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Abstract

The paramyxovirus family comprises major human and animal pathogens such as measles virus 

(MeV), mumps virus (MuV), the parainfluenzaviruses, Newcastle disease virus (NDV), and the 

highly pathogenic zoonotic hendra (HeV) and nipah (NiV) viruses. Paramyxovirus particles are 

pleomorphic, with a lipid envelope, nonsegmented RNA genomes of negative polarity, and densely 

packed glycoproteins on the virion surface. A number of crystal structures of different 

paramyxovirus proteins and protein fragments were solved, but the available information 

concerning overall virion organization remains limited. However, recent studies have reported 

cryo-electron tomography-based reconstructions of Sendai virus (SeV), MeV, NDV, and human 

parainfluenza virus type 3 (HPIV3) particles and a surface assessment of NiV-derived virus-like 

particles (VLPs), which have yielded innovative hypotheses concerning paramyxovirus particle 

assembly, budding, and organization. Following a summary of the current insight into 

paramyxovirus virion morphology, this review will focus on discussing the implications of these 

particle reconstructions on the present models of paramyxovirus assembly and infection.

Introduction

Together with the rhabdo-, filo-, borna- and pneumoviruses, the paramyxoviruses form the 

order mononegavirales that features enveloped virions with single-stranded, non-segmented 

RNA genomes of negative polarity. Common to all members of the paramyxovirus family 

are two membrane glycoprotein complexes, the attachment (H, HN, or G) and the fusion (F) 

proteins, that are responsible for receptor binding and cell entry through fusion of the viral 

envelope with target cell membranes, respectively [1] (Figure 1). The RNA genome is 

encapsidated by the viral nucleocapsid (N) protein, resulting in the formation of a helical 

ribonucleoprotein (RNP) complex that serves as the template for the viral RNA-dependent 

RNA-polymerase complex composed of the viral phospho- (P) and large (L) proteins. The 

matrix (M) protein organizes particle assembly through interaction with both N proteins in 

the RNP complex and the membrane-embedded glycoprotein complexes. Some members of 

the family such as pathogens of the rubulavirus genus contain a small hydrophobic (SH) 

transmembrane protein in addition to these six structural proteins. Only J paramyxovirus 
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encode a fourth integral membrane protein, transmembrane (TM), that stimulates cell-to-cell 

fusion but not viral entry [2].

While electron microscopy has established a basic framework for the paramyxovirus virion 

organization [3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23] and a number of 

crystal structures of paramyxovirus proteins and protein fragments have been solved (for 

instance [6,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42], the reconstruction 

of the 3D ultrastructures of paramyxovirus particles is impaired by particle size and the 

pleomorphic nature of the virions, which prevents single particle reconstruction approaches. 

To overcome the problem, recent studies have applied cryo-electron tomography (cryo-ET) 

to the analysis of paramyxovirus particles. By providing insight into the 3D structures of 

SeV, MeV, and NDV particles, and the NiV glycoprotein organization displayed on VLPs 

[6,25,43,44], this work has returned two highly unexpected new proposals concerning 

paramyxovirus particle assembly and organization: i) coating of the MeV RNPs by M 

protein tubes, which may spotlight an alternative particle assembly mechanism; and ii) an 

organized assembly of NiV F protein trimers into a hexameric ring-like assembly that may 

contribute to F conformation stability and concerted triggering for efficient viral entry.

Virion morphology and substructures

Overall particle morphology appears to vary considerably depending on the paramyxovirus 

genus investigated. For instance, tomograms of SeV, a member of the respirovirus genus that 

also includes the human parainfluenzaviruses type 1 and 3, showed predominantly spherical 

particles [44], while reconstructions of NDV virions, a member of the avulavirus genus, 

revealed shapes ranging from spherical to elongated ellipsoidal [6], and particles of the 

morbillivirus type species MeV, schematically shown in figure 1A, showed a multitude of 

different configurations [43]. Independent of the predominant particle shape and consistent 

with previous negative-stain EM-based visualization of paramyxoviruses, each of these 

studies spotlighted large variations in particle size, ranging from approximately 110–540 nm 

in diameter for SeV, 100–250 nm diameter for largely spherical NDV particles, and 50–510 

nm in the case of MeV. In particular elongated to filamentous particles frequently exceed 

500 nm in length, resembling in appearance the largely filamentous organization of 

respiratory syncytial virus particles of the related pneumovirus family [45].

All paramyxovirus RNP genomes show a characteristic herringbone-like structure when 

examined by negative-stain EM [46]. Reconstructions of the nucleocapsids revealed a left-

handed helical arrangement with a pitch varying from 4.6 to 7 nm, depending on the 

paramyxovirus family member analyzed [7,8,28,43,47,48]. Cross-sections through the 

nucleocapsids showed an inner diameter of 4–5 nm and an overall tube diameter of 

approximately 20 nm [6,43]. Virion reconstructions and functional studies have 

demonstrated that multiple genome copies can be packaged by a single particle [44,49], 

likely reflecting a poorly ordered assembly process. Like all other negative-polarity RNA 

viruses, isolated paramyxovirus genomes are not infectious and only the viral RNBA-

dependent RNA-polymerase (RdRp) complex is capable of transcribing and replicating the 

RNP genomes [46]. In addition to the nucleocapsid, infectious particles must therefore 

package and deliver RdRp complexes to target cells to initiate a new infectious cycle.
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Paramyxovirus entry is mediated under neutral pH conditions by a concerted action of the 

viral attachment and F glycoproteins. Cryo-electron tomograms of unstained paramyxovirus 

particles have revealed a dense array of glycoprotein spikes on the virion surface, but no 

higher order organization was apparent and the identification of individual glycoprotein 

oligomers was prevented by the tight packaging of the complexes [6,43,44,50].

Matrix protein assemblies

A crystal structure of the NDV M protein was recently solved and revealed a dimeric 

organization with 4-fold symmetry [6]. In addition to interacting with the N protein and the 

glycoprotein tails, the M protein contains positive charge patches on the surface that allow 

interaction with lipid membranes. Through multimerization of M dimers into a grid-like 

protein array with a 6° angle between the individual dimers, the M protein can introduce 

membrane curvature that is thought to promote virus budding [51,52]. Transient expression 

of M was shown to be sufficient in several cases to induce paramyxovirus VLPs formation 

[53,54,55,56,57,58,59,60,61,62]. However, this observation does not apply to members of 

the rubulavirus genus such as mumps virus, which require co-expression of M protein with 

the viral NP and glycoproteins to induce efficient particle production. In the case of the 

rubulaviruses, the M-N interaction not only recruits RNP to the sites of particle assembly, 

but is also thought to trigger particle release [21,63]. The ability to only release viral 

particles that contain RNP would be an advantage; allowing the virus to limit the release of 

noninfectious, empty virions. In addition to the M protein, also the glycoproteins, especially 

the F protein, have been implicated in modulating assembly and budding of at least some 

paramyxoviruses such as MuV [63], SeV [56], PIV5 [21] and NiV [59,64]. For NiV, 

autonomous formation of virus-like particles (VLP) by the F protein, and to a much lesser 

extent the G protein, was observed in addition to the more conventional M protein-mediated 

budding [59,64]. Although rare among the paramyxoviruses, autonomous F-induced VLP 

formation was also described for SiV and MeV [54,55,56]. However, efficient virion 

assembly requires in all of these cases the presence of the M protein and the biological 

function of F-mediated VLPs is still unclear.

Interaction of the M protein with the RNP complex

In NDV and SeV particle reconstructions, a distinct M layer of approximately 5 nm was 

observed below the envelope membrane, but only in a minority of virions examined and 

mostly covering only parts of the luminal membrane surface [6,44]. Interestingly, in 

membrane areas with detectable M protein layer, the NDV glycoproteins appeared to follow 

the pattern of the M array, positing the cytoplasmic tails of the HN and F protein complexes 

in the gaps between the M protein dimers. The low abundance of M protein arrays in the 

tomograms was hypothesized to represent disassembly of the arrays after budding is 

complete to facilitate subsequent membrane fusion and particle uncoating [6], but could 

alternatively also originate from specimen preparation, storage, and/or cryo-preservation. 

While the presence of functional M protein and intact glycoprotein cytoplasmic tails can 

down-modulate cell-to-cell fusion activity of some paramyxoviruses [65,66,67], it is unclear 

whether F refolding is indeed suppressed through F tail contact with intact M protein arrays 

as was speculated [6]. However, it is difficult to envision the subsequent introduction of 
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extreme negative membrane curvature required for lipid merger and opening of a fusion pore 

[68] in the presence of an intact M protein lattice, necessitating the partial or complete 

breakdown of the arrays at some point prior to infection. The molecular driving force for 

disassembly of the ordered M layer is currently unknown. Receptor binding by the 

attachment protein was suggested as a possible impetus [6], but evidence is lacking that 

receptor binding translates to conformational rearrangements of the cytosolic tails and even 

if these occur it is not apparent how they could be sufficient to disturb highly ordered M 

protein arrays.

Unlike the matrix protein patches found below the envelope membrane in some of the NDV 

and SeV particle reconstructions, no significant protein density was detected in density 

profiles obtained from MeV tomograms. Rather, tubular structures with a diameter of 

approximately 30 nm were noted in some virions in addition to the 20 nm herringbone-like 

nucleocapsids (figure 1B) [43]. While the 20 nm tubes adhered to both anti-N and anti-M 

immunosorbent EM grids, the 30 nm tubes were precipitated only onto the latter grids, 

suggesting that the larger diameter structures consist of RNPs wrapped into M sheaths. The 

30 nm M tubules formed a left-handed helix like the MeV RNP itself (figure 2), albeit with a 

pitch of 7.2 nm versus 6.4 nm calculated for the nucleocapsid. Within virions, the tubes 

packed into tight bundles that stood in lateral contact with the viral envelope. Interestingly, 

tubes of either diameter precipitated poorly onto anti-P grids, ruling out that assembled 

nucleocapsids are decorated by default with a high content of P molecules interacting with 

individual N protomers. By contrast, cylindrical M arrangements or structures equivalent to 

the 30 nm MeV tubes were not found in NDV particles [6]; unfortunately, SeV 

reconstructions lacked sufficient resolution of the RNPs to test for the presence of different 

types of tubular structures [44]. M tubes were likewise absent from HPIV3 particles [5]. 

However, the interpretation of the HPIV3 data is challenging, since none of the 

reconstructed HPIV3 particles that featured RNP and/or glycoprotein spikes contained any 

M density, while a particle proposed to contain M arrays lacked genome, glycoproteins, and 

was substantially smaller in size.

The differences in results in particular between reconstructed NDV and MeV particles bring 

up the question of whether MeV nucleocapsids wrapped into M tubes represent a sample 

preparation artifact, dead-end complexes of a particle assembly process gone 

catastrophically wrong, or a physiologically relevant stage of the replication cycle of 

morbilliviruses, and perhaps of even a broader subset of paramyxovirus genera. Without 

further sightings of these M structures in additional MeV particle reconstructions that ideally 

follow particles through different stages of assembly and budding, this issue cannot be 

addressed definitively. However, we can examine the general plausibility of a physiological 

role of these M tubules by considering three basic questions: i) does a driving force exist for 

the formation of M tubules under native conditions; ii) is a physiological role of M tubules in 

the MeV life cycle conceivable; and iii) does the available phenotypic information support 

the existence of MeV M tubules?

i. The paramyxovirus N protein is composed of an N-terminal Ncore domain that is 

responsible for N homo-oligomerization and RNA encapsidation and a C-

terminal Ntail that extends outwards from the RNP assembly. While Ntail is 
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structurally intrinsically disordered, areas of high sequence conservation were 

identified that engage in multiple protein-protein interactions [69]. A molecular 

recognition element (MoRE) mediates transient binding of the P-L polymerase 

complex [70], and the terminal residues of the Ntail were demonstrated to 

mediate specific contacts with the MeV M protein [71], promoting genome 

packaging into nascent virions. Consequently, a high density of M binding sites 

is displayed on the surface of assembled MeV RNPs, which should be sufficient 

to trigger M multimerization around the nucleocapsid in infected cells. Disorder 

of the central Ntail section was furthermore proposed to provide the necessary 

flexibility to negotiate the different symmetries of the 20 nm inner RNP tubes 

and the 30 nm outer M cylinders [43]. However, a recent study has demonstrated 

that removal of the disordered tail region and relocation of the MoRE domain 

into Ncore does not abrogate replication of recombinant MeV, provided the M-

binding terminal residues are added to the Ntail stump [72]. Although these MeV 

recombinants were not tested for the presence of the 30 nm tubes, they 

demonstrate that structural flexibility provided by the central Ntail section does 

not constitute a requirement for productive MeV particle assembly.

ii. A number of candidate physiological effects of M tubules around the RNPs is 

conceivable. Certainly, RNP wrapping would prevent RdRp access and/or 

migration along the genome, blocking both genome transcription and replication. 

The tight arrangements of the 30 nm tubules in tomograms furthermore suggests 

that the wrapping may increase genome density, and it may ensure that genomes 

are packaged into nascent virions by recruiting the pre-wrapped nucleocapsids to 

budding sites. While all of these effects are poised to enhance the assembly of 

infectious particles, RNP wrapping by M tubules appears incompatible with a 

central step of paramyxovirus budding models, the introduction of membrane 

curvature through M protein arrays below the lipid membrane. Although 

tomograms of MeV particles showed association of the 30 nm tubules with the 

luminal surface of the viral envelope, large planar arrays rather than a cylindrical 

arrangement should be required to introduce sufficient membrane curvature for 

effective formation of progeny virions. On the other hand, MeV budding is 

inefficient [73], particle shape is more diverse than reported for members of 

some other paramyxovirus genera [6,43,44], and progeny virions remain largely 

cell-associated rather than being released into culture supernatants [74]. Also, it 

was suggested that MeV M could play different roles in RNP wrapping and the 

introduction of membrane curvature [43], although this would require additional 

interfaces between M proteins engaged in tubular and planar arrangements. In 

addition, tight spatial and temporal regulation of RNP wrapping would be 

essential, since the bulk of paramyxovirus proteins is generated through 

secondary transcription of progeny genomes [46] and premature shut-down of 

the transcriptase through genome wrapping would be catastrophic for the 

infection cycle. Equally important, the M tubules must disassemble to allow 

polymerase access to the genome after infection, and the molecular basis for both 

regulation of M tube formation and the subsequent induction of M 

depolymerization is unknown. A direct role of receptor binding, via 

Cox and Plemper Page 5

Curr Opin Virol. Author manuscript; available in PMC 2018 June 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



conformational changes of the cytosolic glycoprotein tails, appears even less 

likely in the case of M tubules than for planar M arrays as was suggested for SeV 

uncoating.

iii. Three lines of phenotypic evidence are consistent with a physiological role of M 

tubules in the MeV life cycle. Expression of the MeV M protein reduces genome 

transcription and replication [71,75] but no such effect was noted for SeV M 

[76]; intracellular transport of nucleocapsids of recombinant MeV harboring M 

proteins with reduced half life was inefficient in the absence of M accumulation 

at intracellular membranes [57]; and MeV N proteins lacking the disordered 

central region of the tail domain altered viral mRNA expression in the context of 

virus infection but not in polycistronic minigenome reporter assays [72]. Since M 

protein is only present in the infection but not the minigenome experiments, it is 

conceivable that removing the disordered tail section affects the frequency with 

which the tubular M structures form and thus the timing of shut-down of genome 

access by the RdRp.

Glycoprotein organization

The physiological oligomer of the paramyxovirus attachment protein is the tetramer, 

consisting of a dimer of homotypic dimers, whereas the F protein, a type I viral fusion 

protein, assembles into homotrimers [46]. The attachment proteins feature a globular head 

domain with the beta propeller fold characteristic for sialidases that attach to the 

transmembrane domain and cytosolic tails through a helical stalk domain [68]. A large body 

of evidence supports that the protein interface region responsible for specific hetero-

oligomerization with homotypic F protein trimers resides in this stalk [50,77,78,79,80,81]. 

Upon receptor binding by the globular head domain, exposure of [79,82] and/or a 

conformational change in the membrane-proximal attachment protein stalk domain 

[77,83,84] is considered to trigger major conformational changes in the metastable prefusion 

F trimer, resulting in propelling of a membrane attack group or fusion peptide towards the 

opposing membrane, hairpin formation, and the assembly of a thermodynamically highly 

stable fusion core or six-helix bundle structure, which induces extreme local negative 

membrane curvature and brings the F trimer transmembrane domains and fusion peptides, 

and thus viral envelope and target membranes, into close proximity [68].

Although attachment and F glycoprotein oligomers could not be definitely separated in 

reconstructions of unstained paramyxovirus particles, tomograms of HPIV3 particles [5] and 

recombinant MeV particles displaying stalk-elongated attachment proteins allowed the 

identification of the attachment protein globular head domains in radial density distribution 

plots [50]. The MeV attachment proteins in particular were engineered to extend the stalk 

length by approximately 4 nm, which is equivalent to nearly 50% of the length of the 

unmodified MeV H stalk, while maintaining bioactivity. These reconstructions confirmed a 

spatial arrangement of functional fusion complexes in which the attachment protein head 

domain is positioned membrane distal and above the prefusion F trimers [78].
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However, the tomograms failed to decipher the H to F oligomer stoichiometry in 

physiological fusion complexes. Multiple studies investigating different type I viral 

membrane fusion proteins have concluded that a concerted action of several fusion protein 

complexes is required to induce sufficient negative curvature in the viral envelope and 

cellular membrane to trigger local lipid disarray in the outer leaflets of the approaching 

bilayers, allowing merger of the disordered monolayers at the fusion tip and ultimately 

opening of a fusion pore [85,86,87,88,89,90,91]. If individual paramyxovirus glycoprotein 

homo-oligomers interact with each other for membrane fusion, each attachment protein 

tetramer would be sterically able to contact two F protein trimers in parallel. A recent study 

proposed an alternative F protein organization based on crystal structures of recombinant 

soluble NiV F protein trimers and tomograms of NiV glycoprotein-coated VLPs that both 

suggest a hexamer of F trimers ring-like assembly [25] (figure 3). In this arrangement, each 

F trimer contacts with its head domain two neighboring trimers, leaving only a single 

priming site available for interaction with the attachment protein. This F organization is 

provocative, since it may be able to reinforce the metastable prefusion conformation of the 

individual F trimers engaged in the ring structure prior to receptor binding, while activation 

of a single associated attachment protein tetramer may be sufficient to trigger the spatially 

and temporally highly coordinated refolding of all six F trimers locked into the ring 

structure. Since some F trimers appeared to be part of more than one hexameric structure, 

one could even envision a highly effective concerted wave-like refolding of numerous F 

complexes present on a viral particle after receptor binding by a small number of attachment 

protein tetramers. However, since hexameric F rings have so far been proposed only for NiV 

fusion proteins and NiV VLPs lacked the corresponding NiV G attachment proteins, it is 

unclear at present whether this F arrangement is germane only to the henipavirus genus and 

whether the presence of the attachment protein tetramers would alter the spatial organization 

of the F trimers.

Conclusions

Although only a limited number of paramyxovirus virion reconstructions is available at 

present, the insight gained from these studies has substantially impacted the current view of 

particle organization, assembly, and budding. A number of unexpected and potentially 

paradigm-changing hypotheses concerning the possible roles of the matrix protein in particle 

formation, genome packaging, and transcription control and of higher order glycoprotein 

organization in mediating efficient viral entry has emerged from these reconstructions. In 

addition to spotlighting previously unappreciated features of the paramyxovirus life cycle, 

these studies have also reinforced that central parts of the paramyxovirus replication, 

assembly, and uncoating machinery are currently mechanistically not understood. Since a 

detailed structural and mechanistic understanding of these central steps of the viral life cycle 

will inform the targeted development of much needed improved prophylactic and therapeutic 

anti-paramyxoviruses strategies, obtaining additional high-resolution particle structures and 

substructures is a high priority to test the physiological relevance of individual observations 

and assess their applicability to clinically-relevant pathogens of different genera within the 

family.
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Highlights

• Recent cryo-electron tomography reconstructions of Sendai virus, Newcastle 

disease virus, measles virus, and Nipah virus-derived virus like particles have 

yielded novel insight into paramyxovirus particle assembly and organization

• The Newcastle disease virus matrix protein formed distinct layers below the 

viral envelope and the viral envelope glycoproteins followed the pattern of 

this matrix array, while tubular matrix protein assemblies were observed in 

measles virus particles that wrap the viral genome into matrix sheaths

• The physiological role of tubular matrix sheaths is unclear but could involve 

mediating transcription and replication shut-off at the time of particle 

assembly

• Nipah virus-based virus like particles have revealed a previously 

unappreciated hexameric ring-like organization of the viral fusion protein that 

if present on native virions may set the stage for efficient viral entry through 

concerted refolding of multiple F complexes

Cox and Plemper Page 14

Curr Opin Virol. Author manuscript; available in PMC 2018 June 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
A) Model of an MeV virion in which the matrix protein coats the nucleocapsid protein. The 

viral envelope is shown in orange. The nucleocapsid proteins are shown in cyan. The fusion 

protein trimers are shown in red. The attachment glycoprotein tetramers are shown as green. 

Matrix protein depicted is from Newcastle disease virus (PDB 4g1g). Viral glycoproteins are 

based on PIV5 (PDB: 4gip for the F protein; PDB ID: 4jf7 and 3tsi for the PIV5 HN 

ectodomain and stalk, respectively. The vesicular stomatitis virus L protein structure 

(yellow) was used to represent the unknown paramyxovirus L conformation (PDB ID: 

5a22). The phosphoprotein (brown) was modeled using the oligomerization domain of 

measles P (PDB ID: 3zdo). B) A model of an MeV virion in which a matrix protein array is 

located at the inner leaflet of the viral membrane. The matrix protein is shown in blue. The 

matrix-coated nucleocapsids were created using Chimera [92] using electron density maps 

EMD-1973 and EMD-1974 [43]. PDB structures were created in PyMOL [93].
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Figure 2. 
Organization of the paramyxovirus nucleocapsid. A) Nucleocapsid proteins for all 

paramyxoviruses form helical assemblies of N proteins encapsidating the viral RNA (shown 

in this model are MeV RNPs, N proteins are depicted in cyan and forest green, the RNA is 

colored in red) (PDB ID: 4UFT). B–D) While RNPs for 20 nm diameter tubules, MeV RNPs 

were also found M protein wrapped in larger diameter 30 nm tubules [43]. Matrix proteins 

are shown in dark blue and nucleocapsids in cyan. Top view (B) and side view (C) of the 30 

nm tubules depicting the distinct cylindrical M complex surrounding the MeV nucleocapsid. 

D) A clipped model of the 30 nm tubule structure. The matrix coated nucleocapsids were 

created using Chimera [92] based on electron density maps EMD-1973 and EMD-1974 [43].
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Figure 3. 
Models of alternative spatial organizations of the paramyxovirus glycoproteins on the virion 

surface. A) The overall organization of the paramyxovirus glycoproteins was thought to be 

random with an undetermined relative stoichiometry of individual fusion protein trimers 

(red) and attachment protein tetramers (green). B, C, D) In a recent study [25], an 

arrangement of NiV F protein trimers into hexamers of trimers and higher order complexes 

was proposed. Schematics of hexameric F trimer arrangements in contact with one (A) or 

multiple (B) attachment protein tetramers and higher order F assemblies consisting of 

interacting hexamers of trimers (C). Different hypothetical contacts of the F assemblies with 

attachment protein tetramers are shown, but the stoichiometry and positioning of the 

attachment protein oligomers relative to the F protein complexes has not yet been defined.
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