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Hybrid High-order Functional 
Connectivity Networks Using 
Resting-state Functional MRI 
for Mild Cognitive Impairment 
Diagnosis
Yu Zhang1, Han Zhang   1, Xiaobo Chen1, Seong-Whan Lee   2 & Dinggang Shen1,2

Conventional functional connectivity (FC), referred to as low-order FC, estimates temporal correlation 
of the resting-state functional magnetic resonance imaging (rs-fMRI) time series between any pair 
of brain regions, simply ignoring the potentially high-level relationship among these brain regions. 
A high-order FC based on “correlation’s correlation” has emerged as a new approach for abnormality 
detection of brain disease. However, separate construction of the low- and high-order FC networks 
overlooks information exchange between the two FC levels. Such a higher-level relationship could be 
more important for brain diseases study. In this paper, we propose a novel framework, namely “hybrid 
high-order FC networks” by exploiting the higher-level dynamic interaction among brain regions for 
early mild cognitive impairment (eMCI) diagnosis. For each sliding window-based rs-fMRI sub-series, 
we construct a whole-brain associated high-order network, by estimating the correlations between the 
topographical information of the high-order FC sub-network from one brain region and that of the low-
order FC sub-network from another brain region. With multi-kernel learning, complementary features 
from multiple time-varying FC networks constructed at different levels are fused for eMCI classification. 
Compared with other state-of-the-art methods, the proposed framework achieves superior diagnosis 
accuracy, and hence could be promising for understanding pathological changes of brain connectome.

Alzheimer’s disease (AD) is an irreversible serious neurological disease in the elderly population, characterized 
by progressive perceptive and cognitive deficits1. The incidence of AD doubles every five years after the age of 
652. AD symptoms, such as impaired memory function, get worse over time due to the neurodegenerative pro-
cesses3. Mild cognitive impairment (MCI) is an intermediate stage of cognitive decline between AD and normal 
aging4. Recent researches have reported that individuals with MCI tend to progress to AD at a rate of about 
10–15% per year5, 6. Such a high conversion rate may possibly be reduced if early interventions could be applied 
to the early stage of MCI (eMCI)7. Therefore, timely diagnosis of eMCI is of great clinical significance8. Accurate 
brain imaging-based eMCI diagnosis is still challenging since brain anatomical and functional changes in this 
stage are considerably subtle9, 10. By far, compared with numerous computer-aided diagnosis studies on AD and 
MCI with various neuroimaging modalities11–20, those on eMCI diagnosis are still quite few8, 21. Although the 
accuracy is still not so satisfactory for clinical application, these preliminary studies have already indicated that 
resting-state functional magnetic resonance imaging (rs-fMRI) can serve as a promising imaging technique for 
eMCI diagnosis.

Rs-fMRI is an in vivo brain functional imaging modality, measuring blood oxygen level-dependent (BOLD) 
signals22 when subjects are in natural rest. With rs-fMRI, temporal synchronization of the spontaneous brain 
activity among different brain regions can be adopted to measure brain functional connectivity (FC), a metrics 
reflecting brain intrinsic functional organization23. Based on FC between each pair of brain regions, a whole-brain 
functional network can be constructed, which opens a new avenue for brain disease study by leveraging brain 
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connectomics and complex network analysis24–30. For early AD diagnosis, it is usually hypothesized that the FC 
network-based biomarkers show up earlier than macroscopic anatomical changes8, 31, 32. However, previous stud-
ies on rs-fMRI based AD early diagnosis often utilized simply calculated FC by measuring inter-regional BOLD 
signal temporal synchronization with Pearson’s correlation or, more generally, with sparse representation8, 33–35. 
This type of networks is low-order by definition because they characterize BOLD signal synchronizations and are 
insufficient to characterize high-level inter-regional interactions. In a recent study36, we proposed a high-order FC 
network construction method by measuring the similarity between two regions’ FC topographical profiles (i.e., 
correlation’s correlation). Preliminary group comparison between MCI and health controls has suggested a great 
potential of using this metrics to provide complementary information to the low-order FC metrics in the context 
of early AD biomarker detection.

The above two types of FC studies separately calculate low-order and high-order FCs. However, there could 
be an intriguing relationship and functional association between the two FC levels. Such an inter-level interac-
tion exits in many biological networks, reflecting hierarchical organization and self-resemblance across multiple 
spatial scales37. Supposing that in human brain the low-level connections collect information and the high-level 
connections abstract information via the hierarchy, the functions of the inter-level connections could be 1) 
to facilitate two-level information “talking” to each other, 2) to let the low-level information guide high-level 
abstraction and, 3) to change the way of low-level information collection for achieving a better high-level inte-
gration. Moreover, from a robust system point of view, a network or a biological system could make itself less 
fragile and more resistant to targeted pathological attacks through the inter-level connections. Taking brain as an 
example, via psychophysiological and physiophysiological interactions, high-level preset of a psychological status 
(e.g., attention level) may change both sensory information collection and synthesis; their co-varying status may 
indicate such inter-level functional associations. In early AD neuropathological model, one may hypothesize that 
subtle pathological changes in the stage of eMCI may not only alter high-order FC while leaving the low-order FC 
largely intact21, 36, but also affect the functional association between the high- and low-order FCs. Collectively, the 
three types of FC networks (i.e., low-order FC, high-order FC and such an inter-level associated FC) complement 
each other, characterizing brain functional organization from different aspects. By integrating the three types of 
FCs, eMCI classification may be more accurate compared with that using only a single type of FCs.

To this end, we propose a novel approach called “hybrid high-order FC networks” to comprehensively explore 
the brain’s complicated functional associations and search for subtle early imaging biomarkers which could be 
related to pathological changes, for better eMCI diagnosis. Besides the three different types of FC, we also need 
to take advantage of dynamic FC by integrating brain dynamics into the study and to calculate three types of 
time-varying FC networks for diagnosis. This is because that the pattern of brain FC networks may change along 
time while brain is switching among different status22, 38–44, and such a dynamic information may also provide 
sensitive features for revealing early brain functional abnormalities and for even better improved eMCI diagnosis.

Three main contributions of our study can thus be summarized: 1) A new FC metrics, namely associated 
high-order FC network, is proposed to characterize previously untouched inter-level interaction between the 
low- and the high-order FC networks; 2) For the first time, we investigate dynamics of the three types of FC net-
works and utilize them for disease diagnosis; 3) We propose a novel applicable machine learning framework to 
effectively fuse various types of dynamics FC (thus, it is called hybrid high-order) networks with a multi-kernel 
learning strategy for computer-aided eMCI diagnosis. Experiments are carried out to compare the accuracy of 
eMCI diagnosis between our proposed approach and other state-of-the-art methods. Experimental results indi-
cate that our method achieves superior performance than those using only the static FC or only the traditional 
low- and high-order FC networks.

Results
Data acquisition.  To demonstrate the effectiveness of our method, we apply it to real rs-fMRI data from 
a putative public-accessible dataset, consisting of eMCI and normal aging subjects. One of our hypotheses is 
that, with features extracted from our newly developed associated high-order FC networks, eMCI classification 
could be more accurate, compared with those extracted using either the traditional low-order or high-order FC. 
Another hypothesis is that our computational framework of the hybrid high-order FC networks could effectively 
conduct multi-kernel fusion of the three types of brain dynamic networks and further boost classification per-
formance. In addition, higher diagnosis performance would be achieved using our method compared with those 
using other state-of-the-art methods8, 21.

The rs-fMRI data are obtained from Alzheimer’s Disease Neuroimaging Initiative (ADNI) project (http://
adni.loni.usc.edu). ADNI was launched in 2003 by the National Institute on Aging, the National Institute of 
Biomedical Imaging and Bioengineering, the Food and Drug Administration, private pharmaceutical companies 
and non-profit organizations. The original goal was to define biomarkers for use in clinical trials to determine the 
most appropriate way to measure treatment effects of AD. The current goal has been extended to discover more 
effective methods to early detect AD at its pre-dementia stage. We use ADNI phase-2 dataset since it includes 
eMCI subjects.

Data from twenty-nine eMCI subjects (13 F/16 M, aged 73.7 ± 4.8 years) and 30 age-matched (p = 0.6174) 
normal controls (NCs) subjects (17 F/13 M, aged 74.4 ± 5.7 years) are used. All subjects were scanned with 
the same protocol using 3.0 T Philips Achieva scanners. The following parameters were used: repetition time 
(TR) = 3000 ms, echo time (TE) = 30 ms, flip angle = 80°, imaging matrix = 64 × 64, 48 slices, 140 volumes, and 
slice thickness = 3.3 mm. The rs-fMRI data are preprocessed using SPM8 software (http://www.fil.ion.ucl.ac.uk/
spm/software/spm8) according to the previous studies8, 21. Briefly, the first 10 volumes of each subject are dis-
carded to ensure magnetization equilibrium. After head motion correction, spatial registration to the standard 
space, spatial smoothing and temporal filtering (0.01–0.08 Hz), averaged signals from brain ventricle and white 
matter as well as head-motion parameters are regressed out from rs-fMRI data to reduce the nuisance effect on 
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FC estimation. According to the Automated Anatomical Labeling (AAL) brain atlas, the mean regional rs-fMRI 
time series are extracted from each of the 116 brain regions.

Performance evaluation.  A nested leave-one-out cross validation (LOOCV) scheme is adopted for per-
formance evaluation of the proposed approach. Specifically, N subjects are involved in our study, N − 1 of them 
are used for training the classifier while the left-out one is used for evaluating the classification performance. 
The procedure is repeated N times until each subject serves once for testing. In each repeat of the above proce-
dure, an additional inner LOOCV is carried out on the N − 1 training samples to determine optimal parameters, 
which include regularization parameters in the LASSO feature selection and also the weighting factors in the 
multiple-kernel learning. The parameter values leading to the best performance on the N − 1 tests are selected 
and used for learning the optimal classification model. The soft-margin parameter in SVM is set as C = 1. For the 
dynamic FC network construction, the length of sliding window L and the step size S are set to be 70 and 1 (con-
sistent with literature21), respectively, which results in the number of time sub-series as K = 61.

Extensive experiments are carried out to validate the effectiveness of our proposed method in compari-
son with other state-of-the-art methods. We investigate the diagnosis performance of various methods based 
on either static FC networks or dynamic FC networks. These compared methods include: (1) Static low-order 
Network (SNL, where the subscript “L” indicates conventional “low-order” FC); (2) Static high-order Network 
(SNH, where “H” indicates conventional “high-order” FC used in literature36); (3) Static associated high-order 
Network (SNA, where “A” denotes “associated”, i.e., our newly proposed higher-level type of FC); (4) Hybrid Static 
Networks (SNL + SNH + SNA) which fuse the three aforementioned networks; (5) Dynamic low-order Network 
(DNL); (6) Dynamic high-order Network (DNH); (7) Dynamic associated high-order Network (DNA); (8) Hybrid 
Dynamic Networks (DNL + DNH + DNA), which is our proposed framework combining three types of networks 
in a dynamic way; (9) Sparse temporally dynamic networks (DNWee) that are constructed using group graphi-
cal LASSO8; (10) High-order network21 that is constructed by estimating the correlation between two regions’ 
low-order FC dynamics and that of another two regions (DNChen). Among them, SNA and DNA are the novel 
network modeling methods, while SNL + SNH + SNA and DNL + DNH + DNA are the novel network fusion frame-
works for classification.

We evaluate the classification performance based on classification accuracy (ACC), area under ROC curve 
(AUC), Sensitivity (SEN), and Specificity (SPE). ACC is defined as the ratio of the number of correctly predicted 
labels to the number of whole samples. AUC measures the probability that a classifier will rank a randomly chosen 
positive sample higher than a randomly chosen negative one. SEN and SPE are defined as true positive rate and 
one minus false positive rate, respectively:

=
+

=
+

.SEN TP
TP FN

, SPE TN
TN FP (1)

Experimental results.  Table 1 summarizes the performance on eMCI classification for all of the ten afore-
mentioned methods. Consistent with our hypotheses, the main results are: 1) The high-order FC networks 
enhanced the classification performance and our associated high-order FC networks gained the highest one if 
only single type of FC network was used; 2) Integrating all the three types of networks with multi-kernel learning, 
eMCI classification yielded better performance compared to that using only single type of networks (even using 
only static networks, we reached an ACC of 83.1%; while using dynamic networks, we obtained the best ACC of 
91.5% amongst all competing methods); and 3) The classifications based on the dynamic FC networks consist-
ently outperformed those based on the static FC networks, indicating the necessity of integrating dynamic FC 
into classification. Of note, our method always achieved better ACC, AUC, SEN and SPE compared with the most 
recently developed, state-of-the-art methods (DNWee and DNChen).

It should be noted that the classification performance of our proposed framework depends on the selection of 
some parameters. For example, three weighting factors τ ∈ [0, 1]1 , τ ∈ [0, 1]2  and τ ∈ [0, 1]3  (τ τ τ+ + = 11 2 3 ) in 
the multi-kernel SVM need to be estimated to fuse the kernel matrices that are derived from the DNL, DNH and 
DNA, respectively. A larger value of a weighting factor indicates the larger importance of the corresponding kernel 

Method ACC (%) AUC SEN (%) SPE (%)

SNL 66.1 0.614 55.2 76.7

SNH 71.2 0.741 70.0 72.4

SNA 72.9 0.816 70.0 75.9

SNL + SNH + SNA 83.1 0.875 79.3 86.7

DNWee
8 79.7 0.792 75.9 83.3

DNChen
18 86.4 0.900 86.2 86.7

DNL 72.9 0.743 69.0 76.7

DNH 81.4 0.875 79.3 83.3

DNA 83.1 0.907 82.8 83.3

DNL + DNH + DNA 91.5 0.940 89.7 93.3

Table 1.  Performance comparison among the methods using different FC networks for eMCI diagnosis.
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matrices for classification. Although we have used inner LOOCV to estimate the best parameters for above clas-
sifiers, we can use all of the N subjects to better evaluate the possible dependency on parameter selection. Figure 1 
shows accuracy of the classification model based on DNL + DNH + DNA estimated using LOOCV on all of the N 
subjects, with different combinations of the three weighting factors τ1, τ2 and τ3 (where is τ τ τ= − +1 ( )3 1 2 ). 
After the exhaustive searching, the best accuracy of 93.2% is achieved with τ = .0 31  (for DNL), τ = .0 52  (for DNH), 
and τ τ τ= − + = .1 ( ) 0 23 1 2  (for DNA). The results indicate that DNL, DNH and DNA indeed provide comple-
mentary information to each other and all of them are necessary for classification. On the other hand, our method 
with the parameters estimated by inner LOOCV yielded a 91.5% accuracy, which is close to the best accuracy 
93.2% with specific parameters estimated on all subjects.

In addition, the window length L used in sliding window strategy is an important factor for dynamic FC net-
work analysis. The window length should be large enough to permit a reliable estimation of FC and resolve the 
lowest frequencies of interest in BOLD signals, while small enough to capture the dynamics of FC40. Leonardi and 
Van De Ville42 have recommended using a window length that exceeds the longest wavelength composing the 
BOLD signals in order to suppress spurious fluctuations of dynamic FC. According to this criterion, the widow 
length in our study should be set to be larger than 1/0.01 = 100 s since our high-pass cutoff frequency in band-
pass filtering is 0.01 Hz. On the contrary, Zalesky and Breakspear43 suggested that non-stationary fluctuations in 
dynamic FC could be fairly robustly detected with a shorter window length (40–60 s). Although these two studies 
as well as the former review paper40 are trying to set up a guideline to decide the window length, it is still far away 
from consensus. The above two studies are mainly based on simulated data and simulated SNR condition, which 
might not always be the case in real fMRI data because there is still no “ground truth” of the FC dynamics.

Note that, as a trade-off, Leonardi and Van De Ville42 also mentioned to focus on the frequency interval 
[0–1/w] where w denotes the window length in second when interpreting the dynamic FC spectrum. To show the 
dynamic FC spectrum with varied window length, we calculated the separability (as measured by r2) (see Fig. 2) 

τ τ= =

Figure 1.  Classification accuracy of the hybrid high-order FC networks by integrating DNL, DNH and DNA 
(DNL + DNH + DNA) with different kernel weighting factors τ1 and τ2 for DNL and DNH, respectively (the 
weight factors for DNA are determined by τ τ τ= − +1 ( )3 1 2 ). The best accuracy was achieved with τ = .0 31  and 
τ = .0 52 , which is 93.2% as indicated by an arrow.

Figure 2.  Separability (r2 value) between NC and eMCI for different frequency dynamic FC spectrum. The 
FC is measured for the discriminative link connecting the left inferior frontal gyrus and the left angular gyrus. 
Results from the use of various window lengths are shown.
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between NC and eMCI subjects across different frequencies for the discriminative link connecting the left inferior 
frontal gyrus and left angular gyrus. Consistent with the result in literature42, a longer window length presented a 
low-pass filtering effect with a lower cutoff frequency. However, we found that useful discriminative information 
was located at the frequencies higher than the suggested upper limit frequency 1/w, which could contribute to 
good diagnosis performance of eMCI.

Therefore, we still consider using a window length larger than 100 s (L = 70 volumes, i.e., 210 s). Such a long 
window length was chosen based on the performance of the eMCI classification using cross-validation (LOOCV) 
with training data. Specifically, we compared the eMCI classification accuracies derived by DNL + DNH + DNA 
using various L (L = 15, 20, 30, 50, 70 and 90) (see Fig. 3). Consistent with the observation in previous eMCI clas-
sification studies8, 21, the selection of L = 70 yielded the best classification accuracy, which was thus adopted for 
the subsequent analysis in our experiment.

Discussion
To investigate the contribution of the associated high-order FC network to the diagnosis, we calculate the 
group-level separability (defined by the differences in the group averaged associated high-order FC networks 
of the two groups) between the NC and the eMCI subjects in both static and dynamic cases, and compare them 
with those obtained from the traditional low-order and high-order FC networks. Figure 4 shows the group-level 
SNL, SNH and SNA for NC (first row) and eMCI groups (second row), respectively. The discriminability index, 
calculated by squared pointwise biserial correlation coefficients (r2 values)44, 45 for all connections in each type of 
the FC networks is shown in the third row. Larger r2 value indicates higher separability of the feature distribution 
patterns between two classes. From Fig. 4, we can see the separability using the static low-order and high-order 
FC networks are smaller and involve fewer FC connections. However, the static associated high-order networks 
reveal more discriminative nodes and higher separability. This explains why SNA yielded better diagnosis per-
formance than SNL and SNH. On the other hand, we found that the three types of FC networks identified sev-
eral different discriminative FC connections that may serve as complementary features for eMCI diagnosis. This 
indicates that it is suboptimal to utilize only the new FC network modeling method for disease diagnosis since a 
better performance can be achieved by combining different types of FC networks. In this sense, our newly devel-
oped associated high-order FC metrics does not intend to replace the conventional ones but may provide unique, 
essential and meaningful information to conventional FC metrics for comprehensive brain connectome research. 
As a result, further improvement of diagnosis performance can be achieved by integrating these complementary 
features under our proposed framework of hybrid high-order FC networks.

One of the highlights of our study is that we estimated various types of dynamic FC networks and demon-
strated the feasibility of using these dynamic networks to improve classification accuracy. An increasing number 
of studies22, 39–41 have suggested that FC network is not stationary but spontaneously changes over time. We, 
for the first time, use a frequency power spectrum method to effectively take advantage of such discriminative 
spontaneous changes and demonstrate that such information can be adopted to further improve classification. 
Figure 5 shows the time-varying FC matrices of DNL, DNH and DNA estimated from different sliding windows, 
for one randomly selected NC subject and one eMCI subject. We found that all the dynamic FC networks could 
capture the temporal variation of FC patterns. This assists to explore rich features from time-evolving FC net-
works, resulting in better (with accuracy improved by about 7–11% if using dynamic networks compared to 
static ones) diagnosis performance. Most importantly, compared with the DNL, both the DNH and the DNA may 
enlarge network topology differences along time, which could be used for better differentiation between NC and 
eMCI. This has actually been proved with profound improvement in diagnosis accuracy (with the increment of 

Figure 3.  Effects of varying the sliding window length L on eMCI classification accuracy, derived by the hybrid 
dynamic networks (DNL + DNH + DNA).
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about 9–11%) by using the features from dynamic high-order FC networks compared with that using dynamic 
low-order FC network-based features.

We also investigate the potential biological meaning of the machine learning algorithm selected brain regions as 
biomarkers for early AD detection and compare the results among different types of dynamic networks. Figure 6 pre-
sents the principal component coefficients corresponding to the most discriminative features selected by LASSO for 
DNL, DNH and DNA, respectively. Most of the important information is mainly concentrated in the range of very low 
frequencies (<0.033 Hz). This is reasonable since the biologically meaningful fluctuations of the dynamic FC time 
series are believed to be relatively slow22. From the zoomed-in areas of Fig. 6, we also found that the spatial-frequency 
locations of the most discriminative features from different types of FC networks are quite different.

Figure 7 shows spatial locations of the most discriminative ROIs included in the top ten principal component 
coefficients selected by LASSO for DNL, DNH and DNA, respectively. A total of 22 ROIs are selected from of the 
different FC networks and they have been consistently reported by previous studies on biomarker detection for 
AD and MCI, including the left superior temporal gyrus46, right inferior temporal gyrus47, right lobule VIIb of 
the cerebellar hemisphere48, left rolandic operculum48, right middle temporal pole49, left paracentral lobule44, left 
putamen50, right paracentral lobule51, right cuneus52, right globus pallidus53, left parahippocampal gyrus54, 55, left 
inferior frontal gyrus56, left olfactory cortex57, right supplementary motor area48, left transverse temporal gyrus58, 
right olfactory cortex57, left fusiform gyrus59, 60, left medial orbitofrontal cortex56, left lobule IX of cerebellar hem-
isphere48, left superior frontal gyrus48, 59, right insula52, 55 and the right putamen50.

From Fig. 7, we also found that many selected ROIs were different if using different FC networks for classi-
fication. Consistent with our observation of the discriminative static FC connections in Fig. 4, different types 
of dynamic networks also produced complementary features, which are integrated using the framework of 
our hybrid high-order FC networks to further improve eMCI identification. This is supported by the superior 

Figure 4.  Group-averaged FC matrices of SNL, SNH, and SNA for NC and eMCI groups, and the separability 
matrices between the two groups for each type of the FC networks. The separability between the NC and eMCI 
subjects is calculated for each link in the network by computing r2 value, and is color-coded from light to dark 
red (from less to better separability). Only the r2 values at the upper triangle are shown since the FC matrices are 
symmetric. SNL: static low-order FC network; SNH: static high-order FC network; SNA: static associated high-
order FC network.



www.nature.com/scientificreports/

7Scientific REPOrtS | 7: 6530 | DOI:10.1038/s41598-017-06509-0

diagnosis performance (91.5% when using all three networks vs. 72.9–83.1% when using them separately) 
obtained by the proposed approach of hybrid high-order FC networks. Further investigation on the similarities 
and the differences among the features selected from different network types will be needed using more data sets 
and via extensive applications.

Figure 5.  Respective FC matrices of DNL, DNH, and DNA from one NC subject and one eMCI subject at the 10-
th, 30-th, 45-th and 60-th sliding windows (SW). The NC and eMCI subjects are randomly selected from each 
group. DNL: dynamic low-order FC network; DNH: dynamic high-order FC network; DNA: dynamic associated 
high-order FC network. Please note that we intend to show the network pattern changes along time, but not 
mean to compare the network pattern at a specific sliding window between two subjects.
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To more clearly explain the characteristics of these two new FC metrics beyond the low-order FC, we provide 
two intuitive examples here. First, let us consider the low-level visual area V1 (primal visual cortex) and the 
high-level visual processing areas, i.e., posterior parietal cortex (PPC). The well-established model for dorsal 

Figure 6.  Principal component coefficients corresponding to the most discriminative features selected by 
LASSO for DNL, DNH and DNA, respectively. For better visualization and comparison among the different 
networks for the different spatial-frequency characteristic of the selected features, a small patch at the same 
location of the three matrices was zoomed in.

Figure 7.  ROIs with the top ten principal component coefficients corresponding to the most discriminative 
features selected by LASSO for DNL, DNH and DNA, respectively.
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visual stream begins with V1, goes through secondary and associated visual areas, and finally to the PPC61. 
Therefore, the BOLD signal synchronization between the V1 and PPC is supposed to be not strong since they are 
responsible for processing visual information at different levels (instead, the bilateral V1 could have strong BOLD 
synchronization since they are at the same level). However, due to tight feedforward and feedback between them 
(e.g., they are all modulated by attention62), their inter-region high-order functional association could be strong. 
That is, there could exist some potentially indirect relationships between these two brain regions, which may not 
be effectively revealed by the low-order FC. Consistent with the above hypothesized model, based on the data 
from a randomly selected subject, we found that the low-order FC (direct BOLD signal synchronization) between 
the left lingual gyrus (encompassing V1) and the left inferior parietal lobule (covering most of the PPC) is low 
(0.36). However, both high-order FC (FC topographical profile-based similarity) and associated high-order FC 
are strong (0.61 and 0.74, respectively). This indicates that the lifted functional association, when measured from 
a high level, could reflex the close relationship between the two regions in the visual pathway.

Another example is from our previous study36, where the three FC metrics are calculated between the left pos-
terior cingulate cortex (PCC) and the anterior cingulate cortex (ACC). Since the PCC is within the default mode 
networks while the ACC is included in several other attention-related functional networks, their low-order FC is 
observed as weak (0.36). However, enhanced strengths of the high-order FC (0.59) and the associated high-order 
FC (0.70) between the two regions indicate that the two new high-order FC metrics could be able to capture a 
close relationship among these high-level cognition-related functional networks63.

Interestingly, both above examples show higher associated high-order FC, compared with the low-order FC, 
which further indicates that the former could be able to capture more complicated functional interaction between 
two regions. The associated high-order FC measures the modulatory interaction between the low-order FC and 
the high-order FC, i.e., a cross-level functional association. Since our present study aims to demonstrate the feasi-
bility of using high-order FC metrics for disease diagnosis, the biological meaning of these metrics requires more 
dedicated studies with the aid from existing neurocognitive models in future.

It should be noted that our introduced high-order FC and associated high-order FC reveal higher-level func-
tional interactions between FC profiles between any pair of brain regions, yet ignore potential complex rela-
tionships among multiple brain regions. A recent method64, called hyper network, has been proposed to reveal 
more complex FC among multiple regions, and hence provide new approaches to investigate FC, which, how-
ever, is fundamentally different from our high-order FC and associated high-order FC metrics. Specifically, this 
method was developed based on hyper-graph theory for exploring the complex interactions among multiple 
brain regions, where an edge in the hyper network connects with more than two brain regions. A combination of 
our method and the dynamic hyper network method could further improve the diagnosis performance, which 
will be investigated in our future work.

In summary, we propose a novel approach, namely hybrid high-order FC networks, to effectively integrate 
multiple types of FC networks by using multi-kernel learning strategy for eMCI diagnosis. Associated high-order 
network, characterizing higher-level functional interactions between high- and low-level FC networks, is newly 
proposed to reveal the previously untouch relationship among brain regions. Three types of dynamic whole-brain 
FC networks are systematically defined and jointly used to provide complementary discriminative features for 
early MCI identification. Our method achieves superior performance (accuracy = 91.5%) in this challenging 
problem, which is even racing ahead of the most recently developed state-of-the-art solutions. This study reveals 
the complexity of our brain connectome, and the feasibility of using it as an effective computer-aided individual 
diagnosis tool for future clinical applications towards precise medicine.

Methods
In our hybrid high-order FC network approach, we combine three types of FC networks and dynamics FC 
analysis for comprehensive feature extraction. To achieve dynamic FC networks, sliding window strategy is 
adopted to segment the entire rs-fMRI time series into multiple sub-series, from each of which the three types 
of FC networks are constructed. We first construct a traditional low-order FC network and a topographical FC 
profile-based high-order FC network. This produces two different FC fingerprints for each brain region: the one 
is the topographical low-order FC profiles between this region and other regions; the other is the high-order FC 
profiles between the sub-network centering at this region and those centering at other regions. We then calculate 
a higher-level associated FC between the two types of the FC fingerprints for each pair of brain regions, which 
consequently forms an associated high-order FC network. Finally, all the dynamic FC networks are integrated 
into a unified model with multi-kernel learning strategy to make features from one FC networks support those 
from others, for better classification performance. Each step is detailed in the following sub-sections.

Low-order FC network construction.  With sliding window approach, an rs-fMRI time series can be seg-
mented into multiple sub-series, each generating one FC matrix (Fig. 8). In particular, = − +K P L S[( )/ ] 1 
sub-series can be generated from an rs-fMRI time series with P time points, where L and S are the window length 
and step size, respectively. Suppose that = … ∈ ×X x x x[ , , , ]k k k

R
k L R

1 2  ( = …k K1, 2, , ) denotes the k-th time 
sub-series for a total of R = 116 ROIs, and = … ∈x x xx [ , , , ]i

k
i

k
i

k
L i
k T L

1, 2, ,  is the k-th time sub-series correspond-
ing to the i-th ROI. The correlation strength Cij

k between the i-th and j-th ROIs of the k-th time sub-series can be 
typically computed using Pearson’s correlation. Such correlation strength, in graph theoretic analysis of complex 
brain FC networks, is called the edge weight. By computing such correlation strength of the k-th time sub-series 
between each pair of ROIs (or nodes), an FC network can be constructed as a symmetric correlation matrix 

= ∈ ×CC [ ]k
ij
k R R. Without loss of generality, we assume that x i

k has been centralized by −x xi
k

i
k and further 
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normalized by − −x x x x( ) ( )i
k

i
k T

i
k

i
k  for = …i R1, 2, , . The computation of FC network on the k-th time 

sub-series can then be equivalently written as:

= .C X X( ) (2)k k T k

The dynamic FC networks can be derived by estimating the correlation matrices for all the = …k K1, 2, ,  time 
sub-series. Note that Eq. (2) defines dynamic low-order FC networks, while a static network is an extreme case 
where window length is maximized to the entire time scale (L = P). Thus, multiple FC matrices in Fig. 8 merge 
into one.

Hybrid high-order FC networks for eMCI diagnosis.  The “hybrid high-order FC networks” refer to as 
a framework which fuses three types of FC networks for improving diagnosis performance. In this framework, a 
key step is to construct the associated high-order network. Of note, this type of network can be regarded to as a 
higher-level FC network as it characterizes the interaction between the conventional low-order and the high-order 
networks. The construction of associated high-order network will be followed by feature extraction and selection, 
and a multi-kernel learning strategy for multi-type feature fusion.

Associated high-order FC network construction.  Low-order FC network on the k-th time sub-series can be 
rewritten as = … ∈ ×C c c c[ , , , ]k k k

R
k R R

1 2 , where the i-th column c i
k (or the i-th row due to the symmetry of Ck) 

defines the connectivity pattern between the i-th ROI and all other ROIs. Therefore, we regard c i
k as a low-order 

“sub-network” between node i and other regions. Of note, it is quite important to have this “sub-network” defini-
tion based on the low-order FC network, since, similarly, we can define a high-order FC by the topographical 
similarity between any pair of these low-order sub-networks. Then, a high-order FC network can be constructed 
by calculating the FC between every pair of the low-order sub-networks. Figure 9 illustrates the construction of 
the high-order FC network.

Assuming c i
k ( = …i R1, 2, , ) has been centralized and normalized, a high-order network construction on the 

k-th time sub-series can be similarly written as:

=H C C( ) , (3)k k T k

Figure 8.  Illustration of the construction of dynamic low-order FC networks using sliding window-based 
Pearson’s correlation on rs-fMRI data.
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where a certain element of Hk, Hij
k, denotes the topographical similarity (measured by Pearson’s correlation) 

between the i- and j-th low-order sub-networks, and =C X X( )k k T k. Based on the same form of Eqs (2) and (3), 
both low- and high-order FC calculations can be mathematically unified. By using the whole length of rs-fMRI 
time series, a static high-order network can similarly be calculated.

To construct associated high-order FC network, we further refer the high-order FCs corresponding to the 
same “node” i (here the “node” is actually a low-order sub-network centering at region i) as a high-order 
sub-network h i

k, and = … ∈ ×H h h h[ , , , ]i
k k k

R
k R R

1 2 . Supposing that the h i
k ( = …i R1, 2, , ) is centralized and 

normalized, we can characterize the inter-level interactions between the low-order sub-networks c i
k 

( = …i R1, 2, , ) and high-order sub-networks h i
k ( = …i R1, 2, , ), which can be written in the following form:

= =A C H C C C( ) ( ) (( ) ), (4)k k T k k T k T k

where Ak defines the associated high-order FC network, a higher-level FC network, using the k-th time sub-series. 
The element Aij

k in Ak denotes the interaction between i-th low-order sub-network and j-th high-order 
sub-network (Fig. 10). From Eq. (4), we can see that the associated correlation matrix ∈ ×Ak R R is an asymmet-

Figure 9.  Illustration of high-order FC network construction based on the topographical similarity between 
each pair of the low-order sub-networks. The high-order FC network is built in a dynamic way using the k-th rs-
fMRI time subseries ( = …k K1, 2, , ).

Figure 10.  Illustration of an associated high-order FC network construction using topographical similarity 
between each high-order sub-network and each low-order sub-network. The associated high-order FC network 
is built in a dynamic way using the k-th rs-fMRI time sub-series.
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rical matrix. To improve interpretation, we further transform the asymmetrical Ak to symmetrical by using 
= +A A A( ( ) )/2k k k T , similarly to that also used in a previous study32. Of note, our experiment has shown that this 

additional symmetry operation does not significantly affect final classification accuracy. Similar to the other two 
types of dynamic FC networks, a static associated high-order FC network can be estimated using the whole length 
of rs-fMRI time series.

Feature extraction and selection.  In this section, we introduce the procedure of feature extraction and selection 
for the dynamic low-order FC networks. Please note that the same procedure is also carried out to extract and 
select features from the dynamic high-order and the dynamic associated high-order FC networks.

Because of the unconstrained mental activity during resting state, features directly extracted from each sliding 
window-based FC network for a subject do not have temporal correspondence with those extracted from the 
same sliding window for other subjects. Therefore, for one subject, the different features extracted from different 
sliding windows cannot be concatenated along time. To allow feature concatenation, one must have a hypothesis 
that features extracted from the same temporal window for different subjects belong to the same instantaneous 
brain network, which cannot be guaranteed65. To enforce the feature correspondence across subjects, we trans-
form the temporally dynamic FC networks for each subject into the frequency domain, obtaining multiple 
frequency-specific FC networks. Specifically, for the dynamic low-order networks …C C C, , , K1 2 , where 

= ∈ ×CC [ ]k
ij
k R R, dynamic FC time series between regions i and j can be obtained by concatenating the ele-

ments Cij
k across K temporal windows as = … ∈C C Cg [ , , , ]ij ij ij ij

K K1 2 , representing how the FC fluctuates along 
time. Fast Fourier transform (FFT) is then applied to transform this dynamic FC time series into power spec-
trums …Z Z Z[ , , , ]ij ij ij

Q1 2 , where Q is the number of effective frequency bins. Thus, we can construct time-invariant 
FC networks for all spectrums as …Z Z Z, , Q1 2 , where = ∈ ×ZZ [ ]q

ij
q R R. These time-invariant FC networks 

characterize the frequency characteristics of the temporally dynamic FC networks. Note that the FFT is not 
implemented for the static network.

Graph theory-based feature extraction and selection are implemented based on the FC spectrum networks. In 
this study, we adopt weighted local clustering coefficient (WLCC)66 as a nodal feature for each brain region and 
each frequency. The WLCC quantifies the “cliqueness” of each node in a weighted network. The cliqueness is 
originally a graph theoretic concept, which characterizes a network’s local topology for every node. This metrics 
has been widely used as a sensitive feature in eMCI diagnostic studies8, 21. For each network Zq ( = …q Q1, 2, , ), 
the WLCC for the i-th node can be defined as:

Time

{

Time Time

Figure 11.  Our proposed eMCI diagnosis framework based on hybrid high-order FC networks. It has the three 
types of dynamic FC networks as input; after feature extraction and selection, a multiple kernel learning strategy 
is used to achieve effective feature fusion for classification. (FFT: Fast Fourier transform, WLCC: Weighted 
local clustering coefficient, PCA: Principal component analysis, LASSO: Least absolute shrinkage and selection 
operation, SVM: Support vector machine).
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v v
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,
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where Ωi is a set of nodes directly connected to the i-th node and vi denotes the number of elements in Ωi. After 
extracting the features from all the nodes at all Q frequency bins, we concatenate them to form a feature vector 
according to:

= … … … … .f f f f f ff [ , , , , , , , , , ] (6)R R
Q

R
Q T

1
1 1

1
2 2

1

This feature vector is of a relatively high dimension and may contain irrelevant or redundant features which need 
to remove. To do this, we construct a feature vector for each subject according to Eq. (6), thereby obtaining a 
feature vector set as = …F f f f[ , , , ]N

T
1 2 , where N is the number of subjects. Principal component analysis 

(PCA)67 is implemented on F to reduce feature dimension. The original features with the dimensionality of Q × R 
are transformed into a new feature space defined by all N − 1 principal components with non-zero eigenvalues. 
Subsequently, a supervised feature selection strategy based on the least absolute shrinkage and selection operation 
(LASSO)68, 69 is adopted to select discriminative features from the N − 1 principal components. The features cor-
responding to non-zero LASSO regression coefficients are retained as crucial features for classification.

Multi-kernel SVM for classification.  With the above-mentioned feature extraction and selection, we obtain three 
feature vector sets for the three FC network types, respectively. Since one of our hypotheses is that these FC net-
works could provide complementary information to each other for classification, we can fuse all features to gener-
ate better classification performance. The simplest way for this is to concatenate all features from different types of 
FC networks into a longer feature vector. However, such simple concatenation may not be optimal for achieving 
effective feature combination13. On the other hand, a kernel-based feature combination using multi-kernel learn-
ing offers more flexibility for feature fusion by estimating different weights on the features from different modal-
ities70–72, which could provide a better way to integrate the features derived from different types of FC networks.

Therefore, we adopt multi-kernel learning to fuse the features by a linear combination of kernels that are 
estimated from the low-order, the conventional high-order and the novel associated high-order FC networks, 
respectively. An SVM classifier with a linear kernel K(a, b) = aTb based on LIBSVM73 is used for the multi-kernel 
learning based classification. Specifically, we first perform normalization on each feature vector to make sure that 
all the features from different types of FC networks are comparable. Based on the normalized features, a linear 
kernel is calculated across subjects for each type of the FC networks. Effective feature fusion is then achieved by 
computing a composite kernel through an optimal linear combination of the multiple kernels. Finally, classifi-
cation is carried out using SVM with the composite kernel. Figure 11 summarizes the overall framework of our 
proposed eMCI diagnosis method based on hybrid high-order FC networks.
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