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ABSTRACT Understanding how RNA secondary structure prediction methods depend on the underlying nearest-neighbor
thermodynamic model remains a fundamental challenge in the field. Minimum free energy (MFE) predictions are known to
be ‘‘ill conditioned’’ in that small changes to the thermodynamic model can result in significantly different optimal structures.
Hence, the best practice is now to sample from the Boltzmann distribution, which generates a set of suboptimal structures.
Although the structural signal of this Boltzmann sample is known to be robust to stochastic noise, the conditioning and robust-
ness under thermodynamic perturbations have yet to be addressed. We present here a mathematically rigorous model for con-
ditioning inspired by numerical analysis, and also a biologically inspired definition for robustness under thermodynamic
perturbation. We demonstrate the strong correlation between conditioning and robustness and use its tight relationship to define
quantitative thresholds for well versus ill conditioning. These resulting thresholds demonstrate that the majority of the sequences
are at least sample robust, which verifies the assumption of sampling’s improved conditioning over the MFE prediction. Further-
more, because we find no correlation between conditioning and MFE accuracy, the presence of both well- and ill-conditioned
sequences indicates the continued need for both thermodynamic model refinements and alternate RNA structure prediction
methods beyond the physics-based ones.
INTRODUCTION
Improving secondary structure predictions remains a funda-
mental challenge in RNA structural modeling and design
(1–3). Thermodynamic optimization methods have been
the dominant approach for decades (4–8), although the
problem of predicting a minimum free energy (MFE) sec-
ondary structure under the nearest-neighbor thermody-
namic model (NNTM) has long been characterized as ill
conditioned (9,10). This is usually understood as a large
number of structurally distinct suboptimal configurations
within a small energy range of the MFE value (2,11,12),
and it can be successfully addressed by stochastic sampling
(typically a set of 1000 structures) from the Boltzmann
ensemble (7).

Equivalently, though, the ill-conditioning of RNA ther-
modynamic predictions can be understood as sensi-
tivity to small changes to the NNTM (10,13). This is
significant because the NNTM is a large objective func-
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tion, with many parameters of varying degrees of precision
(14–17). Although Boltzmann sampling is designed to
address the ill conditioning of the MFE prediction, no
studies have considered the effect of NNTM perturbations
on the Boltzmann ensemble itself. This article fills
that knowledge gap by addressing two questions: 1) How
well conditioned is Boltzmann sampling as a mathematical
optimization problem? and 2) How robust is it as a model
of a biological system? We provide a rigorous quantitative
answer to the first question by computing the relative con-
dition number and answer the second by defining robust-
ness as the persistence of a structural signal in the
Boltzmann ensemble. We then demonstrate the strong cor-
relation between this mathematically defined conditioning
and biologically inspired robustness, and we explore its
major implications.

Previous work has focused on the effect of parameter
perturbation on MFE structures (10,18). Although it does
not investigate ill conditioning explicitly, an early study es-
tablishes a model for finding MFE structures under a nor-
mally distributed parameter perturbation (18). More recent
work took this model and used it to explicitly address ill
Biophysical Journal 113, 321–329, July 25, 2017 321

mailto:heitsch@math.gatech.edu
http://crossmark.crossref.org/dialog/?doi=10.1016/j.bpj.2017.05.026&domain=pdf
http://dx.doi.org/10.1016/j.bpj.2017.05.026


Rogers et al.
conditioning (10). Results found that even slight perturba-
tions were enough to alter the MFE structure significantly,
as measured by a normalized tree metric.

We build on these previous works to further quantify and
investigate both conditioning and robustness, with an in-
crease in the scope, rigor, and complexity of the analysis.
To investigate conditioning, we use the numerical analysis
definition of an ill-conditioned problem as ‘‘one with the
property that some small perturbation of x leads to a large
change in f ðxÞ’’ (19). By carefully defining the change in
input and change in output, we develop a novel, to our
knowledge, metric not only to measure differences between
samples, but also to quantify ill conditioning itself based on
established mathematical principles.

To investigate robustness, we use a biological definition
of a robust system as ‘‘the persistence of a system’s charac-
teristic behavior under perturbation or conditions of uncer-
tainty’’ (20). Although robustness studies usually take the
sequence as input and perturb it through simulated muta-
tions (21–23), here we fix the sequence and perturb the
NNTM to determine robustness against parameter uncer-
tainty. We determine whether the sample under perturbation
is fundamentally, structurally different (nonrobust), or
merely changes by the reweighting of the frequencies of
the same structural elements (sample robust).

Hence, our investigation of both conditioning and robust-
ness hinges on measuring the change in the sample under
perturbation. However, because normal stochastic effects
produce mild changes between Boltzmann samples even
under unperturbed conditions, the measured change under
perturbation should ignore these slight fluctuations. Previ-
ous work has demonstrated that high-frequency pairings
are more stable against stochastic fluctuations than low-fre-
quency ones (24); hence, the former should be considered
the ‘‘signal’’ of the sample, whereas the latter can be consid-
ered the ‘‘noise.’’ Thus, we build upon this work by tracking
only the changes to the important structural signal of the
sample, as represented by high-frequency helices.

All possible changes affecting this high frequency signal
can be partitioned into three categories defined by the scope
of the frequency changes: signal that remains signal, signal
that remains part of the original, unperturbed sample
(though not part of the signal anymore), and signal that un-
der perturbation ventures outside the sample into the uni-
verse of structures. These three categories correspond to
decreasing levels of robustness—signal robustness, sample
robustness, and nonrobustness—and will be shown to be
highly correlated with conditioning. This equivalence will
further provide a guide for interpreting conditioning by
yielding well- and ill-conditioning thresholds. By employ-
ing these thresholds, we demonstrate that most sequences
are largely sample robust, even under significant NNTM
perturbation. Furthermore, because robustness is not corre-
lated with MFE accuracy, the existence of both well- and
ill-conditioned sequences point to the need for research in
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both NNTM refinement and complementary non-physics-
based prediction methods.
MATERIALS AND METHODS

Our quantitative analysis is based on established principles from numerical

analysis, a branch of mathematics interested in the behavior of computa-

tions under perturbation. In particular, we will compute the relative condi-

tion number, denoted k. This is the ratio of the largest relative change

in output over the relative change in input. We consider the relativized

version (25,26), since the size of the output can vary significantly over

the problem instantiation. Hence, comparisons are made with the appro-

priate normalization.

More precisely, the relative condition number is defined as

k ¼ sup
dx

kdf k
kf ðxÞ k

�kdx k
kx k :

Given a function f defined for an input x and perturbed by a small amount

dx; the change in output is defined as

df ¼ f ðx þ dxÞ � f ðxÞ:

The function is considered ill conditioned when the (normalized) ratio of

the size of these changes is large. Thus, to adapt the methods of numerical

analysis, we must rigorously define x, dx, f, and df , and their respective

sizes, to compute k.
Defining the input, x, the change in input, dx, and
their sizes

At a high level, we define the ‘‘input’’ to be the NNTM. Its ‘‘size’’ is its L1
norm when the model is viewed as a vector, e.g. kx k ¼P

ijxi j , where each
coordinate xi is one of the thousands of parameters of the NNTM. The

‘‘change in input’’ is defined as 5, 10 or 20% of each parameter value.

The size of the change in input is the L1 norm of the change in input

when viewed as a vector. We shall see that defining these terms in this

way is both simple and intuitive, leading to a clean ratio that becomes

the denominator of our conditioning metric.

The name of the NNTM refers to its basic premise that the thermody-

namic score of a structural component (e.g., stacked basepair or internal

loop) is a function of the number and type of its nearest neighboring flank-

ing basepairs. Thus, there are 21 parameters for the stacked basepairs, since

there are six canonical basepairings but a 50-30 symmetry to the stacks.

However, the number of parameters for the different loop types is consid-

erably higher, since the composition of the adjacent single-stranded bases

now also plays a role. Hence, there are almost 250 parameters for loops

of arbitrary size, and over 8000 for the special cases of small internal loops.

(See (16) for extensive documentation on the model.)

To obtain dx, we perturb each parameter by adding or subtracting a given

percentage, d, of its value. For each model parameter, the direction (up or

down) of the perturbation is chosen independently at random, with the

amount of perturbation set to the given percentage (d ¼ 0.05, 0.10, or

0.20) of that parameter. Although there are many known dependencies in

the parameter derivations, we choose to utilize this simpler model in this

initial study. (We note, though, that substructures with 50-30 symmetries,

such as basepair stacks, are identified with a single thermodynamic param-

eter, and all duplicate instances in the code are perturbed consistently.)

To calculate the size of the input change, we consider dx to be a vector

of values fdxig (where xi is the ith parameter of the model) and apply

the same L1 norm, that is, the sum of the magnitude of its values. This

gives kdx k ¼ P
ijdxi j ¼ d

P
ijxi j . When the NNTM is perturbed in this

way, the relative change in input under the L1 norm simplifies to
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kdx k =kx k ¼ d. Perturbing by a percentage is both mathematically very

tractable and biologically consistent, since the NNTM parameters vary in

size over the different categories of substructures.

We test three values of d—5, 10, and 20%—that are representative of the

range of observed error margins (27). Since we are interested in the worst-

case scenario, we generate 10 sets of perturbed parameters for every d.

For each d, the same 10 parameter sets are used for all sequences to

normalize results. Thus, for every sequence, we calculate 10 k values by

iterating through the 10 parameter sets, and we select the highest ratio as

the overall k for the sequence.
Defining the output, f ðxÞ, the change in output, df ,
and the sizes of both

At a high level, we define the ‘‘output’’ to be the high-frequency helices,

shown to be the ‘‘signal’’ of a sample (24). Its size is the number of helices

being tracked from the original, unperturbed sample. The ‘‘change in

output’’ is the differences the signal undergoes from the unperturbed base-

line sample to the perturbed sample. Its size is the sum of all the differences

when discretized into bins of standard deviation. We shall see that tracking

changes in this way captures key differences between the signals of the un-

perturbed versus perturbed samples while filtering out low-level differences

from stochastic noise. This also enables us to track not only the magnitude

of the changes for conditioning metrics, but also its source for robustness

calculations.

To avoid tracking stochastic noise, we define the output, f ðxÞ, to be a

Boltzmann sample’s characteristic signal. Previous work has demonstrated

that by first grouping helices into equivalence classes called helix classes,

and then focusing on the high-frequency ones, the signal can be isolated

from the stochastic noise (24). Hence, we define both the output, f, and

the change in output, df , in terms of high-frequency helix classes.

More specifically, we have previously defined an equivalence relation on

helices to abstract away low-level basepairing differences (24). Specifically,

all helices consisting of a subset of the basepairs of the same nonextendable

maximal helix are placed in the same equivalence class, called a helix class.

For example, we thus consider helices to be equivalent that have the same

starting and ending coordinates ði; jÞ, differing only in the length, k, of the

stack. This difference, commonly seen in both stochastic sampling and mo-

lecular dynamics, is rarely considered a significant change; this view is thus

codified by these helical equivalence classes known as helix classes.

The helical signal of the sample is further concentrated by focusing on

the high-frequency helix classes. This is possible because every helix class

can be assigned a frequency based on the number of structures containing a

member of that class. Thus, a helix class with high frequency denotes a high

number of structures possessing an equivalent helix. (A more in-depth defi-

nition and explanation of these terms and results can be found in (24)).

Hence, we build upon previous work by utilizing the signal, or the high-fre-

quency helix classes, as the output, f ðxÞ, to focus on key changes.

Since we have defined the output, f ðxÞ, to be the basepairing signal given
by the high-frequency helix classes, then its norm, kf ðxÞ k , is the number of

helix classes in this signal. For simplicity, we define all helix classes with

frequency of at least 10% to be the signal. (We note that the motivating re-

sults used a more nuanced, sequence-specific methodology to define the

signal to avoid the stochastic instabilities inherent in a hard cutoff (24)).

Here, though, we can use a simple threshold criteria, because the sampling

fluctuations will be addressed through our novel, to our knowledge, method

for measuring the change in the structural signal, df , and its size, kdf k .)
Calculating the change in output, df ¼ f ðxÞ � f ðx � dxÞ, should capture

the meaningful differences in the structural signals between two samples.

This difference encompasses the symmetric set difference between the sig-

nals, as well as any significant difference in frequencies between helix clas-

ses present in both. The challenge is to do this in a way that is not sensitive

to the noise from stochastic sampling; even when the NNTM is kept con-

stant, Boltzmann sampling will produce helix-class frequencies that differ

slightly. Thus, when tallying perturbation changes, we need to avoid attrib-
uting these normal frequency changes to ill conditioning. Our approach is

motivated by the understanding that values in Gaussian samples that are

more than three standard deviations from the mean are significant.

Thus, to determine the threshold for significance, we form a model for

helix-class frequency to calculate a standard deviation, s, for each one.

We then use s to filter out sampling stochasticity, and also to capture the

degree of change by tallying the frequency difference in units of 3s. Spe-

cifically, frequencies within 3s of the mean are counted as zero, between

3s and 6s as one unit of change, between 6s and 9s as two units, etc.

To determine the boundaries for normal frequency fluctuations, we first

model the occurrence of a helix class in a structure as a Bernoulli trial,

with probability, p, of success, i.e., there are pn structures containing a

member of that helix class out of a sample size of n. We then can model

a helix class’s frequency as binomially distributed, which calculates vari-

ance as s2 ¼ npð1� pÞ, standard deviation as s ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
npð1� pÞp

, and the

mean as m ¼ np. Hence, as long as we have an accurate probability, p,

we also can obtain a reliable mean, m, and standard deviation, s; any fre-

quencies >3s away from m can then be ascribed to perturbation effects

and not to ordinary sampling stochasticity.

In measuring the change under perturbation, we first obtain an unper-

turbed sample, u, then a perturbed one, b, for comparison. To obtain a reli-

able p, we use a high-resolution unperturbed sample of nu ¼ 100; 000

structures to ensure accurate calculations of s and m. We denote the number

of times a helix class appears in the unperturbed sample as qu (ranging from
1 to nu), and that in the perturbed sample as qb (ranging from 1 to nb).

We can then use p ¼ qu=nu and the more typical perturbed sample size,

nb ¼ 1000, to calculate our final s and m. Finally, we measure the total de-

gree of change for helix class i asDi ¼ bjmi � qb j =3sic. We handle any new

helix classes that were not present in the original sample by setting their

original frequency, qu, to 0; as will be explained later, because of pseudo-

counts, their standard deviation is set to 1.

Empirical tests show a good agreement between the model and observed

standard deviations (Fig. 1). Although there are some differences in

the midrange frequencies, the agreement is solid enough, especially at

the low- and high-frequency ranges, to use it as a valid theoretical

approximation.

At high n, the binomial distribution is well approximated by a normal dis-

tribution, under which 99:7% of values lie within 3s of the mean. Hence,

fluctuations in helix-class frequency occurring 3s away from the mean

are almost certainly due to NNTM perturbation. Conversely, any fluctuation

within 3s of the original mean should be ignored as indistinguishable from

normal stochastic variations.

To avoid zero values of s, which occur with helix classes of 100% fre-

quency, we add a pseudocount to every s. The simplest pseudocount

method is Laplace’s rule, commonly used in bioinformatics (28), to

augment each s by 1. Hence, helix classes of 100% frequency are assigned

a standard deviation of 1.

We thus calculate the value of df (the difference in signals) as the sum of

all signal perturbations: kdf k ¼P
i˛HDi, where H is the union of the set of

helix classes from both the original and perturbed signals. However,

although conditioning analysis requires only the size of change, kdf k ,
robustness analysis needs its source. Hence, we also track the total amount

of signal change, kdf k , as partitioned into three subcategories: signal that

stays the signal, signal that becomes part of the larger sample or vice versa,

and signal that disappears or appears from the overall universe of helices.

These three categories can be interpreted through the lens of robustness:

changes that are either signal stable, sample stable, or unstable. These cat-

egories, abbreviated as ‘‘signal,’’ ‘‘sample,’’ and ‘‘universe,’’ will become a

key part of our analysis to give condition number both an intuitive signifi-

cance and a threshold for well conditioned versus ill conditioned.
Materials

We now calculate the ratio k ¼ supdxðjjdf k =kf ðxÞ k Þ=ðkdx k =kx k Þ for all
10 parameter sets, each at 5, 10, or 20% perturbation. Under the supremum
Biophysical Journal 113, 321–329, July 25, 2017 323
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FIGURE 1 Actual versus model standard deviation for helix classes of (a) Haloferax volcanii, (b) Escherichia coli, and (c) Encephalitozoon cuniculi 16S

rRNA sequences. These sequences have been shown to have very different MFE accuracies and behaviors under SHAPE perturbation (29); their helix-class

frequency behaviors, however, are seen to be similar, and thus are assumed to be typical. One hundred samples of 1000 structures each were generated for the

sequences, using the same unperturbed, original set of parameters. To gauge the normal level of helix-class frequency variation, the standard deviation for

each helix class frequency was calculated (i.e., the square root of the average of the squared deviations from the mean). Dots represent a helix class, with the

mean, m, of its frequency across 100 samples as its x coordinate, and the calculated standard deviation, s0, of its frequency across 100 samples as its y co-

ordinate. The curve represents the model standard deviation, calculated as s ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
npð1� pÞp

, where p is the ratio of the observed frequency of the helix class

over the sample size, n. In general, a very good agreement exists between actual and model standard deviations.
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requirement of the definition, we set the largest ratio out of the 10 parameter

sets as the relative condition number, k.

We chose RNA families of differing average lengths (see Table 1) and

selected five sequences from each family to span the available range of

MFE accuracies. This was done to explore possible correlations between

k and both sequence length and MFE accuracy. Previous results indicate

differing behaviors across both sequence length (with respect to prediction

accuracy (13)) and MFE accuracy (with respect to SHAPE-directed accu-

racy (29)); it is feasible that conditioning behavior may also be correlated

across sequence length and/or MFE accuracy.

Finally, these families were also chosen for their highly structured con-

formations; their structures are known to be stable under a variety of con-

ditions. Thus, it is presumed that any instability or ill conditioning of the

sampling prediction is due to the algorithm and is not a reflection of the un-

derlying biology.
TABLE 1 RNA Families Tested

Name

Length MFE acc.

med min max med min max

tRNA 75 73 77 0.51 0.00 0.95

5S rRNA 120 119 122 0.55 0.15 0.85

RNaseP 327 205 354 0.49 0.13 0.68

Intron group I 543 480 554 0.30 0.06 0.74

16S rRNA (small) 958 940 969 0.25 0.14 0.45

16S rRNA (med) 1259 1231 1399 0.29 0.17 0.37

16S rRNA (long) 1537 1528 1548 0.41 0.18 0.64

16S rRNA (extra) 1962 1841 2090 0.34 0.18 0.42

The RNA families tested were chosen to span a range of lengths. The data on

tRNA, 5S rRNA, and 16S rRNA families were taken from the Comparative

RNAWebsite (51), the data on RNaseP from the RNase PDatabase (52), and

the data on intron group I fromRfam (53). Each family is represented by five

sequences that span the available spectrum ofMFE accuracies, as calculated

by F-measure. The 16S rRNA sequences were subdivided based on length

into four categories roughly 300–400 nucleotides apart, as this is the spacing

for the two prior families: sequences in the ‘‘small’’ category are�950 nucle-

otides long, those in the ‘‘medium’’ category �1250, those in the ‘‘long’’

category �1550, and those in the ‘‘extra long’’ category �1950. This table

provides the median and minimal and maximal lengths and MFE accuracies

of the five sequences in each family. Further sequence information can be

found at the end of the article in Table 2.
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All Boltzmann samples were generated using GTfold’s GTboltzmann

function (30).
RESULTS

We computed the relative condition number, k, for each of
the sequences in the families in Table 1. Median condition
numbers for each family are given in Fig. 2, with subsequent
analysis with respect to robustness in Figs. 3 and 4. We
further investigated the relation of k toMFE accuracy, length,
perturbation level, and signal behavior by means of correla-
tion analysis, demonstrating that k has a strong and clear cor-
relation to signal behavior. Because signal behavior was
explicitly defined in terms of robustness, results thus demon-
strate the equivalence of the quantitative condition number
and the qualitative measure of robustness, leading to a char-
acterization of sequences that is both rigorous and intuitive.

A number of observations can be made about Fig. 2. First,
the size of changes in the Boltzmann sample signal is not
linear in the degree of perturbation, as the condition number
does not remain the same across perturbation levels for any
family. Additionally, there is no clear pattern for k across
perturbation levels; although many families see an increase
in k as the perturbation percentage increases from 5 to 10
to 20%, Intron group I, 16S rRNA medium, and 16S
rRNA are notable exceptions. At first glance, neither is there
an obvious pattern to k with respect to families of longer or
shorter lengths. However, a more in-depth analysis confirms
that a positive correlation exists between length and k for
both 5% (Spearman’s r ¼ 0.4715, p ¼ 0.0021) and 10%
(r ¼ 0.3313, p ¼ 0.0368), but not for 20% (r ¼ 0.1305,
p ¼0.4222), indicating that for lower perturbations, shorter
sequences are better conditioned.

Correlation analysis was also done on k against MFE ac-
curacies. Although it is not clear why some sequences are



TABLE 2 Table of RNA Sequences Tested by Family

Family Name Accession No. Length MFE Accession No.

tRNA Sinorhizobium meliloti AL591786 77 0

Phalaenopsis aphrodite, formosana AY916449 73 0.954

Corynebacterium diphtheriae BX248359 73 0.755

Burkholderia cepacia L28151 76 0.205

Saccharomyces cerevisiae J01381 75 0.51

5S rRNA Miniopteris fossilis V00647 120 0.15

Metasequoia glyptostroboides M10432 120 0.29

Schizosaccharomyces pombe K00570 119 0.85

Oryza sativa M18170 119 0.55

Pleurodeles waltl X16851 122 0.76

RNaseP Tarsius syrichta L08801 286 0.13

Zygosaccharomyces bailii AF186231 205 0.68

Acidithiobacillus ferrooxidans X16580 327 0.59

Pseudomonas fluorescens M19024 354 0.49

Heliobacterium chlorum U64881 342 0.32

Intron group I Spartina anglica Z69912 554 0.06

Halocaridina rubra L19345 543 0.30

Tetrahymena thermophila V01416 506 0.74

Pinus thunbergii D17510 550 0.13

Bensingtonia yamatoana D38239 480 0.51

16S rRNA (small) Sciurus aestuans AJ012746 968 0.34

Acomys cahirinus X84387 940 0.20

Lemur catta AF038013 954 0.251

Navia robinsonii U93061 969 0.447

Vombatus ursinus U61078 958 0.135

16S rRNA (medium) Tubulinosema acridophagus AF024658 1399 0.371

Vittaforma corneae L39112 1259 0.33

E. cuniculi X98467 1295 0.17

Varimorpha imperfecta AJ131646 1231 0.288

Endoreticulatus schubergi L39109 1252 0.23

16S rRNA (long) E. coli J01695 1542 0.41

Streptomyces griseus X61478 1528 0.322

Mycoplasma hyopneumoniae Y00149 1537 0.639

Mycobacterium leprae X56657 1548 0.179

Comamonas testosteroni M11224 1536 0.524

16S rRNA (extra) Oryctolagus cuniculus X06778 1863 0.177

Rhodogorgon carriebowenis AF006089 1841 0.338

Plasmodium falciparum M19172 2090 0.423

Zea mays X00794 1962 0.258

Plasmodium vivax U07367 2063 0.385

Note the range of both sequence lengths and MFE accuracies.
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either poorly predicted or ill conditioned, a correlation be-
tween them would have had significant implications, since
the condition number could then give a confidence estimate
of prediction accuracy for sequences for which there are no
known structures. Unfortunately, after calculating Spear-
man’s coefficients for all 120 sequences, no significant
correlation was found for any perturbation level, at either
5% (r ¼ �0.1526, p ¼ 0.3471), 10% (r ¼ �0.1077, p ¼
0.5083), or 20% (r¼ 0.2395, p¼ 0.1366). Indeed, we noted
the existence of inaccurate sequences with both low and
high k; this fact will be discussed in more depth later.
Thus, there is no evidence that the unknown sequence char-
acteristics causing either inaccurate predictions or ill condi-
tioning are related.

Instead, we found that small k is related to the robustness
of the signal, as partitioned into three categories: that
which remains the signal (signal robustness), that which
becomes the part of the larger sample or vice versa (sample
robustness), and that which either appears or disappears
from the sample to the universe of structures (nonrobust-
ness). To illustrate this relationship in Fig. 3, we take
Fig. 2 and partition eah condition number into these three
categories.

Fig. 3 shows that the proportion of these three categories
differs drastically across sequences. The ‘‘signal’’ category
is a much larger proportion of the total for smaller sequences
at lower perturbations; these are also the sequenceswith lower
condition number. At stronger perturbations, the second
‘‘sample’’ category begins to dominate. Finally, the most
unstable ‘‘universe’’ category is largely not seen until the
strongest, 20% perturbation for the longer sequences. These
are also the sequences with the largest condition number.

These trends are confirmed when we apply this same
analysis to all sequences in Fig. 4, and not just the medians
Biophysical Journal 113, 321–329, July 25, 2017 325



FIGURE 2 Median condition number for the

five sequences in each RNA family. Results are

by RNA family and per perturbation level, with

RNA families ordered by ascending median

sequence length. Similar to prediction accuracy,

it is not clear what characteristics of the sequence

give rise to differing values of conditioning. To

see this figure in color, go online.
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of each family in Fig. 3. Smaller condition numbers clearly
have a much larger proportion of blue ‘‘signal’’ changes. As
k grows, almost all of the growth comes from yellow ‘‘sam-
ple’’ changes; the absolute amount of ‘‘signal’’ changes
stays relatively constant. Changes in the last red ‘‘universe’’
category begin to appear in significant quantity at higher
values of k. Thus, Fig. 4 indicates strongly that ‘‘signal’’
changes are associated with low k, ‘‘sample’’ changes with
moderate to high k, and ‘‘universe’’ with high k.

Correlation analysis quantifies this relation when we
compare k values for all 40 sequences versus the propor-
tion of each category at three different perturbation levels.
We find them to be highly correlated, i.e., the size of k

is predictive of its underlying sources of change. Strong
correlations exist between k and the percentage of ‘‘signal’’
changes (r ¼ �0.8082, p ¼ 6.6072 � 10�29), the percent-
age of ‘‘sample’’ changes (r ¼ 0.6149, p ¼ 4.3417 �
10�14), and the percentage of ‘‘universe’’ changes (r ¼
0.5553, p ¼ 4.6224 � 10�11). We shall see that this
strong correlation to signal behavior provides an elegant
way to interpret k in terms of robustness, which in turn
326 Biophysical Journal 113, 321–329, July 25, 2017
will aid in defining rough guidelines for well versus ill
conditioning.
DISCUSSION

The tight correlation between the mathematical definition
of conditioning and the biologically inspired definition of
robustness has a number of important implications. Specif-
ically, it indicates that the three categories of robustness
may also be used to set conditioning thresholds between
well-conditioned, ill-conditioned, and intermediate se-
quences.Based on these thresholds,wedetermine that thema-
jority of these sequences are not ill conditioned, but instead
are sample robust against perturbations. This provides an
explicit verification to the long-held implicit belief that
Boltzmann sampling mitigates the ill conditioning of MFE
prediction methods. Finally, the existence of both well-
and ill-conditioned sequences, coupled with the lack of any
correlation with MFE accuracy, implies that both NNTM
parameter refinement and also alternate prediction methods
shouldbe pursued to improve prediction accuracy. The former
FIGURE 3 The same values as in Fig. 2, but

subdivided by three categories of changes: those

involving movement within the signal (signal),

those involving movement outside the signal but

within the sample (sample), and those involving

movement outside of the sample within the uni-

verse of helix classes (universe). Note the domi-

nance of the ‘‘signal’’ category in sequences of

smaller k, whereas the ‘‘universe’’ category only

appears in the longer sequences and/or at higher

perturbations. To see this figure in color, go online.



FIGURE 4 All sequences ordered by ascending

condition number. Each condition number is again

subdivided into the three categories of Fig. 3. The

well-conditioned sequences, with a large propor-

tion of ‘‘signal’’ changes, have values <90; the

ill-conditioned sequences begin at 130, where the

‘‘universe’’ changes begin to be more prominent.

To see this figure in color, go online.
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implication follows from the existence of ill-conditioned,
inaccurate sequences, whereas the latter follows from the ex-
istence of well-conditioned, inaccurate sequences.

Because there is a strong correlation between k and
robustness, we use the different categories of robustness—
changes that either remain in the signal, remain in the larger
sample, or are not confined to the sample—to define the
different categories of conditioning. Specifically, we use
the observation for Fig. 4 that signal-robust changes in
blue dominate for early values of k, sample robust changes
in yellow in the midrange of k, and changes not restricted to
the sample in red for higher values of k.

Because such a strong relation exists, we use the different
robustness categories to define specific thresholds for well
versus ill conditioning. Intuitively, well-conditioned se-
quences should correspond to sequences in which the major-
ity of changes occur within the signal. To find the range of
such sequences, we calculate the average percentage of
‘‘signal’’ changes over a window of five consecutive se-
quences; we set the well-conditioned threshold to the last
value in which the average for the preceding five values
is >50%. This turns out to be at the 48th sequence, which
has a k of 88.182.

Similarly, to find the threshold for ill-conditioned se-
quences, we calculate the average percentage of the most
disruptive ‘‘universe’’ changes for a sliding window of five
sequences. We set the ill-conditioned threshold at the point
at which the average goes above 10% for the first time; this
is at the 70th sequence, with a k of 131.257.

Thus, sequences with k < 90 can be considered well
conditioned, with a signal that will likely remain the signal
even under perturbations. Similarly, ‘‘semi-conditioned’’ or
intermediate sequences with k between 90 and 130 are
likely to be sample stable; i.e., although the entire signal
is not likely to remain signal under perturbation, the overall
sample is merely experiencing a reweighting of its fre-
quencies. Finally, sequences with condition numbers
a>130 should be considered ill conditioned; it is likely
that a significant part of their changes come from
completely new helix classes appearing in the new signal.
Thus, the qualitative definitions of robustness married to
the quantitative rigor of conditioning provide a clear and
balanced analysis of Boltzmann sampling under NNTM
perturbation.

The ill-conditioned threshold occurs at the 70th sequence
out of 120. That more than half of the sequences are at least
sample robust has at least two major implications: first, that
the use of Boltzmann sampling against parameter fluctua-
tions is validated, and second, that efforts to refine NNTM
parameters in hopes of improving accuracy may be of
limited effectiveness.

The first implication follows from the fact that the major-
ity of the sequences merely experience a reweighting of
helices under perturbation. Indeed, even much of the ill-
conditioned minority have large proportions of sample
stable changes, despite some unstable changes. Only 17
of the 120 sequences experienced disruptive ‘‘universe’’
changes contributing >10% of the total; >85% of se-
quences had at least 90% of changes resulting from helix
classes already in the sample-shifting frequencies, i.e., sam-
ple-robust helix classes. Thus, although predicting the MFE
structure may be considered ill conditioned (10), sampling
from the Boltzmann distribution is arguably more well
conditioned than not, as has long been implicitly assumed
but not verified.

The overall sample robustness also has a second implica-
tion for accuracy and ongoing efforts to improve prediction
methods: both NNTM model improvement and other alter-
native methods are necessary. Because there was no correla-
tion of kwith MFE accuracy, we know that well-conditioned
sequences are not necessarily accurate; they can be stable
around inaccurate low-energy structures. Indeed, for the se-
quences in the well-conditioned, robust category, the me-
dian MFE accuracy is 0.34 out of 1; more than one-fifth
of the well-conditioned sequences have an MFE accuracy
of <0.2.

Hence, for well-conditioned but inaccurate sequences,
minor adjustments to the NNTM may not substantially
Biophysical Journal 113, 321–329, July 25, 2017 327
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change the inaccurate predictions; this extends previous
results, which have indicated that refined parameters do
not uniformly increase prediction accuracies of sequences
(13). Hence, the precision of NNTM parameters is not
the only factor affecting secondary structure prediction ac-
curacy; other factors, such as kinetic traps (31–33) and
multiple native conformations (34–37), still necessitate the
development of alternate and/or complementary computa-
tional and experimental methods (38–42).

However, the existence of ill-conditioned sequences,
comprising a third of all sequences, also indicates that ef-
forts to improve the thermodynamic model do remain
important. For these sequences, perturbations result in a sig-
nificant number of new helix classes; some amount of
parameter adjustments or improvements will result in a sub-
stantially different signal. For sequences with a low MFE
accuracy, this may be the difference between an accurate
and an inaccurate prediction. Thus, efforts to refine the
NNTM are still important, especially when considering
longer sequences at higher perturbations, as almost all of
these ill-conditioned sequences are.

It is worth mentioning that some exploratory work was
done in conjunction with this study, in which we perturbed
only subsets of the parameters. Results indicate that the ma-
jority of the changes tracked by k came from perturbing
either the loop or the stack parameter files; perturbing the
other parameters had only a minimal effect. Hence, refining
these parameters is likely to pay the biggest dividends in ef-
forts to improve the NNTM. This line of questioning is par-
alleled and expanded in a recent work (27).

Preliminary studies (27) have also indicated that the ma-
jority of the tabulated error ranges for the loop and stack pa-
rameters fall within the 20% perturbation levels of this
study. Thus, the level of perturbations reasonably expected
to exist in the loop and stack parameters has been shown
here to have a significant effect on a number of sequences.
CONCLUSIONS

For the first time, to our knowledge, conditioning for Boltz-
mann samples is rigorously quantified with a relative condi-
tion number, k, and is shown to be highly correlated with
robustness. Using this correlation, we define well-condi-
tioned sequences as those that are signal robust, with k <
90, ill-conditioned sequences as those that are not robust,
with k > 130, and intermediate sequences as those that
are sample robust, with k between 90 and 130.

Of particular interest are the entirely new helix classes
under perturbation that tip sequences into ill conditioning
and nonrobustness. They hold at least two implications.
First, because they make up only a small fraction of all per-
turbed signals, we conclude that Boltzmann sampling as a
whole is robust against NNTM perturbations, in vindication
of one of its original purposes. Second, because they do
exist, this implies that ongoing efforts to refine the NNTM
328 Biophysical Journal 113, 321–329, July 25, 2017
still matter to certain sequences. The lack of correlation
between k and MFE accuracy, however, also indicates that
for some well-conditioned but inaccurate sequences, other
methods besides NNTM refinement (such as multiple
sequence analysis (43–45), chemical footprinting (46,47),
or SHAPE analysis (48–50)) need to be pursued to increase
accuracy.

As the first study, to our knowledge, to tackle the condi-
tioning and robustness of a Boltzmann sample for perturba-
tions across the model, this work naturally opens the door
for further research. Avenues to be explored include using
more sophisticated perturbation models, such as those re-
flecting parameter dependencies, as well as testing the cor-
relation between sample conditioning and responsiveness to
experimental or biological data like SHAPE (28). Relation-
ships between conditioning and the accuracies of entire
samples also remain an open question. With the founda-
tional concepts and metrics introduced in this article, deeper
research into these important yet poorly understood areas
has now become possible.
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5. Reeder, J., M. Höchsmann, ., R. Giegerich. 2006. Beyond Mfold:
recent advances in RNA bioinformatics. J. Biotechnol. 124:41–55.

6. Zuker, M. 2003. Mfold web server for nucleic acid folding and hybrid-
ization prediction. Nucleic Acids Res. 31:3406–3415.

7. Ding, Y., and C. E. Lawrence. 2003. A statistical sampling algorithm
for RNA secondary structure prediction. Nucleic Acids Res. 31:7280–
7301.

8. Hofacker, I. L. 2003. Vienna RNA secondary structure server. Nucleic
Acids Res. 31:3429–3431.

http://refhub.elsevier.com/S0006-3495(17)30565-9/sref1
http://refhub.elsevier.com/S0006-3495(17)30565-9/sref1
http://refhub.elsevier.com/S0006-3495(17)30565-9/sref2
http://refhub.elsevier.com/S0006-3495(17)30565-9/sref2
http://refhub.elsevier.com/S0006-3495(17)30565-9/sref3
http://refhub.elsevier.com/S0006-3495(17)30565-9/sref3
http://refhub.elsevier.com/S0006-3495(17)30565-9/sref3
http://refhub.elsevier.com/S0006-3495(17)30565-9/sref3
http://refhub.elsevier.com/S0006-3495(17)30565-9/sref4
http://refhub.elsevier.com/S0006-3495(17)30565-9/sref4
http://refhub.elsevier.com/S0006-3495(17)30565-9/sref4
http://refhub.elsevier.com/S0006-3495(17)30565-9/sref5
http://refhub.elsevier.com/S0006-3495(17)30565-9/sref5
http://refhub.elsevier.com/S0006-3495(17)30565-9/sref6
http://refhub.elsevier.com/S0006-3495(17)30565-9/sref6
http://refhub.elsevier.com/S0006-3495(17)30565-9/sref7
http://refhub.elsevier.com/S0006-3495(17)30565-9/sref7
http://refhub.elsevier.com/S0006-3495(17)30565-9/sref7
http://refhub.elsevier.com/S0006-3495(17)30565-9/sref8
http://refhub.elsevier.com/S0006-3495(17)30565-9/sref8


RNA Sample Conditioning and Robustness
9. Zuker, M. 1986. RNA folding prediction: the continued need for inter-
action between biologists and mathematicians. Lect. Math Life Sci.
17:87–124.

10. Layton, D. M., and R. Bundschuh. 2005. A statistical analysis of RNA
folding algorithms through thermodynamic parameter perturbation.
Nucleic Acids Res. 33:519–524.

11. Zuker, M., and D. Sankoff. 1984. RNA secondary structures and their
prediction. Bull. Math. Biol. 46:591–621.

12. Wuchty, S., W. Fontana, ., P. Schuster. 1999. Complete suboptimal
folding of RNA and the stability of secondary structures. Biopolymers.
49:145–165.

13. Doshi, K. J., J. J. Cannone, ., R. R. Gutell. 2004. Evaluation of the
suitability of free-energy minimization using nearest-neighbor energy
parameters for RNA secondary structure prediction. BMC Bioinformat-
ics. 5:105.

14. SantaLucia, J., Jr., and D. H. Turner. 1997. Measuring the thermo-
dynamics of RNA secondary structure formation. Biopolymers.
44:309–319.

15. Mathews, D. H., J. Sabina,., D. H. Turner. 1999. Expanded sequence
dependence of thermodynamic parameters improves prediction of
RNA secondary structure. J. Mol. Biol. 288:911–940.

16. Turner, D. H., and D. H. Mathews. NNDB: the nearest neighbor param-
eter database for predicting stability of nucleic acid secondary struc-
ture. Nucleic Acids Res. 38:D280–D282

17. Walter, A. E., D. H. Turner, ., M. Zuker. 1994. Coaxial stacking of
helixes enhances binding of oligoribonucleotides and improves predic-
tions of RNA folding. Proc. Natl. Acad. Sci. USA. 91:9218–9222.

18. Le, S.-Y., J.-H. Chen, and J. V. Maizel, Jr. 1993. Prediction of alterna-
tive RNA secondary structures based on fluctuating thermodynamic pa-
rameters. Nucleic Acids Res. 21:2173–2178.

19. Trefethen, L. N., and D. Bau, III. 1997. Numerical Linear Algebra. So-
ciety for Industrial and Applied Mathematics, Philadelphia.

20. Stelling, J., U. Sauer, ., J. Doyle. 2004. Robustness of cellular func-
tions. Cell. 118:675–685.

21. Wilke, C. O. 2001. Selection for fitness versus selection for robustness
in RNA secondary structure folding. Evolution. 55:2412–2420.

22. Wagner, A. 2008. Robustness and evolvability: a paradox resolved.
Proc. Biol. Sci. 275:91–100.

23. Sanjuán, R., J. M. Cuevas,., A. Moya. 2007. Selection for robustness
in mutagenized RNA viruses. PLoS Genet. 3:e93.

24. Rogers, E., and C. E. Heitsch. 2014. Profiling small RNA reveals multi-
modal substructural signals in a Boltzmann ensemble. Nucleic Acids
Res. 42:e171.

25. Gratton, S. 1996. On the condition number of linear least squares prob-
lems in a weighted Frobenius norm. BIT Numer. Math. 36:523–530.

26. Higham, D. J. 1995. Condition numbers and their condition numbers.
Linear Alg. App. 214:193–213.

27. Zuber, J., H. Sun, ., D. H. Mathews. 2017. A sensitivity analysis of
RNA folding nearest neighbor parameters identifies a subset of free en-
ergy parameters with the greatest impact on RNA secondary structure
prediction. Nucleic Acids Res. Published online March 15, 2017. http://
dx.doi.org/10.1093/nar/gkx170.

28. Durbin, R., S. R. Eddy, ., G. Mitchison. 1998. Biological Sequence
Analysis: Probabilistic Models of Proteins and Nucleic Acids. Cam-
bridge University Press, New York.
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