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Abstract With high morbidity and mortality worldwide,

there is great interest in effective therapies for chronic

hepatitis B (CHB) virus. There are currently several dozen

investigational agents being developed for treatment of

CHB. They can be broadly divided into two categories: (1)

direct-acting antivirals (DAAs) that interfere with a

specific step in viral replication; and (2) host-targeting

agents that inhibit viral replication by modifying host cell

function, with the latter group further divided into the

subcategories of immune modulators and agents that target

other host functions. Included among the DAAs being

developed are RNA interference therapies, covalently

closed circular DNA (cccDNA) formation and transcription

inhibitors, core/capsid inhibitors, reverse transcriptase

inhibitors, hepatitis B surface antigen (HBsAg) release

inhibitors, antisense oligonucleotides, and helioxanthin

analogues. Included among the host-targeting agents are

entry inhibitors, cyclophilin inhibitors, and multiple

immunomodulatory agents, including Toll-like receptor

agonists, immune checkpoint inhibitors, therapeutic vac-

cines, engineered T cells, and several cytokine agents,

including recombinant human interleukin-7 (CYT107) and

SB 9200, a novel therapy that is believed to both have

direct antiviral properties and to induce endogenous inter-

feron. In this review we discuss agents that are currently in

the clinical stage of development for CHB treatment as

well as strategies and agents currently at the evaluation and

discovery phase and potential future targets. Effective

approaches to CHB may require suppression of viral

replication combined with one or more host-targeting

agents. Some of the recent research advances have led to

the hope that with such a combined approach we may have

a functional cure for CHB in the not distant future.
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Key Points

Research advances with dozens of investigational

agents being developed for treatment of

chronic hepatitis B (CHB), including (1) direct-

acting antivirals (DAAs) that interfere with a specific

step in viral replication and (2) host-targeting agents

that inhibit viral replication by modifying host cell

function, provide hope that we may soon have a

functional cure for CHB.

DAAs being developed include RNA interference

therapies, covalently closed circular DNA (cccDNA)

formation and transcription inhibitors, core/capsid

inhibitors, reverse transcriptase inhibitors,

hepatitis B surface antigen (HBsAg) release

inhibitors, antisense oligonucleotides, and

helioxanthin analogues.

Host-targeting agents being developed include entry

inhibitors, cyclophilin inhibitors, and multiple

immunomodulatory agents, including Toll-like

receptor agonists, immune checkpoint inhibitors,

therapeutic vaccines, engineered T cells,

recombinant human interleukin-7 (CYT107), and

SB 9200.

1 Introduction

Hepatitis B virus (HBV) is a small, enveloped, partially

double-stranded DNA virus that belongs to the Hepad-

naviridae family. It is estimated that 240 million people are

chronically infected with HBV worldwide [1], approxi-

mately 75% of whom reside in Asia and 12% in Africa [2].

Although the overall prevalence of chronic hepatitis B

(CHB) is substantially lower in Western countries, even in

the USA it is estimated that the CHB population may be as

high as 2.2 million people [3]. Although not all CHB

patients develop complications, it is among the leading

causes of liver disease, cirrhosis, and hepatocellular car-

cinoma (HCC) worldwide [1], with an estimated 15–40%

of CHB patients developing serious sequelae during their

lifetimes [4]. More than 750,000 deaths annually world-

wide are attributed to HBV-related complications, includ-

ing cirrhosis of the liver, liver failure, and HCC, the second

leading cause of cancer death worldwide [1, 5–7]. With

such high morbidity and mortality worldwide, there is great

interest in effective therapies for CHB.

The only approved therapies now in use for CHB are a

finite course of treatment with pegylated interferon (Peg-

IFN)-a and indefinite treatment with nucleos(t)ide

analogue reverse transcriptase inhibitors (NUCs) [4].

Although these therapies can decrease the risks of liver

decompensation and HCC and improve survival [4, 8, 9],

they do not commonly yield clearance of hepatitis B sur-

face (HBs) antigen (HBsAg). Loss of HBsAg has been

referred to as a ‘‘functional cure’’ [10] because it is asso-

ciated with reduced liver necroinflammation, increased

liver fibrosis regression, normalization of alanine amino-

transferase (ALT) levels, reduced risk of liver cirrhosis,

decompensation and HCC, and increased survival [11–16].

Unfortunately, with Peg-IFN-a treatment HBsAg loss has

only been reported in approximately 3–8% of both hep-

atitis B e (HBe) antigen (HBeAg)-positive and HBeAg-

negative patients at 48–52 weeks [4, 17, 18]; after inter-

feron (IFN) treatment completion, HBsAg loss may con-

tinue, with one study showing that in HBeAg-positive

patients treated for a median of 16 weeks, approximately

17% had experienced HBsAg loss after a median follow-up

of 8.8 years [19]. Because IFN is associated with sub-

stantial adverse effects in many patients and requires par-

enteral delivery, it is only used in a small percentage of

CHB patients. HBsAg loss is even lower in patients

receiving NUC therapy; even with long-term therapy for

5–7 years, HBsAg loss has only been seen in 0.3–5% of

HBeAg-negative patients and 0–11.8% of HBeAg-positive

patients [20–23]. It has been shown that even when HBV

replication is well-controlled, HBsAg clearance is unlikely

to occur during a patient’s lifetime [24]. With this very low

rate of HBsAg loss and the high rate of viral rebound and

biochemical relapse that commonly occurs with discon-

tinuation [4, 25–28], lifelong NUC therapy is generally

recommended for the majority of patients. Thus, there is

strong interest in new therapies that would yield high rates

of HBsAg loss, leading to functional cure in substantially

more patients and allowing treatment discontinuation.

During HBV replication, relaxed circular DNA (rcDNA)

is converted into covalently closed circular DNA

(cccDNA), a mini-chromosome that serves as the template

for viral transcription [29]. The cccDNA has a very long

half-life of about 30–50 days, accumulating and persisting

in the cell nuclei as a stable epigenome [30–32]. Long after

recovery from acute HBV infection, HBV DNA is still

present in very small amounts in serum, suggesting the

presence of cccDNA [33]. For complete eradication of

HBV infection, it will be necessary to fully eliminate

cccDNA [34]. Because of the persistence of cccDNA in

infected hepatocytes and the integration of the hepatitis B

viral genome into the host cell, a true ‘sterilizing’ cure in

which all viral DNA is eliminated, with removal of all

cccDNA and integrated virus, is not currently attainable but

is the ultimate goal of future therapies [35].

There are currently several dozen investigational agents

being developed for treatment of CHB. They can be
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broadly divided into two categories: (1) direct-acting

antivirals (DAAs) that interfere with a specific step in viral

replication; and (2) host-targeting agents that inhibit viral

replication by modifying host cell function, with the latter

group further divided into the subcategories of immune

modulators and agents that target other host functions [36].

In this review we discuss agents that are currently in the

clinical stage of development for CHB treatment as well as

strategies and agents currently at the evaluation and dis-

covery phase and potential future targets.

2 Direct-Acting Antivirals

2.1 RNA Interference Therapies

RNA interference (RNAi) therapies have been shown to

directly target HBV messenger RNA (mRNA) transcripts

with high specificity. Using small, non-coding RNAs to

regulate the expression of genetic information [37] they are

able to profoundly reduce HBsAg production, potentially

restoring effective host immunity [38]. Multiple cell cul-

ture studies have shown that RNAi successfully inhibits

HBV replication [39, 40]. Although, initially, effective

delivery of the RNAi to hepatocytes was considered

problematic [41], there have been advances in this.

Arrowhead Pharmaceuticals (Pasadena, CA, USA) has

developed a polymer-based system (Dynamic PolyConju-

gates/DPC) for the targeted delivery of siRNA to the

hepatocyte cytoplasm where RNAi occurs as a way to

reduce the potential toxicity that might result from inter-

action with cells not intended to be targeted [38, 42]. In a

transiently transgenic pHBV mouse model it was shown

that a single intravenous injection of an RNAi therapy

resulted in decreases in HBsAg expression of between 2

and 3 log10, along with substantial decreases in HBeAg,

serum HBV DNA, and liver levels of HBV RNA [43]. In a

phase IIa clinical trial, single intravenous injections of

Arrowhead’s first candidate drug ARC-520 resulted in

dose-dependent reductions in HBsAg; a single dose of

2 mg/kg resulted in HBsAg reduction of up to 50%, with

significant reductions maintained for 43–57 days [44]. In a

multidose extension of this study, there was an additional

reduction in HBsAg in all patients [45]. Although devel-

opment of ARC-520 has been discontinued due to toxicity

in cynomolgus monkeys, an RNAi therapy that could be

delivered via subcutaneous injection is now being devel-

oped by Arrowhead. In another approach aimed at effective

delivery of siRNAs to hepatocytes, a mixture of three HBV

siRNAs is encapsulated in a novel pH-sensitive multi-

functional envelope-type nanodevice (MEND) that serves

as a hepatocyte-specific drug delivery system [46].

Assessments in primary human hepatocytes and in chi-

meric mice with humanized liver persistently infected with

HBV showed that MEND/siRNA yielded decreases in

HBsAg and HBeAg both in vitro and in vivo. Table 1

shows the current RNA-based gene silencers being studied.

2.2 Covalently Closed Circular DNA (cccDNA)

Formation and Transcription Inhibitors

It is theoretically possible to target cccDNA by preventing

either its formation, expression, or stability [36]. By

screening a small-molecule library of 85,000 drug-like

compounds, two disubstituted sulfonamides (DSS), CCC-

0975 and CCC-0346, were identified and, using the HepG2

cell lines, shown to inhibit the formation of cccDNA from

rcDNA [47]. In duck HBV-infected hepatocytes, CCC-

0975 was found to reduce cccDNA biosynthesis. This

proof-of-concept study points to the possibility that thera-

peutics might be developed to eliminate cccDNA, and this

compound is now in preclinical development. The study

demonstrated that although DSS compounds neither

reduced viral polymerase activity nor inhibited replication

of HBV DNA directly, they blocked the conversion of

HBV rcDNA into cccDNA by causing inhibition of rcDNA

deproteinization, one of the possible intermediate steps in

cccDNA formation.

Lymphotoxin b receptor (LTbR) activation has been

shown to lead to specific and non-hepatotoxic degradation

of cccDNA. LTbR agonists such as BS1 and CBE11 (a

monoclonal antibody against LTbR) have been studied in

oncology where they have been shown to induce degra-

dation of cccDNA [48, 49]. In hepatitis B research, it is

known that IFN-c and tumor necrosis factor (TNF)-a can

control HBV but they cause adverse effects that are too

severe for them to be used as HBV treatments. As an

alternative, researchers have tested the effect of activation

of the LTbR, the physiological ligands for which are the

TNF superfamily members LTa, LTb, and CD258, which

can induce apoptosis and activate both inflammatory and

anti-inflammatory pathways [50]. In cell studies, activation

of LTbR has been shown to lead to the activation of

deaminases such as APOBEC3B deaminase, which acts on

cccDNA leading to non-hepatocytotoxic degradation of

Table 1 RNA-based gene silencers

Drug name Clinical phase

ARB 1467 Phase II

ALN-HBV Phase I/II

Hepbarna Cell culture

ARB 174O Cell culture

Lunar-HBV Cell culture

HBV hepatitis B virus
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cccDNA [50]. It is possible that these agonists combined

with NUCs could be a potent anti-HBV strategy.

Site-specific nucleases that target the HBV viral genome

can cleave the HBV DNA, leading to inhibition of cccDNA

formation and HBV replication. Engineered nucleases bind

to DNA and produce double-strand breaks at target sites

and, following misrepair by pathways such as homology-

directed repair (HDR) or non-homologous end joining

(NHEJ) of HBV DNA, lead to inhibition of viral replica-

tion [51, 52]. The most commonly used designer endonu-

cleases are the zinc finger nucleases (ZFNs), the

transcription activator-like effector nucleases (TALENs),

the meganucleases and their derivatives, and the CRISPR

(clustered, regularly interspaced, short palindromic repeat)/

Cas9 genome editing tool [53]. CRISPR is a series of short

repeated DNA sequences in the bacterial genome. These

DNA sequences are flanked by sequences of bacteriophage

DNA (DNA from viruses that infect bacteria). The

CRISPR locus is adjacent to the Cas gene, a type of

nuclease that can degrade DNA. It has been shown that the

CRISPR/Cas9 tool can be used to remove HBV cccDNA,

both in cell studies [54, 55] and using a mouse model

[56–58]. In the cell line studies, it was shown that the

CRISPR/Cas9 system reduces HBV viral load by 1000-fold

and the cccDNA level by 10-fold [57, 59, 60]. A complete

review of current anti-HBV gene therapy is provided by

Maepa et al. [61]. The concern for off-target effects leading

to mutations and unwanted consequences is always present

with use of these endonucleases.

2.3 Core/Capsid Inhibitors

Advances in our understanding of nucleocapsid formation

has led to development of several drugs aimed at inter-

fering with HBV capsid assembly. These drugs inhibit

HBV DNA replication by both destabilizing core particle

assembly and disrupting existing capsids [62]. Core inhi-

bitors disrupt the HBV lifecycle by inducing the assembly

of defective capsids. Core modifiers eliminate HBV by

modulating core protein at multiple complementary points

in the viral lifecycle. This class of anti-HBV drugs, vari-

ously referred to as core inhibitors, capsid inhibitors,

nucleocapsid assembly inhibitors, or capsid assembly

modulators, was discovered in 2003; Bay 41-4109, in the

sub-class of heteroaryldihydropyrimidines (HAPs), is the

prototype [63]. Other HAPs include HAP-1, morphoth-

iadine mesilate (GLS-4), HAP-18, and NVR-010-001-E2

[64]. In rodent models, Bay 41-4109 was shown to inhibit

the virus replication cycle but was hepatotoxic in high

doses. GLS-4 is a derivative of Bay 41-4109 that has been

shown in preclinical studies to be equally effective but

much less toxic to primary human hepatocytes [62]. It is

now in phase II clinical studies.

AL-3778 (formerly NVR 3-778) is a first-in-class HBV

core inhibitor that is thought to inhibit several core-mediated

HBV life cycle functions [65]. In a humanized mouse model

study that compared monotherapy with either AL-3778

(then called NVR 3-778), entecavir, or Peg-IFN, to combi-

nation therapy with NVR 3-778 ? entecavir and or NVR

3-778 ? Peg-IFN it was shown that serum HBV viral load

reduction with NVR 3-778 monotherapy was similar to that

seen with entecavir monotherapy and larger than that

obtained with Peg-IFN monotherapy; the largest reduction

was seen with NVR 3-778 ? Peg-IFN combination therapy

[66]. HBsAg serum levels were reduced most in the Peg-IFN

groups, with only a minimal effect seen with NVR 3-778

alone. Levels of cccDNA were similar across treatment

groups. In a later study, the nucleotide and corresponding

amino acid differences in serum HBV DNA from human-

ized mice treated with either AL-3778 (then called NVR 3-

778), Peg-IFN, or vehicle were compared [67]. NVR 3-778

was again shown to more effectively suppress serum HBV

DNA than Peg-IFN; there were no nucleotide sequence

changes in the core protein coding region of any of the mice

treated with NVR 3-778. In a study that assessed efficacy

and safety of AL-3778 (then called NVR 3-778), given

alone and in combination with Peg-IFN for 28 days, in six

dosing cohorts of treatment-naı̈ve CHB patients, it was

shown that there were dose-related HBV DNA reductions

and early HBeAg reductions, effects that were increased

when NVR 3-778 was given with Peg-IFN. An ongoing

study is assessing the relative oral bioavailability of a tablet

formulation of AL-3778 (formerly NVR 3-778) given under

either fasted or fed (high-fat meal) conditions as well as the

drug–drug interaction between AL-3778 and entecavir or

tenofovir disoproxil fumarate (TDF) (ClinicalTrials.gov

identifier NCT03032536) [193].

Phenylpropenamides, including AT-61 and AT-130, are

also capsid inhibitors [64]. They behave as assembly

accelerators, leading to formation of defective capsids

without viral genome [68]. NZ-4 is an isothiafludine

compound derived from leucamide A that has been shown

Table 2 Capsid inhibitors and core protein allosteric modifiers cur-

rently undergoing trials

Drug/compound Clinical study

Morphothiadin (GLS4) Phase II

AL-3778 (formerly NVR 3-778) Phase II

RO6864018 Phase II

AIC 649 Phase I

JNJ56136379 Phase I

HBV CpAM Preclinical

AB-423 Preclinical

CpAM core protein allosteric modifier, HBV hepatitis B virus

1266 A. Dawood et al.



to inhibit HBV replication in cell lines by increasing the

deficient capsids [69]. Compound 3711 is a biaryl deriva-

tive shown to inhibit HBV replication by inducing genome-

free capsid formation [70]. BCM 599 (N-(2, 6-

dichloropyridin-3-yl)-2-[(4-fluorophenyl)formamido]ac-

etamide) is in a novel class of capsid inhibitor that has been

shown to have synergistic action with lamivudine in cell

culture lines [71]. Table 2 shows the capsid inhibitors or

core protein allosteric modifiers (CpAMs) currently

undergoing trials [194].

2.4 Reverse Transcriptase Inhibitors

NUCs do not directly suppress cccDNA, viral transcription,

or translation. They interfere with the synthesis of viral

DNA from pregenomic RNA by targeting the RT function

of the HBV polymerase [35]. Tenofovir alafenamide

fumarate (TAF; Vemlidy�, Gilead Sciences, Foster City,

CA, USA) is a recently US Food and Drug Administration

(FDA)-approved NUC that is a novel prodrug of tenofovir,

which is phosphorylated by host nucleotide kinases to the

pharmacologically active form tenofovir diphosphate [72].

Highly bioavailable and efficiently delivered to lymphoid

tissue and hepatocytes in its active form, TAF has been

shown to be non-inferior to TDF in both HBeAg-positive

and -negative patients with a better safety profile [73, 74].

After 1 year of treatment in the two major trials that com-

pared TAF with TDF, patients treated with TAF had sig-

nificantly smaller decreases in bone mineral density at both

the hip (-0.10 vs. -1.72% in HBeAg-positive patients, and

-0.29 vs. -2.16% in HBeAg-negative patients) and spine

(-0.42 vs. -2.29% in HBeAg-positive patients and -0.88

vs. -2.51% in HBeAg-negative patients) [73, 74]. There

were also smaller mean increases in serum creatinine in

patients treated with TAF compared with TDF, although the

difference was only statistically significant in HBeAg-posi-

tive patients [73, 74]. As has generally been the case with

the other NUCs, HBsAg loss was low even at the end of

96 weeks of therapy, occurring in 7 of 576 TAF-treated

HBeAg-positive patients (1%) and 4 of 288 TDF-treated

HBeAg-positive patients (1%) [75]. Only one HBeAg-neg-

ative patient treated with TAF achieved HBsAg loss, with

the loss seen at week 80; no TDF-treated HBeAg-negative

patients achieved this [76].

CMX157 is a lipid conjugate of TDF that has been

shown in vitro to be 4.5-fold more active against HBV than

TDF and has been evaluated in phase I and II trials

[36, 77, 78]. Clevudine is a NUC that has been approved

for HBV treatment in South Korea and the Philippines [79].

Individual use of clevudine has been discontinued because

of the development of drug resistance and myopathy, but it

is used in lower doses in combination with adefovir

[80–82]. Besifovir (LB80380) is a NUC that has been

shown to have antiviral activity against both wild-type

virus and virus with drug resistance mutations [83]. Studies

have shown it to be well-tolerated and effective at reducing

viral load in CHB patients with lamivudine-resistant virus

[84] and non-inferior to entecavir 0.5 mg daily in treat-

ment-naive CHB patients [85]; the only significant adverse

effect of besifovir was L-carnitine depletion that required

carnitine supplementation [85]. AGX-1009, a prodrug of

TDF that is activated by a different molecular side chain,

has demonstrated good efficacy for inhibition of viral

replication in preclinical studies and is currently being

studied in a phase I trial in China [86].

It has been observed that although RT inhibitors can

effectively reduce viral load, they only have limited ability

to reduce cccDNA levels, total intrahepatic HBV DNA, and

serum HBsAg [87]. One of the reasons is that HBV reverse

transcription occurs after infection has been developed with

formation of HBV cccDNA in the infected nuclei of hepa-

tocytes, in contrast to HIV where reverse transcription

occurs after the infection but before the integration of DNA

into the host genome [88]. It is encouraging that it has

recently been shown that with many years of NUC treatment

(median period 126 months) there is marked depletion of

cccDNA in the majority of patients, but it was also shown

that although serum HBsAg levels were reduced, they

remained detectable in 42 of 43 patients [89]. Long-term

treatment with NUCs can be associated with drug toxicity

and drug resistance [90, 91]. Therefore, there is a need to

identify compounds that can lead to eradication of the virus.

2.5 Hepatitis B Surface Antigen (HBsAg) Release

Inhibitors

Nucleic acid polymers (NAPs) are broadly active against a

wide range of enveloped viruses with type 1 entry mech-

anisms through their use of phosphorothioate oligonu-

cleotides (PS-ONs) to inhibit protein interactions that are

involved in viral replication. In a duck model, NAPs have

been shown to have both entry and post-entry antiviral

activity, preventing HBsAg secretion by blocking the for-

mation of HBV subviral particles, which are mainly com-

posed of HBsAg protein [92, 93]. REP 9 AC is an

amphipathic DNA polymer that has been shown to inhibit

HBsAg release from infected hepatocytes in CHB patients.

The agent is currently in phase I and II clinical trials.

Interim data have shown rapid clearance of HBsAg, HBV

DNA suppression, and formation of hepatitis B surface

antibody (anti-HBs), allowing patients to achieve durable

immunity with REP 9 AC and its modified form [94, 95].

In a study of 12 HBeAg-positive CHB patients, the NAP

HBsAg release inhibitor REP2139-Ca was given for

20–38 weeks, with response defined as decline in serum

HBsAg; responders were then treated with add-on
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pegylated interferon alpha 2a (pegIFN-a-2a) and/or thy-

mosin a-1 [96]. At week 0–24, mean HBV RNA, HBV

DNA, and HBsAg levels had declined significantly and

HBV RNA was undetectable in eight of 12 patients and

remained undetectable during the treatment-free follow-up

period in seven of these eight patients (mean 21.9 weeks,

range 7–27 weeks). HBsAg loss and anti-HBs serocon-

version were achieved in four of eight patients during

treatment-free follow-up. REP2139-Ca is now being stud-

ied in phase I and II clinical trials in combination with Peg-

IFN and TDF.

2.6 Antisense Oligonucleotides

Antisense oligonucleotides (ASOs) are short, synthetic,

nucleic acid fragments that bind to target RNA sequences

in order to form either an RNA:RNA duplex (antisense

RNA) or a DNA:RNA hybrid (antisense DNA). Their

structure can easily be modified to increase their affinity,

stability, and specificity for the targets [97, 98]. The most

commonly targeted area is the phosphate, which is the

backbone of these oligonucleotides. A significant decrease

in viremia along with a decrease in intrahepatic HBV

DNA, HBV RNA, and surface and core proteins has been

observed in polyethylenimine-based ASOs in a duck HBV

model [99]. ASOs have been used to decrease the level of

asialoglycoprotein receptor (ASGPR) 1, which is present

exclusively in hepatocytes. HBV can upregulate ASGPR

levels, which are responsible for HBV infection in hepa-

tocytes by mediating hepatic endocytosis of HBV particles

[100–102]. Thus, downregulation of ASGPR1 can block

HBV replication by inhibiting hepatic endocytosis of HBV,

which is the target for ASOs. AS2 is one of the ASOs that

could inhibit viral replication through this mechanism

[101]. Another mechanism of action of ASOs is to utilize

intracellular enzyme RNase H, which degrades RNA

strand into RNA–DNA hetero-duplex [103]. Gapmer ASOs

are created through insertion of chemically modified

nucleic acid analogs at each end of the oligonucleotides,

which increases affinity and protects oligonucleotides from

exonucleases and mediates efficient induction of RNase H

degradation against mutated RNA [104]. Numerous thera-

pies in this class are currently under development.

2.7 Helioxanthin Analogues

Helioxanthin analogues are another class of small mole-

cules that inhibit HBV DNA, HBV RNA, and viral protein

expression. Helioxanthin and its derivative 5-4-2 inhibited

HBV mRNA levels as well as HBV transcripts in HepG2

2.2.15 cells in one study [105]. The helioxanthin analogues

target multiple steps of the viral life cycle including inhi-

bition of preS/S promotor activity and pregenomic/PreC

activity using a gene reporter system [106]. In more recent

research, additional helioxanthin analogues have been

identified and research is ongoing [107].

3 Host-Targeting Agents

Included in this category are a broad variety of agents that

modify various aspects of host cell function in ways that

inhibit viral replication. These agents can be broadly sub-

divided into immune modulators and agents that target other

host functions [36]. It is hoped that host-targeting agents

could stimulate both innate and adaptive immunity and play

a critical role in the clearance of HBV-infected hepatocytes.

3.1 Entry Inhibitors

Entry inhibitors are designed to block HBV’s entry into

hepatocytes by either targeting cellular components in ways

that interfere with HBV binding to the cell receptor(s) or by

targeting HBV viral particles in ways that block HBV

attachment to hepatocytes [108]. Entry inhibitors are of

particular interest since inhibiting viral entry could block

virus replication before cccDNA, the persistent viral reser-

voir, is formed [109]. Sodium taurocholate co-transporting

polypeptide (NTCP), a key bile acid transporter whose pri-

mary role is transport of bile salts from the portal blood into

the liver, is mainly expressed in hepatocytes at the baso-

lateral membrane [110]. It has been shown that NTCP is a

functional receptor for HBV and hepatitis D virus (HDV)

that helps the viruses gain entry into the hepatocytes

[111, 112]. The pre-S1 region of the HBV large surface

protein is used to attach to the NTCP receptor.

The first-in-class agent myrcludex B is a synthetic

N-myristoylated peptide composed of the residues from 2 to

48 of preS1 that competitively attaches to the NTCP

receptor, blocking HBV’s entry into the hepatocyte [113]. In

an animal model it was shown that myrcludex B both

inhibited HBV transmission from cell to cell and inhibited

increase of the intrahepatic cccDNA pool by impairing the

conversion of rcDNA to cccDNA [113]. In a phase I study,

myrcludex B was well-tolerated in doses of up to 20 mg

given intravenously and 10 mg administered subcuta-

neously, with no serious adverse effects [114]. Interim

results of a phase Ib/IIa trial in patients co-infected with

CHB and chronic hepatitis delta (HDV) who were treated

with myrcludex B, Peg-IFN-a-2a, or the combination of

both showed that HDV RNA significantly decreased in all

three treatment groups, becoming negative in two of eight

patients in both the myrcludex B and Peg-IFN-a-2a
monotherapy cohorts, and in five patients in the combination

treatment group [115]. ALT decreased significantly only in

the myrcludex B cohort. There was a significant decrease in
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HBV DNA only in the combination treatment group.

HBsAg levels were unchanged in all three treatment groups.

Ciclosporin (cyclosporine A; CsA), a cyclic peptide

composed of 11 amino acids that is used as an immuno-

suppressive agent, has been found to have affinity for and

to bind to the NTCP receptor in a way that is independent

of the cyclophilin (CYP) pathway responsible for its

immunosuppressive effects. Using the human hepatocyte-

derived cell line HepaRG and NTCP-based infection sys-

tems, it was shown that ciclosporin inhibits HBV and HDV

entry into the hepatocyte by direct NTCP inhibition [116].

Ciclosporin disrupted the binding of NTCP to HBVpreS.

Several ciclosporin derivatives, including SCYX618806,

SCYX827830, and SCYX1454139, have been shown to

have more potent anti-HBV activity than CsA53 [117]. The

non-immunosuppressive cyclosporine alisporivir (DEBIO-

025) has been shown to have anti-HBV activity equivalent

to ciclosporin [117].

In a study that combined in vitro testing with compu-

tational approaches, 31 FDA-approved drugs were found to

inhibit NTCP, most of which are classified as antifungals,

antihyperlipidemics, antihypertensives, anti-inflammato-

ries, or glucocorticoids [110]. Of these, it was found that

nine agents reduced taurocholate uptake into NTCP-trans-

fected cells by more than 50%: bendroflumethiazide,

ciclosporin, ezetimibe, irbesartan, losartan, nefazodone,

nifedipine, ritonavir, and simvastatin. Irbesartan, ezetim-

ibe, and ritonavir have all been shown to have an inhibitory

effect on HBV receptors in cell lines. In a HepG2-NTCP

cell line that supports HBV infection, irbesartan was shown

to effectively inhibit HBV entry [118]. Using differentiated

HepaRG cells as a cell-culture infection model it was

shown that altering hepatic cholesterol uptake with eze-

timibe reduces early HBV infection through NTCP inhi-

bition [119]. Other compounds that inhibit HBV entry

through NTCP include epigallocatechin-3-gallate, a cate-

chin flavonoid present in green tea extract, which has been

shown to induce endocytosis of NTCP from the plasma

membrane leading to protein degradation [120], and Ro41-

5253, which has been shown to reduce the expression of

both NTCP mRNA and protein by dysregulating the reti-

noic acid receptor [121]. The fungal metabolite vani-

taracin A, a novel tricyclic polyketide, has been shown to

inhibit entry of both HBV and HDV by inhibition of

NTCP’s transporter activity [109]. Some NAPs have been

shown to use the properties of PS-ONs as amphipathic

polymers to block the amphipathic interactions used in

viral entry, inhibiting attachment of the virion to the hep-

atocyte [92]. In vitro, several NAPs have been shown to

inhibit duck HBV entry into hepatocytes. Although some

of the NAPs tested caused significant toxicity in ducks,

others such as REP 2005 were both effective against duck

HBV infection and were well-tolerated [92].

3.2 Cyclophilin Inhibitors

In humans, there are seven main CYPs, cellular proteins with

peptidyl-prolyl isomerase enzymatic activity [122, 123].

Included are CYPA, CYPB, CYPC, CYPD, CYPE, CYP40,

and CYP natural killer (CYPNK) [122]. CYPs are host fac-

tors that are needed for the replication of many different

viruses, including both hepatitis B and C [124]. CYPA has

been shown to play an important role in both HBV replica-

tion and in HBV envelope protein secretion from hepatocytes

[124]. Ciclosporin is the prototype CYP inhibitor but through

modification of the ciclosporin molecule, inhibitors without

immunosuppressive qualities have been developed, including

alisporivir, NIM811, and SCY-635 [125]. In cell studies,

when CYP inhibitors (either alisporivir or NIM811) were

used to block CYP enzymatic activity, both HBV DNA

replication and HBsAg production and secretion were sub-

stantially reduced [124]. Using alisporivir in combination

with the DAA telbivudine yielded increased antiviral effects

compared with the use of either agent alone. NVP018 is an

orally available, sangamide-based second-generation CYP

inhibitor, which has shown in vitro dual anti-HBV effects,

causing immune modulation through IFN regulatory factors

and inhibiting HBV replication [126]. However, since the

dissolution in October 2016 of a development agreement

between NVP018 developer NeuroVive Pharmaceutical AB

(Lund, Sweden) and another company, development of the

drug as an HBV therapy has been on hold.

3.3 Immunomodulatory Agents

With CHB patients, the goal of immunotherapy is to target

or manipulate the immune system in ways that restore

efficient antiviral immune responses. Multiple

immunomodulatory agents are now being studied to treat

CHB, including Toll-like receptor (TLR) agonists, immune

checkpoint inhibitors, therapeutic vaccines, engineered

T cells, and others.

3.3.1 Toll-Like Receptor Agonists

TLRs play a key role in innate immune defenses [127].

They are a type of pattern recognition receptor that can

sense the presence of foreign pathogens and stimulate the

release of inflammatory cytokines and subsequent adaptive

immune responses [128]. It has been shown that HBV can

suppress the TLR-induced antiviral activity of liver cells

[129]. TLR7 stimulation in hepatocytes induces an

endogenous type I IFN response leading to development of

broad protective immunity against hepatitis viruses [130].

In animal models, it has been shown that agonists of sev-

eral different TLRs (including TLRs 3, 7, 8, and 9) have

anti-HBV effects [131–135], including substantial
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reductions in HBV viral load, serum HBsAg, and HBeAg

as seen with the TLR7 agonist GS-9620 given in multiple

doses to chimpanzees [136]. With phase I trials showing

that although GS-9620 induced peripheral IFN-stimulated

gene 15 (ISG15) expression it did not reduce HBsAg levels

or HBV DNA [137], it is now being studied in combination

with TDF in phase II trials [128].

3.3.2 Engineered T Cells

To fully address HBV infection, a strong T cell response is

needed both to induce cellular immune responses to kill

infected hepatocytes and to signal B cells to produce anti-

bodies against HBeAg and HBsAg. This occurs in patients

with acute HBV infection that does not become chronic

[138–141] but does not occur in CHB patients. The goal of

engineering T cells is to improve the affinity of T cell

receptors for specific antigens. This is done by harvesting

T cells from the patient, modifying them to express chimeric

antigen receptors, which will allow them to recognize specific

antigens on target cells, and then reintroducing the cells into

the patient. In a mouse model, it was shown that T cells that

had been engineered with a chimeric antigen receptor specific

for HBV envelope proteins localized to the liver and rapidly

reduced HBV replication, yielding a profound reduction in

viral load [142]. There was immune-mediated damage to the

liver but it was not severe and was only transient. To date,

there has been no research to show that this approach can be

safely and effectively used in humans. One factor that is

likely to limit the use of engineered T cells is that this is a

very costly individualized therapy, which would preclude its

use in the developing world where a substantial portion of the

CHB population resides.

3.3.3 Immune Checkpoint Inhibitors

As in many other chronic infections and cancers, in CHB

there is exhaustion of T cells with weak virus-specific T cell

responses that impede the clearance of virus, characterized

by progressive loss of T cell effector functions and increased

expression of several inhibitory receptors called checkpoint

proteins, including cluster of differentiation (CD) 244,

CD160, cytotoxic T lymphocyte (CTL) antigen-4 (CTLA-

4), programmed death (PD)-1, cell immunoglobulin mucin-3

(Tim-3), and others [143–149]. Although the original focus

was on CD8? exhausted T cells, there is increasing evi-

dence that CD4? exhausted T cells also play important

roles in this problem [150]. It is thought that several

mechanisms may contribute to the T cell exhaustion,

including high viral load and antigen levels, loss of CD4?

T cell help, and suppressive cytokines such as interleukin

(IL)-10 and transforming growth factor (TGF)-b [151, 152].

As our understanding of T cell exhaustion has improved,

there has been increasing interest in the possibility that by

blocking inhibitory molecules with immune checkpoint

inhibitors, the function of exhausted T cells could be

restored in CHB patients [150]. It has been shown in a study

that used liver biopsies from CHB patients that blocking the

interaction of PD-1 with its ligand PD-L1 by incubating

T cells with HBV peptides in the presence of anti-PD-L1

resulted in increased intrahepatic CD8? T cell proliferation

and production of IFN-c and IL-2 [146]. In another cell

study, the combination of CD137 stimulation with CD137L

and blockade of PD-1 interaction with PD-L1 using anti-PD-

L1 resulted in increased responses of intrahepatic HBV-

specific T cells [147]. Results with nivolumab, an anti-PD-1

monoclonal antibody, in which 15% of chronic HCV

patients had a significant reduction in HCV RNA following

a single dose [153], has increased interest in the possibility

that checkpoint inhibitors might also have efficacy in CHB

patients. Experts in the field have theorized that there is a

moderate to high probability that checkpoint inhibitors could

become an effective therapy for CHB, most likely as one

component of a combined approach [128]. Because there is

a substantial risk of adverse events with these agents, cau-

tious assessment of their effects in CHB patients with

careful monitoring will be required.

3.3.4 Therapeutic Vaccines

Therapeutic vaccines are currently of considerable interest

because it is thought that they could help counter HBV-

specific T cell exhaustion, restoring the level of the HBV-

specific T cell population, boosting CD4? T cell respon-

ses, and activating humoral and cytolytic immune respon-

ses against HBV antigens [154, 155]. There is considerable

genetic diversity in HBV, with eight distinct genotypes and

multiple subtypes, giving complexity to the development of

effective vaccines. There are several types of HBV thera-

peutic vaccines currently in development.

3.3.4.1 Protein- or Peptide-Based Vaccines Protein- or

peptide-based vaccines induce HBV-specific antibodies in

high titers but yield only weak cellular immune responses

and thus require repeated doses and adjuvant therapy for

the best effects [156]. Combining HBsAg and highly

immunogenic hepatitis B core antigen (HBcAg) has led to

significant improvement in protein-based vaccination

[157]. HBcAg activates B cells, which enhances T cell

priming, enabling them to act as potent antigen-presenting

cells (APCs), increasing the immunogenic effects of vac-

cine and causing highly potent HBs-specific T cell

responses [158–161]. It is thought that this type of protein-

based vaccination that combines HBsAg and HBcAg may

work well to reduce viral load and induce seroconversion

in CHB patients [157].
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3.3.4.2 DNA-Based Vaccines DNA-based vaccines pro-

vide genes encoding the antigen rather than consisting of

the antigen itself. They induce strong humoral and cellular

immune responses, including T helper (Th) 1 and cytotoxic

responses, in contrast to protein-based vaccinations, which

mainly mount humoral responses [162]. Multiple trials

have been conducted to assess the efficacy of DNA-based

vaccination in CHB patients. In one small study of patients

who had not responded to standard treatment with IFN-a
and/or lamivudine, DNA vaccine (encoding for S and

preS2 domains of HBV envelope proteins) yielded a tran-

sient decrease in HBV DNA levels in 50% of patients,

HBV-specific IFN-c-secreting T cells significantly

increased, and most patients showed transient proliferative

responses to HBcAg [163]. It has been observed in multiple

studies that the immunogenicity of these vaccinations can

be enhanced with DNA prime and viral vector boost vac-

cinations [164]. In another study, a DNA vaccine encoding

HBV proteins and modified human IL-12 was given for

12 months to CHB patients being treated with lamivudine

[165]. Detectable HBV-specific IFN-c-secreting T cell

responses were observed at the end of treatment and during

follow-up, with the type 1 T cell responses, particularly

CD4? memory T cell responses, maintained for at least

40 weeks after completion of therapy.

It has been observed in multiple studies that the

immunogenicity of these vaccinations can be enhanced

with DNA prime and viral vector booster vaccinations

[164]. A large number of multifunctional T cells can result

with this type of combined DNA vaccine and viral vector

booster (poxviruses or adenoviruses), as observed in trials

of vaccines for tuberculosis and malaria [166].

3.3.4.3 Viral Vector-Based Vaccines Sustained immune

responses can be generated with live attenuated viral vac-

cines, and with other diseases multiple vaccines have been

developed with recombinant viral vectors such as pox-

viruses and adenoviruses [167, 168]. In a chimpanzee

study, treatment with a recombinant retroviral vector vac-

cine expressing HBcAg resulted in increased anti-HBe

antibodies and restoration of HBV-specific cytotoxic T cell

responses; in only one of the three chimpanzees, HBeAg

Transcrip�on 
inhibitors

Entry inhibitors-
NTCP blocker-

Myrcludex 

RNA interference

Block cccDNA

Virologic 
approaches

Polymerase 
inhibitors

HBV capsid

inhibitors

Secre�on 
inhibitors

Fig. 1 Novel therapies targeting hepatitis B virus with virologic approaches [46, 49, 66, 175–179]. cccDNA covalently closed circular DNA,

HBV hepatitis B virus, NTCP sodium taurocholate co-transporting polypeptide
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seroconversion and HBV clearance occurred [169]. In a

study of a DNA/MVA (recombinant modified vaccinia

virus Ankara) prime/boost vaccine given with or without

lamivudine treatment to 12 HBeAg-negative and 12

HBeAg-positive CHB patients, no added beneficial effects

were seen beyond those that occurred with antiviral therapy

alone [170]. It is possible that the effects of these types of

vaccines could be improved by lowering HBV viral load

prior to vaccination, a strategy that in the woodchuck

model resulted in strong woodchuck hepatitis surface

antigen (WHsAg)- and woodchuck hepatitis core antigen

(WHcAg)-specific CD4? and CD8? T cell responses in

animals pre-treated with entecavir and then given a DNA

prime-adenovirus boost vaccine regimen; these T cell

responses were not detectable in the animals treated only

with entecavir [171]. The TG1050 vaccine (Transgene,

Strasbourg, France) based on a viral vector expressing

three HBV antigens (core, polymerase, and envelope) is

now being studied in a randomized, multicenter, double-

blind, placebo-controlled phase I study (ClinicalTrials.gov

identifier NCT02428400) [195].

3.3.4.4 Cell-Based Vaccines Dendritic cells (DCs) are

APCs that are present throughout the body and are

important for antigen presentation to CD4? and CD8?

T cells [172]. It has been shown that in CHB patients there

are functional defects in APCs, particularly the DCs, which

may be responsible for a decreased ability for HBV anti-

gens to be presented to the host immune system for

clearance of HBV [173]. Antigen-presenting autologous

DCs (ADCs), primed with antigen, have been studied as

immunotherapy in multiple diseases [172]. In one large

Host immune
approaches

Entry inhibitors

Cyclophilin inhibitors

Immunomodulators

Toll-like receptor
agonists

Engineered T cells

Immune checkpoint
Inhibitors

Therapeu�c
vaccines

Fig. 2 Novel therapies targeting hepatitis B virus with immunolog-

ical approaches [46, 49, 66, 115, 116, 175–179]. Among the therapies

currently being assessed as possible agents to counter hepatitis B

virus with host-targeting approaches, including (a) entry inhibitors:

myrcludex B, ciclosporin (cyclosporine A) and several ciclosporin

derivatives (including SCYX618806, SCYX827830, and

SCYX1454139), alisporivir, bendroflumethiazide, ezetimibe, irbesar-

tan, losartan, nefazodone, nifedipine, ritonavir, simvastatin, epigallo-

catechin-3-gallate, Ro41-5253, vanitaracin A, and the nucleic acid

polymer REP 2005; (b) cyclophilin inhibitors: ciclosporin, alisporivir,

NIM811, SCY-635, and NVP018; (c) Toll-like receptor agonists: GS-

9620; (d) engineered T cells: T cells engineered with a chimeric

antigen receptor specific for HBV envelope proteins; (e) immune

checkpoint inhibitors: nivolumab; (f) therapeutic vaccines: (1)

protein/peptide-based: vaccination that combines HBsAg and HBcAg,

(2) DNA vaccines: DNA vaccine encoding for S and preS2 domains

of HBV envelope proteins, DNA prime and viral vector boost

vaccines, and DNA vaccine encoding HBV proteins and modified

human IL-12, (3) viral vector-based vaccines: TG1050 vaccine,

recombinant retroviral vector vaccine expressing HBcAg, DNA/MVA

prime/boost vaccine, and DNA prime-adenovirus boost vaccine, (4)

cell-based vaccines: dendritic cell vaccines; and (g) other immune

modulators: recombinant human IL-7 (CYT107), recombinant human

IL-12, and SB 9200. HBcAg hepatitis B core antigen, HBsAg

hepatitis B surface antigen, HBV hepatitis B virus, IL interleukin,

MVA modified vaccinia virus Ankara

1272 A. Dawood et al.



study of CHB patients not currently receiving any other

anti-HBV therapy, ADCs were pulsed with HBcAg18-27

peptide (FLPSDFFPSV) and the HBV Pre-S244-53 peptide

(SILSKTGDPV) and reinfused intravenously, twice

monthly during the first 3 months and once monthly during

the following 3 months [172]. HBV DNA became unde-

tectable in 46.36% of HBeAg-negative patients and 3.13%

of HBeAg-positive patients. Of 195 patients with ALT

levels above 40 IU/mL at baseline, ALT levels in 50.26%

had returned to normal by 48 weeks, with a significant

effect on the normalization of ALT observed in both

HBeAg-positive and HBeAg-negative patients. The

researchers noted that this DC vaccine appeared to trigger a

strong CD8? CTL response in both HBeAg-negative and -

Fig. 3 The main features of the HBV life cycle and potential

antiviral targets [186, 189–192]. (1) HBV entry inhibitors. Lipopep-

tides mimicking pre-S1 domain competing with Dane particle for

binding to NTCP (e.g., myrcludex BTM). Other small molecules are

under evaluation. (2) Targeting cccDNA. Damage and destruction of

cccDNA via cytokines or cccDNA sequence-specific nucleases.

Functional silencing via modulation of host cellular epigenetic-

modifying enzymes by cytokines or inhibition of viral protein

function. (3) HBV mRNAs. Small-interfering RNA approaches or

antisense oligonucleotides to block viral replication and viral protein

expression. (4) HBV Pol inhibitors. Reverse transcriptase inhibitors of

the nucleos(t)ide analog family are part of the standard of care.

RNAse H inhibitors are in preclinical evaluation. (5) Core modula-

tors. Nucleocapsid assembly and pgRNA packaging. Capsid assembly

modulators can affect nucleocapsid assembly, pgRNA encapsidation,

and the nuclear functions of HBc (cccDNA regulation and interferon

stimulated gene expression). (6) Egress inhibitors. Phosphorothioate

oligonucleotides inhibiting HBsAg release and monoclonal antibodies

to decrease circulating HBsAg load are under evaluation. Reproduced

with permission from Revill et al. [189]. cccDNA covalently closed

circular DNA, dslDNA double-stranded linear DNA, HBc hepatitis B

core protein, HBe hepatitis e antigen, HBs hepatitis B surface, HBsAg

hepatitis B surface antigen, HBV hepatitis B virus, HBx hepatitis B

x protein, HSC hepatic stellate cell, IFNb interferon-b, IL6 inter-

leukin-6, KC Kuppfer cell, LSEC liver sinusoidal endothelial cells,

mRNA messenger RNA, NTCP sodium taurocholate co-transporting

polypeptide, pgRNA pregenomic RNA, Pol polymerase, RC DNA

relaxed circular DNA, TGFb transforming growth factor-b, MVB

multivesicular bodies, SVP subviral envelope particles
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positive patients. Because in HBeAg-positive patients

strong viral replication reduced viral load clearance by the

DC vaccine, they suggested that it might be preferable to

combine the vaccine with antiviral drugs.

Loss of HBsAg and production of anti-HBs has been

observed in a study with transgenic mice where endoge-

nous DCs were pulsed with HBsAg [174]. Based on this,

5 million HBsAg-pulsed DCs were administered intrader-

mally one to three times in five CHB patients, resulting in

anti-HBs in two patients and HBsAg-specific cellular

immunity in one patient [175]. The HBsAg-pulsed DCs

resulted in induction of higher levels of IFN-c and IL-12

than did un-pulsed DCs. The HBsAg-pulsed DCs did not

result in generalized inflammation, exacerbation of liver

damage, abnormal kidney function, or features of autoim-

munity and were considered safe in all patients. Based on

these results, additional clinical trials are planned.

3.3.5 Other Immune Modulators and Associated Therapies

There are multiple other therapies in this category currently

being tested, among which the farthest along in development

are the cytokine agents. Researchers are looking at the

immune restoration and vaccine adjuvant effects of certain

cytokines and the possibility that cytokines and cytokine

receptor agonists could lead toHBVcccDNAelimination. IL-

7 is necessary for the correct development of T cells, DC

subsets, and B cells. A combination of NUC therapy (ente-

cavir or tenofovir) with recombinant human IL-7 (CYT107)

or with both CYT107 and HBV vaccine (GenHevac

B�, Pasteur, Merieux, France) is now being studied (Clini-

calTrials.gov identifier NCT01027065) [196]. Because pre-

clinical data had shown that IL-12 inhibits HBV replication

through the stimulation of IFN-c production, one study

investigated the results of adding recombinant human IL-12

therapy to lamivudine treatment [176]. In CHB patients given

the combination there was enhanced T cell reactivity to HBV

and IFN-c production but HBV replication inhibition was not

maintained after discontinuation of lamivudine.

SB 9200, an oral prodrug of the dinucleotide SB 9000, is

a novel therapy that is believed to have both direct antiviral

properties and induce endogenous IFN by activating two

viral sensor proteins: retinoic acid-inducible gene 1 (RIG-I)

and nucleotide-binding oligomerization domain-containing

protein 2 (NOD2). It is thought that this activation results in

IFN-mediated antiviral immune responses in HBV-infected

cells. In the woodchuck model, two oral doses of SB 9200

(15 and 30 mg/kg) were studied [177]. After 12 weeks of

treatment, there were reductions in serum woodchuck hep-

atitis virus (WHV) DNA of 2.2 and 3.7 log10 and in WHV

surface antigen of 0.5 and 1.6 log10 with the lower and

higher doses, respectively. The drug was well-tolerated with

no adverse effects noted. The reduction in surface antigen is

thought to be due to inhibition of cccDNA synthesis or

transcription. Because it has been shown in vitro that

SB 9200 has potent activity against both wild-type and

mutant HBV and has synergistic effects with NUCs, it is

now being studied in a combination approach. In an ongoing

phase IIa trial, patients are assigned to one of four dosing

cohorts (25, 50, 100, or 200 mg) of SB 9200 or placebo,

with the SB 9200 given once daily for 12 weeks; all patients

will then receive tenofovir 300 mg once daily for an addi-

tional 12 weeks of treatment (ClinicalTrials.gov identifier

NCT02751996) [197]. In a planned phase IIb trial the con-

comitant use of SB 9200 and tenofovir given for 12 weeks

will be assessed, followed by tenofovir given alone.

Because the efficacy of some of the immune modulator

therapies discussed here, including therapeutic vaccines,

IFN, and checkpoint inhibitors, can be compromised by

high antigen levels [178–180], the CRISPR/Cas9 genome

editing tool, discussed in Sect. 2.2 as a cccDNA inhibitor,

is of interest. Although this tool may not be available

outside the laboratory for some time, the hope is that it

could someday be used to directly remove cccDNA, which

would, in turn, lower HBsAg levels and improve the effi-

cacy of some of the immune modulators [128].

4 Novel Therapies

Current evidence suggests that existingHBV therapies reduce

progression to chronic liver disease and its sequelae, including

HCC [181, 182]. In the present treatment paradigm, new-

generation drugs such as tenofovir alafenamide and besifovir

may have similar efficacy with fewer adverse effects

[73, 85, 182]. However, the ultimate goal of chronic HBV

treatment would be the elimination of cccDNA [181, 182]. To

achieve this goal, multiple therapies with a variety of targets

are under investigation [183]. The approaches can be divided

into virologic approaches and host immune approaches. With

the exceptions of tenofovir alafenamide and besifovir, all

other compounds are in pre-clinical or phase I or II trials [184].

Novel therapieswith virologic approaches are shown in Fig. 1

and those with immune approaches in Fig. 2

[47, 50, 183–188]. The main features of the HBV life cycle

and potential antiviral targets are shown in Fig. 3.

5 Conclusion

In recent years there has been remarkable progress in our

understanding of HBV virology and the body’s immune

response to it, and significant research that has led to

possible new treatments. Until the day comes that we have

a true sterilizing cure in which all viral DNA is eliminated,

with removal of all cccDNA and integrated virus, effective
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approaches to CHB may require suppression of viral

replication combined with one or more host-targeting

agents. Some of the recent research advances have led to

the hope that with such an approach we may have a

functional cure for CHB in the not distant future.
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