian cells. (A) Relative NRF2 expression of known

Nrf2 target genes (GCLC, HMOX1, OGG1) compared to empty vector control upon expression of the NRF2-targeting ATFs or NRF2 cDNA in

OSE-C2 cells. (B) Relative quantification of nuclear Nrf2 protein levels in NRF2-inhibiting ATF OX2-SKD expressing A2780 cells compared to

empty vector control. Insert: western blot against nuclear Nrf2 and Lamin B1 (nuclear loading control) containing nuclear protein lysates of A2780

empty vector and OX2-SKD expressing cells. (C) Relative expression compared to empty vector of known Nrf2 target genes (GCLC, HMOX1)

upon expression of the NRF2-inhibiting ATF OX2-SKD in A2780 cells. Data values are mean ± SEM of at least three independent experiments.

*p < 0.05, **p < 0.01, ***p < 0.001.

M O L E C U L A R O N C O L O G Y 9 ( 2 0 1 5 ) 1 2 5 9e1 2 7 31266
3.4. Gene-targeted modulation of NRF2 by ATFs affects
the sensitivity toward ROS-induced damage

As shown above, gene-targeted modulation of NRF2 enabled

us to modulate downstream target genes involved in the pro-

tection against ROS-induced damage. Therefore, this is ex-

pected to influence endogenous ROS levels and as such

protect (Nrf2 upregulation) or sensitize (Nrf2 downregulation)

cells toward ROS-induced cell death. To determine the influ-

ence of ATF-mediated NRF2 modulation on ROS production

in OSE-C2 and A2780 cells, ROS levels were determined upon

exposure to a lethal dose of ROS (30 mM N4Py). In OSE-C2 cells

harboring upregulated NRF2 expression either induced by

OX5-SKD or NRF2 cDNA, ROS levels were reduced by about

20% compared to empty vector (Figure 5A). On the other

hand, OX2-SKD mediated downregulation of NRF2 expression

did not affect ROS production in these cells (Figure 5A). Simi-

larly, in A2780 cells, no increase in ROS production was

detected in NRF2 knockdown A2780 cells, as measured by

the Cell Rox Deep Red ROS probe (Figure 5B). The absence of

increased ROS production in NRF2 knockdown compared to

empty A2780 cells, even in the presence of 30 mM N4Py, might

be explained by the method of ROS induction. In order to test

whether less acute ROS induction wouldmake any difference,

A2780 cells were depleted of glutathione by BSO. Glutathione

depletion was confirmed in all tested BSO concentrations

(0.5e10 mM BSO) (Suppl. Figure 5A). Two days after BSO-

induced glutathione depletion, cell death (Suppl. Figure 5B)

and ROS production (Suppl. Figure 5C) were measured by

FACS. Neither cell death, nor ROS production was affected

by BSO treatment. Despite the absence of increased ROS pro-

duction in both OSE-C2 (Figure 5A) and A2780 cells

(Figure 5B) upon ATF-mediated NRF2 knockdown combined

with exposure to lethal ROS levels, a 1.5-fold higher level of
ROS-production in these A2780 compared to OSE-C2 cells

was observed (Figure 5C).

Further experiments were conducted to reveal whether

the observed effects on endogenous ROS levels also affect

the sensitivity of OSE-C2 and A2780 cells toward ROS-

induced damage. To start with, the effect of sublethal ROS

levels, either induced by H2O2 or N4Py, was determined in

OSE-C2 cells that were transduced to express the NRF2-

ATFs. In cells expressing basal (empty vector) or lowered

(OX2-SKD) levels of NRF2, exposure to sublethal ROS levels

resulted in lower metabolic activity: 35% decrease upon

H2O2 and 26% decrease upon N4Py treatment compared to

untreated cells (Figure 4D). Cells with increased expression

of NRF2 were not significantly affected by the sublethal ROS

levels; upon treatment with H2O2, metabolic activity was

only slightly, but not significantly lowered in OX5-SKD

expressing cells (8%) compared to untreated cells, whereas

metabolic activity was unchanged in cells expressing NRF2

cDNA (0%). Treatment with N4Py equally, but not signifi-

cantly, affected OX5-SKD and NRF2 cDNA expressing cells

by reducing metabolic activity with 14% compared to un-

treated cells (Figure 5D). Similarly, when these cells were

exposed to lethal levels of ROS (induced by 30 mM N4Py),

cell death could be equally reduced by OX5-SKD and NRF2

cDNA (Figure 5E). Compared to empty vector, cells harboring

upregulated NRF2 expression showed a reduction of about

60% in cell death. So, the level of NRF2 upregulation (1.8-

fold for OX5-SKD vs 25-fold for NRF2 cDNA, Figure 1B) did

not significantly affect the protective effect of high NRF2

expression against (sub)lethal ROS levels in OSE-C2 cells

(Figure 5DeE). In these cells, OX2-SKD-mediated downregu-

lation of NRF2 expression did not result in increased sensi-

tivity toward ROS-induced cell death. On the contrary,

when A2780 cells were exposed to lethal ROS levels (induced

http://dx.doi.org/10.1016/j.molonc.2015.03.003
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Figure 4 e NRF2-targeting ATFs modulate the expression of genes involved in the endoplasmatic reticulum unfolded protein response (ER UPR).

Normal ovarian epithelial cells (OSE-C2) were transduced to express NRF2-targeting ATFs or NRF2 cDNA. (AeD) Relative expression of genes

involved in the ER UPR (ERp72, HERP, Bip/GRP78, p58IPK) was determined. Data values are mean ± SEM of at least three independent

experiments. *p < 0.05, **p < 0.01, ***p < 0.001.
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by 30 mM N4Py), OX2-SKD-mediated downregulation of NRF2

expression increased the sensitivity toward ROS-induced cell

death almost twice; the percentage PI positive cells was

increased from 20% in empty vector control cells to 37% in

ATF-inducedNRF2 knockdown cells (Figure 5E). These results

indicate that upon ATF-mediated NRF2 inhibition the sensi-

tivity toward ROS-induced damage can be further increased

specifically in malignant ovarian cells (A2780), whereas the

effects on healthy ovarian cells (OSE-C2) seem to be un-

changed. Despite this, baseline sensitivity toward ROS-

induced cell death was lower in empty vector control A2780

compared to OSE-C2 cells: 20% versus 65% PI positive cells,

respectively. Therefore, ATF-mediated NRF2 knockdown

could not significantly alter overall sensitivity toward ROS-

induced cell death between both cell lines: 37% PI positive

cells in A2780 versus 55% in OSE-C2 cells (Figure 5C). This

finding highlights the importance of a combination therapy

to further improve on the cancer-selectivity of NRF2

inhibition.
3.5. Gene-targeted downregulation of NRF2 by ATFs
improves the cytotoxic effect of PARP inhibitors in BRCA1
knockdown A2780 ovarian cancer cells

Extensive validation of the NRF2-targeting ATFs was per-

formed by (1) confirming binding to the target region

(Figure 2A); (2) confirming effective modulation at the

mRNA level (Figure 1B) (3) and protein level (Figure 3B); (4)

confirming functional downstream effects (Figures 3A, C

and 5AeE). This proved that NRF2-ATFs can be potent tools

to study the role of Nrf2 in ovarian carcinogenesis. Therefore,

this tool was used to unravel the potency of Nrf2 inhibition as

therapeutic target in ovarian cancer treatment. Moreover, it

was determined whether combining knockdown of NRF2

with PARP inhibitors could further improve the effect of

NRF2 inhibition on cancer cell growth of BRCA1 knockdown

ovarian cancer cells. As shown in Suppl. Figure 6, BRCA1 pro-

tein was almost completely knocked down 3 and 4 days after

transfection with BRCA1 siRNA compared to control RLUC

http://dx.doi.org/10.1016/j.molonc.2015.03.003
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Figure 5 e Modulation of NRF2 by ATFs affects the sensitivity of normal and malignant ovarian epithelial cells against non-cytotoxic and

cytotoxic levels of ROS. OSE-C2 and A2780 cells were transduced to express NRF2-ATFs and were exposed to either non-cytotoxic (£10 mM

N4Py, 200 mM H2O2) or cytotoxic (30 mM N4Py) levels of ROS. The effect on ROS production compared to 0.1% DMSO control treatment was

determined after a 24 h exposure to 30 mM N4Py in OSE-C2 (A) and 10 mM or 30 mM N4Py in A2780 (B) cells. (C) For a direct comparison

between both cell lines, the absolute ROS production in OSE-C2 and A2780 cells was determined after a 24h treatment with 30 mM N4Py. (D)

OSE-C2 cells were exposed to either a bolus of 200 mMH2O2, 5 mMN4Py or no treatment. After 2 days, metabolic activity was measured by MTS

and compared to no treatment of the same cell line. (E) OSE-C2 and A2780 cells were treated for 24h with 30 mMN4Py and the percentage of late

apoptotic/necrotic cells (PI positivity) was determined by FACS analysis. Each value shows the mean ± SEM of at least three independent

experiments. *p < 0.05, ***p < 0.001.
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siRNA. In this time frame, PARP inhibitors could only slightly

affect metabolic activity (up to 17% reduction compared to

untreated cells) when combined with NRF2 inhibition in

BRCA1 knockdown A2780 cells (Figure 6A). To study the

long term effects of PARP inhibitors in combination with

NRF2 inhibition, first a doseeresponse curve was obtained

to determine the lowest effective concentration of PARP in-

hibitor in A2780 cells with NRF2 and BRCA1 knockdown:

1 mM olaparib was chosen for subsequent colony forming as-

says (CFA) (Figure 6B). Next, it was confirmed that olaparib

treatment, independent of Nrf2 expression, specifically

affected the colony forming potential of BRCA1 knockdown

and not of wild-type cells (Figure 6B); PARP inhibitor treat-

ment reduced the colony forming potential of BRCA1 knock-

down A2780 cells by 62% compared to untreated, while no

effect was observed for BRCA1 wildtype A2780 cells. BRCA1
can directly bind Nrf2, thereby interfere with Keap1 binding,

and enhance the stability and activation of Nrf2 (Gorrini

et al., 2013a). Therefore, BRCA1 inhibition might further

inhibit the activity of Nrf2, and this could translate to a

greater reduction in colony forming potential. Despite this,

inhibition of NRF2 alone reduced the colony forming poten-

tial to the same extent in wild-type (79%) and BRCA1 knock-

down (76%) A2780 cells. In contrast, in healthy ovarian cells

(OSE-C2 cells) no effect on cell growth was observed upon in-

hibition of NRF2 (Suppl. Figure 4B), which reveals the poten-

tial therapeutic window for NRF2 inhibition treatment.

Interestingly, in BRCA1 knockdown A2780 cells, the combina-

tion of 1 mM olaparib and ATF-induced NRF2 inhibition

almost completely diminished the colony forming potential

(90% versus 62% without NRF2 inhibition). This data opens

up the possibility to further increase the therapeutic window

http://dx.doi.org/10.1016/j.molonc.2015.03.003
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Figure 6 e Downregulation of NRF2 improves the cytotoxic effect of PARP inhibitors in BRCA1 knockdown A2780 ovarian cancer cells. (A)

A2780 cells with (OX2-SKD) or without (empty) ATF-mediated NRF2 downregulation, were transfected with BRCA1 siRNA or RLUC control

siRNA. After 3 days, 1 mM or 5 mM olaparib (PARP inhibitor) or 0.1% DMSO treatment was started. 24 h later, metabolic activity was measured

by the MTS assay. (B) After 24 treatment with either 1 mM olaparib or 0.1% DMSO, cells were seeded for the colony forming assay and colony

formation was determined 6e7 days later. (C) After 24 h treatment, the percentage of cells with increased dsDNA breaks (gH2AX positive) was

determined. *p < 0.05; **p < 0.01; ***p < 0.001.
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for NRF2 inhibition treatment by using a combination ther-

apy with PARP inhibitors.

In order to gain a better understanding of the mechanism

by which the PARP-1 inhibitor/NRF2 inhibition combination

therapy in BRCA1 knockdown ovarian cancer cells acts, the ef-

fect of BRCA1 knockdown and 1 mM olaparib on ROS produc-

tion was determined. Neither 1 mM olaparib, nor BRCA1

knockdown (or the combination of both) influenced ROS levels

(Suppl. Figure 7). Inhibition of NRF2 is expected to sensitize

cells toward ROS-induced DNA damage, which is mainly

repaired by BER (Mitra et al., 2001). As PARP inhibitors block

BER, ROS-induced DNA damage is expected to accumulate

(Banerjee and Kaye, 2011; Fong et al., 2009). Upon cell division,

these ssDNA breaks become dsDNA breaks. As BRCA1

impaired cells are unable to repair this damage, colony form-

ing potential is expected to be reduced the most in these cells.

Indeed, treatment of BRCA1 knockdown A2780 cells with 1 mM

olaparib resulted in a 2.2-fold increase in dsDNA breaks

compared to wild-type (Figure 6C). The amount of dsDNA
breaks even further increased up to 3.3-fold compared to

wild-type when NRF2 was inhibited in these cells. Without

knockdown of BRCA1, inhibition of NRF2 did not increase the

formation of dsDNA breaks, highlighting the selectivity of

this combination treatment (Figures 6C and 7).
4. Discussion

In this study, NRF2 targeting ZFP-ATFs that are uniquely

suited to study the dual role of Nrf2 in ovarian carcinogenesis,

were constructed and validated. By the use of these NRF2 tar-

geting ATFs, a chemopreventive role of Nrf2 in healthy cells

was confirmed, whereas inhibition of Nrf2 had anti-

carcinogenic effects in malignant cells. With respect to the

chemopreventive function of Nrf2, ATF-induced upregulation

of NRF2 was shown to increase the expression of genes

involved in the protection against ROS-induced damage,

among which potentially new Nrf2 downstream genes
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Figure 7 e Hypothesis enhanced cytotoxic effect of combination therapy (PARP inhibitors and NRF2 inhibition) in BRCA1 mutant cancers.

ATF-mediated (OX2-SKD) repression of NRF2 results in downregulation of downstream target genes involved in the protection against ROS.

This results in enhanced sensitivity toward ROS-induced DNA and protein damage. BER (base excision repair) is mainly involved in the repair of

ROS-induced DNA damage. When PARP inhibitors inhibit this DNA repair pathway, the ROS-induced ssDNA breaks will turn into dsDNA

breaks upon cell division. In normal, non-BRCA1 defective cells, dsDNA breaks will be repaired by the error-free HR (homologous

recombination) DNA repair pathway. In contrast, in malignant, BRCA1 defective cells, dsDNA breaks cannot be repaired by HR, and therefore,

the more error-prone NHEJ (non-homologous end joining) DNA repair pathway will take over. The end-result is genomic instability and this will

induce cell death.

M O L E C U L A R O N C O L O G Y 9 ( 2 0 1 5 ) 1 2 5 9e1 2 7 31270
involved in an adaptive ER UPR. This translated to increased

protection against ROS-induced cell death in healthy ovarian

epithelial cells. With respect to the anti-carcinogenic effects

of Nrf2 inhibition, it was revealed that ATF-induced downre-

gulation ofNRF2 resulted in an almost 80% reduction of colony

forming potential in malignant ovarian epithelial cells. Inter-

estingly, specifically in BRCA1 knockdown ovarian cancer

cells, the effect of NRF2 inhibition on colony forming potential

could be even further improved by co-treating with PARP in-

hibitors: the colony forming potential was almost complete

halted.

The rationale behind ROS-targeted therapies, like inhibi-

tion of Nrf2, is based on the existence of a therapeutic window

as healthy cells have a lower baseline level of ROS compared

to cancer cells (Gorrini et al., 2013b). Here, it was confirmed

that malignant (A2780) versus healthy (OSE-C2) ovarian cells

exhibit higher levels of ROS production. Therefore, to main-

tain redox balance, cancer cells are more dependent on ROS

protective and neutralizing signaling, including Nrf2

signaling. Translated to our study, this would imply that expo-

sure to ROS in combination with ATF-mediated NRF2 inhibi-

tion, would result in a stronger increase in cell death in the
malignant (A2780) compared to healthy (OSE-C2) ovarian cells,

which indeed was observed. However, despite specifically

increasing sensitivity toward ROS-induced cell death inmalig-

nant A2780 cells uponNRF2 downregulation, the reached level

of cell death was comparable to that of healthy OSE-C2 cells.

This highlights the importance of a combination therapy

that preferentially hits the tumor cells for further improve-

ment in efficacy of Nrf2 inhibition in cancer.

We hypothesized that PARP inhibitor treatment could

improve the therapeutic window of Nrf2 inhibition (Rouleau

et al., 2010) specifically in BRCA1 mutant cancers, without

acquiring the serious side-effects of chemotherapy or radia-

tion (Cao et al., 2012; Kim et al., 2014). In line with literature

(Fong et al., 2009, 2010; Tutt et al., 2010), the PARP inhibitor ola-

parib could only affect the colony forming potential of BRCA1

knockdown and not BRCA1 wt cells (independent of their Nrf2

status). Therefore, based on literature and our own data,

healthy cells, which are BRCA1 wt, are not expected to be

affected by PARP inhibition. BRCA1 siRNA enabled us to study

the effect of BRCA1 expression in the same background. Here,

it was shown that specifically in BRCA1 knockdown and not

BRCA1 wt cells, the combination of PARP inhibitors and

http://dx.doi.org/10.1016/j.molonc.2015.03.003
http://dx.doi.org/10.1016/j.molonc.2015.03.003
http://dx.doi.org/10.1016/j.molonc.2015.03.003
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NRF2 inhibition resulted in an increase in dsDNA breaks, and

this translated to an almost complete inability of the cells to

form colonies. However, likely, also other unknown interac-

tions have contributed to this effect, for example, via PARP-1

its potential to affect transcription and chromatin modifica-

tions (Kim et al., 2005; Kraus and Lis, 2003). This successful

combination of Nrf2 inhibition with PARP inhibitors opens

up opportunities for a therapy in which the efficacy of Nrf2 in-

hibition can be increased without increasing the adverse ef-

fects of previous combinations with chemotherapy or

radiation (Cao et al., 2012; Kim et al., 2014). Interestingly,

recently, it was discovered that inhibition of the transcrip-

tional, but not the enzymatic activity of PARP-1, can inhibit

the activity of PARP-1 in serving as a transcriptional coactiva-

tor of Nrf2. As a transcriptional coactivator, PARP-1 can stim-

ulate the transcriptional activity of Nrf2 by enhancing the

interaction among Nrf2, MafG, and the ARE (Wu et al., 2014).

As such, it can be hypothesized that in addition to inhibiting

the enzymatic activity of PARP-1 by PARP inhibitors, inhibition

of PARP-1 expressionwould have beneficial effectswhen com-

bined with Nrf2 inhibition. However, inhibiting all functions

of PARP-1 will probably also increase the adverse effects.

Exposure to oxidative stress can damage all kinds of bio-

molecules, such as proteins. Accumulation of damaged pro-

teins can activate the ER UPR (Walter and Ron, 2011). One of

the main activators of the ER UPR, PERK, has been shown to

activate Nrf2 via site-specific phosphorylation (Cullinan

et al., 2003). However, the other way around, it is currently un-

knownwhether Nrf2 can activate the ER UPR. Here, we gained

the first insights into the capability of Nrf2 to (in)directly acti-

vate genes involved in the ER UPR; Upon ATF-induced NRF2-

expression in OSE-C2 cells, a similar expression pattern of

ER UPR genes was observed as has been seen before in low

ER stress adapted cells (Rutkowski et al., 2006). In these low

ER stress adapted cells, an attenuation of the activation of

the threemain activators (IRE1, PERK and ATF6) was observed,

whereas proteins such as Bip/GRP78 and p58IPKwere kept sta-

bly activated at a low level. This resulted in an adaptive rather

than a pro-apoptotic ER stress response: cells did not undergo

apoptosis, remained their proliferative capacity despite ER

UPR activation and became desensitized by ROS-induced

stress. As our ATF-induced NRF2-expression OSE-C2 cells

showed a similar response and became desensitized to ROS-

induced stress, we assumed these cells had activated an adap-

tive rather than a pro-apoptotic ER stress response. As protein

homeostasis is strongly influenced by vitagenes, of which

several are activated by Nrf2 (Calabrese et al., 2010), and is

closely linked with health and life span of the organism

(Calabrese et al., 2010), activation of the adaptive ER UPR

response either directly by Nrf2 or indirectly via induction of

vitagenes would be a new mechanism in which Nrf2 could

stimulate longevity and cancer protection. Despite the

inability of OX2-SKD to downregulate (known) Nrf2 down-

stream genes, a trend towards inhibition of these downstream

genes was seen. Therefore, it was unlikely that these findings

could be contributed to the viral transduction, the expression

of a zinc finger protein or off-target effects of OX5-SKD.

Remarkably,NRF2 cDNA did not activate ER UPR to a higher

extent than the ATFOX5-SKD, despite being able to upregulate

NRF2 mRNA more than 10 fold higher compared to OX5-SKD.
Although unexpected, Nrf2 might be involved in an adaptive

rather than a pro-apoptotic ER stress response: To prevent

overactivation of the ER stress response, and as such prevent

a pro-apototic ER stress response, the activation of ER UPR

genes by Nrf2 should only occur to a certain extent. It can be

envisioned that simultaneously with Nrf2-induced ER UPR

activation other proteins are counteracting this process, and

as such prevent overactivation of the ER UPR genes. This

would explain that independent of the level of Nrf2 activation,

ER UPR genes are activated to about the same extent.

The KRAB domain in SKD is a transcriptional repressor

which has been frequently fused to ZFPs to downregulate

endogenous gene expression (Huisman et al., 2013; Sera,

2009; Stolzenburg et al., 2012). Surprisingly, in our study,

ATF OX5-SKD resulted in increased expression of NRF2.

KRAB (co-factor)-mediated transcriptional activation has

been seen before in specific cases for naturally occuring

KRAB-containing ZFPs (Chang et al., 1998; Rambaud et al.,

2009; Rooney and Calame, 2001). Genome-wide ChIP-seq anal-

ysis combined with RNA-seq expression analysis revealed re-

lations between binding events and expressional changes for

an engineered ZF-SKD fusion protein (Grimmer et al., 2014).

The ATF binding translated to expression changes in only a

minority (w3%) of the bound regions, of which about one-

third was upregulated. Previously, another engineered ZFP

fused to SKD had been described to induce upregulation of

its target gene OCT4 (Juarez-Moreno et al., 2013). Interestingly,

in this study no effect on OCT4 expression was observed with

the ZFP fused to the transcriptional activator VP64, which is in

contrast to our data obtained with the OX5 ZFP. The opposite

effects of OX2 and OX5 ZFP when fused to VP64 compared to

SKD were confirmed by a NRF2-promoter luciferase reporter,

suggesting a direct effect on the NRF2 promoter. Interestingly,

the binding of transcription factor YY2, a close-relative of YY1

with both activation and repression domains (Nguyen et al.,

2004), partly overlaps with the OX5 ZFP binding region in the

NRF2 promoter. As the function of YY2 might be (in)directly

affected by OX5-SKD, this could provide an explanation for

our findings. Direct binding competition of the ZFP OX5 with

YY2 could be excluded, as OX5-NoED did not have any effect

on NRF2 expression. The effector domain, however, could

attract other proteins that affect the function of YY2 as shown

before for its close-relative YY1 (Yao et al., 2001).

In light of current literature, our results underline Nrf2 as a

promising chemopreventive or therapeutic target in (ovarian)

carcinogenesis. However, caution should be taken as the func-

tion of Nrf2 is context dependent (Sporn and Liby, 2012). To

exploit Nrf2 inhibition as anti-cancer treatment, it is essential

to prevent a pro-carcinogenic outcome in normal cells. There-

fore, the therapeutic window of Nrf2 inhibition should be

further broadened by combining Nrf2 inhibition with other

treatments, such as was studied here with PARP inhibitor

treatment. The main advantage of a combination with PARP

inhibitor treatment over the combination with radiation or

chemotherapy, is the fact that severe side-effects are not ex-

pected (Liu et al., 2014). We speculate that this combination

therapy of PARP inhibitors with Nrf2 inhibition is not only

effective in BRCA1 defective cells (as shown in this study),

but can also be translated to all “BRCAness” tumors. In conclu-

sion, as hyperactivation of Nrf2 is a common phenomenon in

http://dx.doi.org/10.1016/j.molonc.2015.03.003
http://dx.doi.org/10.1016/j.molonc.2015.03.003
http://dx.doi.org/10.1016/j.molonc.2015.03.003


M O L E C U L A R O N C O L O G Y 9 ( 2 0 1 5 ) 1 2 5 9e1 2 7 31272
cancer (Bauer et al., 2013; Jiang et al., 2010; Stacy et al., 2006;

Wang et al., 2010), Nrf2 can be a potent target to combat not

only ovarian, but also other cancer types.
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