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Metastasis represents a multistep cascade of cancer cell alterations accompanied by structural and functional changes within
the tumor microenvironment which may involve the induction of a retrodifferentiation program. Major steps in metastatic
developments include (A) cell detachment from the primary tumor site involving epithelial-mesenchymal transition (EMT), (B)
migration and invasion into surrounding tissue, (C) transendothelial intravasation into the vasculature of blood and/or lymphatic
vessels as circulating tumor cells (CTCs), (D) dissemination to distant organs, and (E) extravasation of CTCs to secondary sites
as disseminated tumor cells (DTCs). This article highlights some aspects of the metastatic cascade with a focus on breast cancer
cells. Metastatic steps critically depend on the capability of cancer cells to adapt to distant tissues and the corresponding new
microenvironment. As a consequence, increasing plasticity and developmental changes paralleled by acquisition of new cancer cell
functionalities challenge a successful therapeutic approach.

1. Introduction

Breast cancer accounts for the most common type of cancer
in women. The leading cause of cancer death results from
metastasis and not from the primary tumor itself [1, 2].

Breast cancer metastasis is characterized by a multistep
cascade. This metastatic process can be subdivided into
5 steps which are discussed in principle and involve the
following: (A) tumor cells including breast cancer stem-like
cells are liberated from the primary tumor tissue potentially
undergoing epithelial-mesenchymal transition (EMT), (B)
tumor cells migrate and infiltrate neighboring tissue, (C)
tumor cells cross endothelial barrier and enter blood and
lymphatic vessels as circulating tumor cells (CTCs), (D)
tumor cells attach at secondary sites after circulation to
escape blood and lymphatic vessels as disseminated tumor
cells (DTCs), and (E) tumor cells migrate to distant tissue
and form metastases [3-5] (see Figure 1). Especially for the
first step of the metastatic cascade, the tumor microenvi-
ronment (TME) has a tremendous impact whereby direct
and indirect interactions contribute to further development
and heterogeneity of the breast tumor, including progression

and initiation of metastasis. The TME harbors several cell
populations such as a variety of different immune cells,
pericytes in perivascular niches, mesenchymal stroma/stem
cells (MSC), tumor-associated fibroblasts, adipocytic cells
and endothelial precursors, and mature cells. Moreover,
soluble factors like cytokines, chemokines, growth factors,
hormones, metabolites, and components of the extracellular
matrix (ECM) additionally contribute to tumor maturation
and diversification. Of interest, particular interaction of MSC
with breast cancer cells favors the establishment of a putative
carcinoma stem cell niche for generation of cancer stem
cell-like cells (CSCs) or tumor-initiating cells (TICs) [6-11].
Although various studies consider CSCs as TICs [12, 13],
other work discriminated this interchangeability by stem cell
markers, for example, CD133-expressing CSCs in the colon
or CD24"°Y/CD44"&" and ALDHI1"E" expression by breast
cancer CSCs representing different functional characteristics
[as reviewed in [14]]. Moreover, tumor growth and gene
expression profiles in CSCs of metastases are significantly
altered as compared to a TIC in the primary tumor which
could be more appropriately described as originating tumor
cell [as reviewed in [15,16]]. Cellular processes for a successful
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development of metastases are performed by several strate-
gies and diversifications which can vary within different
tumor entities. Accordingly, the present work mainly focuses
on formation of breast cancer metastases.

(A) Tumor Cells Escape from the Primary Tumor Site. The
beginning of metastasis is represented by detachment of
individual cells from the primary tumor site [17, 18]. Since
detached epithelial and endothelial cells undergo anoikis
due to incorrect ECM/cell attachment, detached cancer cells
display a certain resistance to anoikis [19]. In order to escape
apoptosis tumor cells alter phenotype and functionality
including loss of cell polarity and changes in cell-to-cell and
cell-matrix adhesion and an increase in migratory potential.
These functional and structural alterations are achieved via
induction of EMT in the cancer cells [20, 21]. However,
there is evidence that EMT is not essential for metastasis.
In vivo mice studies revealed that lung metastases exhibit
non-EMT cancer cells, that inhibition of EMT influences
lung metastasis formation, but that additionally EMT cells
show chemoresistance and are the cause for recurrence [22].
Similar results have been reported with pancreatic ductal
adenocarcinoma whereby EMT suppression did not affect
metastasis but led to induction of chemoresistance [23].

EMT can be initiated by autocrine and paracrine signals
involving TGF-f and Wnt or by activation of receptor
tyrosine kinases via binding and trans-signaling of growth
factors such as epidermal growth factor or fibroblast growth
factor [24]. In general, EMT induction leads to activation
of EMT-associated transcription factors including Twistl,
Slug, Zebl/2, and Snaill/2 which promote downregulation
of, for example, E-cadherin. Consequently, tumor cells lose
cell-to-cell adhesion and reduce cell-cell junctions [25].
Moreover, mesenchymal markers like fibronectin, vimentin,
and N-cadherin become activated which leads to a more
mesenchymal-like phenotype with enhanced migration and
increased cell-to-stroma interactions [26-28].

The acquisition of mesenchymal marker expression has
also been reported in several studies addressing interactions
between mesenchymal stroma/stem cells (MSC) and cancer
cells including breast and ovarian cancer [29]. Indeed, MSC
represent a heterogeneous cell population with multiple
subpopulations displaying stem cell-like properties [30, 31].
Whereas MSC reside in a variety of different tissues within the
organism including bone-marrow, adipose tissues, periph-
eral blood, dental pulp, and perivascular niches of several
other tissues, predominant properties include differentia-
tion capacity along phenotypes of the mesenchymal lineage
and potential cross-germline maturation. Previous studies
suggested that MSC from birth-associated tissues such as
umbilical cord exhibit superior properties including a higher
expansion rate and engraftment capacity as compared to
MSC derived from adult tissue sources [as reviewed in
[32]]. Moreover, MSC exhibit immune-modulatory functions
at sites of tissue damage and injury. Thereby, local tissue-
associated MSC contribute to wound healing, damage repair,
and tissue regeneration and homeostasis by secretion of
anti-inflammatory cytokines, chemokines, metabolites, and
a large variety of growth factors which in parallel can
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stimulate endothelial cells for vessel formation and subse-
quent neovascularization. These multiple functionalities of
MSC and their crosstalk with various adjacent cell popu-
lations which depends on the state of activation and the
age of MSC also apply to cellular interactions between MSC
and neighboring tumor cells, considering invasive cancer
growth as a permanent wound [32-34]. Therefore, MSC also
play an important role during tumor cell interaction. For
example, breast cancer cells acquire CD90 during coculture
with umbilical cord-derived MSC involving gap junctional
intercellular communication and Notch signaling which
represents one of the characteristic mesenchymal markers of
MSC [35]. Moreover, interactions between MSC and cancer
cells proceed bidirectionally since vice versa, acquisition of
some epithelial-like markers including epithelial cell adhe-
sion molecule (EpCAM) can be detected in MSC follow-
ing coculture with ovarian cancer cells [36]. Furthermore,
MSC acquire increased expression of ECM proteins such
as fibronectin and laminin during certain chemotherapeutic
treatment and thereby promote tumor cell protection and a
distinct chemoresistance [37].

In addition to the downregulation of epithelial traits
and upregulation of certain mesenchymal markers in cancer
cells, release of ECM-degrading enzymes including matrix
metalloproteinases (MMPs) facilitates liberalization from the
originating tumor tissue, migration, and subsequent invasion
into tumor-neighboring tissue such as epithelial cell layers
and eventually blood or lymphatic vessels (Figure 1).

Together, interactions between MSC and tumor cells can
facilitate a mesenchymal-like transition of cancer cells to
support EMT and metastatic potential.

(B) Tumor Cells Migrate and Infiltrate Neighboring Tissue.
Tumor cells can migrate either individually and/or collect-
ively through adjacent connective tissue. Single cell move-
ment can be performed slowly via a mesenchymal type of
migration. Alternatively, tumor cells display a faster move-
ment via so-called amoeboid cell invasion. By contrast,
leader cells of collectively migrating cancer cells exhibit a
mesenchymal migration phenotype whereby inner cells of the
collectively migrating unit retain their epithelial phenotype
(3, 38].

Mesenchymal movement encompasses a five-step migra-
tion cycle characterized by pseudopod protrusion at the
leading edge, formation of focal contacts, focalized proteol-
ysis, actomyosin contraction, and detachment of the trailing
edge [as reviewed in [39]]. This type of invasion mainly
arises in cells which undergo EMT from epithelial cancers
or connective tumor tissue. In contrast to amoeboid migra-
tion, mesenchymal invasion is protease dependent since it
involves a plethora of soluble, secreted, and surface proteases
including matrix metalloproteinases (MMPs), kallikreins,
serine proteases, and cathepsins to enzymatically remodel
and cleave ECM components such as collagen, fibronectin,
and laminin to enable movement through the ECM [39, 40].
Cathepsins are found both extracellularly and intracellularly
in lysosomes and are represented by different amino acids
at active sites such as serine (cathepsin G), aspartic acid
(cathepsin D), and cysteine (cathepsins B, F, H, K, and L) [41].
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(C) Crossing of endothelial barrier and
entry into blood or lymphatic vessel

(D) Metastatic spread of circulating

tumor cells (CTCs) through blood or

lymphatic vessel

(E) Extravasation as disseminated
tumor cells (DTCs) and formation of
metastasis at distant tissues or organs Y
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FIGURE 1: Schematic view of metastatic process. Metastatic cascade starting from primary tumor site to distant sites via (A) escape of tumor
cells from the primary tumor site, (B) infiltration of tumor cells into adjacent tissue, (C) crossing of endothelial barrier and entry into blood
or lymphatic vessel, (D) metastatic spread of circulating tumor cells (CTCs) through blood or lymphatic vessel, and (E) extravasation as
disseminated tumor cells (DTCs) and formation of metastasis at distant site (modified according to [9]).

Whereas secreted cathepsins cleave extracellular ECM com-
ponents, intracellularly located cathepsins degrade endocy-
tosed ECM proteins like collagen in lysosomes [42-46]. For
instance, inhibition of cathepsin B reduced ECM degradation
and decreased inflammatory breast cancer invasion in vitro
[47]. Besides proteolytic enzymes like MMPs and cathep-
sins, kallikreins represent a further protease family of ECM
remodeling proteins. Evidences suggest that kallikreins are
involved in tumor progression and distinct kallikreins are
applied as tumor marker in cancer diagnosis, for example,
kallikrein hK3 also known as prostate-specific antigen [48,
49]. Moreover, the human kallikreins hK2 and hK4 can
induce activation of the urokinase plasminogen activator
system resulting in ECM degradation and/or activation of
tumor cell spreading [48, 50].

Particularly MMPs play an essential role in cancer cell
invasion by reorganization of the ECM which consists of
basement membranes and interstitial matrix. For example,
MMP2 and MMP9 degrade collagen type IV, the major
component of basement membranes representing thin struc-
tures at the basolateral site of epithelium and endothe-
lium [51, 52]. Moreover, MMP7 was suggested in juvenile
human mammary epithelial cells (HMEC) to form a ternary
complex together with the growth factor precursor form

pro-HB-EGF and anchorage to the hyaluronan receptor
CD44. Subsequent cleavage releases the soluble sHB-EGF
which binds to the dimerized form of the ErbB4 surface
receptor to relay intracellular signaling via the cleaved
4ICD intracellular receptor domain and phosphorylation
of Erkl/2, thereby activating Fra-1 for nuclear transloca-
tion and repression of tropoelastin production. Vice versa,
senescent HMEC express reduced MMP7 protein whereby
formation of the ternary complex with HB-EGF and CD44
is disrupted. The resulting failure to activate Fra-1 via the
missing ICD induces tropoelastin formation, subsequent
cleavage by lysyl oxidases, and extracellular formation of
elastin fibers. Consequently, signaling in senescent HMEC
with altered MMP7 levels has been attributed to increased
fibrosis as a prerequisite for breast cancer development [53-
55].

Besides MMP2, MMP7, and MMP9, transmembrane
collagenase MT1-MMP/MMPI14, which is particularly asso-
ciated with cell protrusions such as invadopodia, represents a
key enzyme in remodeling ECM by driving invasion of tumor
cells via degradation of collagen type I and thereby facilitating
dissemination of cancer cells [40, 56-59]. Moreover, this
MMP was demonstrated to protect invading breast carci-
noma cells from collagen type I induced apoptosis [60].



In contrast to mesenchymal cell invasion, hallmarks of
amoeboid cancer cell movements are protease independency
with total loss of cell polarity, lower adhesiveness due to
missing focal contacts, and reduced capability to remodel the
ECM. Furthermore, amoeboid migrating tumor cells grow in
suspension and exhibit roundish cell morphology [39, 61, 62].
These characteristics allow amoeboid-like invading tumor
cells to move much faster through adjacent tissue compared
to mesenchymal movement [63, 64].

Both migration types can be performed by single invad-
ing tumor cells. Additionally, carcinoma cells exhibit the
ability to migrate collectively during metastasis. Collec-
tive invasion is characterized by maintenance of cell-to-
cell adhesion and front-rear polarity within the migrating
cell unit by multicellular coordination and generation of
traction force for forward migration and by remodeling of
ECM. The plasticity of collectively migrating tumor cells
ranges from coordinated sheets, strands, and tubes to clusters
[65-68]. Nevertheless, tip cells or leader cells, respectively,
feature mesenchymal morphology, whereas subsequent cells
are structured by epithelial cell-to-cell contacts. One major
advantage of collective cell movement is the protection of
inner cells, for example, from immune cell assaults [as
reviewed in [39, 62]].

However, all the different tumor cell movements are not
mutually exclusive. Switch from mesenchymal-to-amoeboid
motility and vice versa can occur under certain conditions
and is designated as mesenchymal-to-amoeboid transition
(MAT) or amoeboid-to-mesenchymal transition (AMT) [69,
70]. In addition, collective to amoeboid transition (CAT)
has been demonstrated in melanoma [65]. Of interest, breast
cancer cells have been reported to use both migration
types, single and collective cell movement, during metastatic
development [71].

Even though cancer cells which are detached from pri-
mary tumor site experience a completely different microen-
vironment while invading through adjacent tissue, they
undergo structural and functional changes that allow infil-
tration and forward movement to attain access to blood and
lymphatic vessels.

Chemokines and further soluble factors play an impor-
tant role in guiding migration of cancer cells towards vas-
culature and contributing to the metastatic spread [72].
Particularly, chemokine receptor CCR7 has been reported
to mediate migration to lymph nodes in gastric and col-
orectal carcinoma [73, 74]. Breast cancer cells expressing
chemokine receptors CXCR4 and CCR7 were stimulated
with appropriate chemokine receptor ligands CCL12 and
CCL21 leading to pseudopodia formation and higher inva-
siveness [75]. Additionally, siRNA knock-down of CXCR4
in breast cancer cells or neutralizing antibody against
CXCR4 reduced tumor growth and inhibited metastasis
[75, 76]. The CXCR4/CXCLI2 axis is used by tumor cells
which secrete platelet-derived growth factor (PDGF) that in
turn activates endothelial cells to secrete CXCLI2 leading
to a chemotaxis gradient [77]. This gradient may attract
CXCR4 positive tumor cells to the endothelium approaching
the vasculature. Moreover, breast cancer-mediated produc-
tion of the chemokine CCL5 (RANTES) by neighboring
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tumor-associated mesenchymal stroma/stem cells can act in
a paracrine manner on the cancer cells to promote their
motility, invasion, and metastasis [78].

(C) Tumor Cells Cross Endothelial Barrier and Enter Blood
and/or Lymphatic Vessels. Cancer cells detached from the
primary tumor site can utilize both the blood and lymphatic
system to spread to secondary sites for metastasis [79].
Prerequisites for this development are neovascularization
of the tumor site or lymphangiogenesis [80, 81] to provide
appropriate vessel structures within the tumor microenviron-
ment.

To enter the blood or lymphatic system and of course
to leave this system again, cancer cells need to cross the
endothelial barrier. Disruption of this barrier is indispensable
and involves various mechanisms which cancer cells use for
intra- and extravasation [82-84].

One mechanism suggests that endothelial barrier leakage
occurs via tumor cell-secreted factors and receptor-ligand
interactions. Metastatic melanoma cells induced endothelial
cell gap formation via Src activation in endothelial cells, a
nonreceptor tyrosine kinase. Further activation of Src was
mediated by tumor cell-derived IL8 and VLA-4/VCAM-1
interactions leading to phosphorylation of VE-cadherin, a
major component of endothelial junctions and finally to
disruption of the endothelial barrier [83]. Other in vivo
studies suggested a potential role for VEGF in promoting
vascular permeability upstream of Src and VE-cadherin
by applying VEGF and Src inhibitors that suppress tumor
cell extravasation [84]. Moreover, epidermal growth factor
receptor (EGFR) has been attributed to a sustaining role of
tumor cell intravasation and dissemination [85].

There is still ongoing debate about the entry mechanism
of tumor cells into vessels whether it occurs actively or
passively. As outlined previously, motile cancer cells can enter
the blood and lymphatic system actively while mobile cells are
moved by external forces, for instance, mechanical tension
through the endothelium into blood and lymphatic vessels
(17, 86, 87]. Motile tumor cells invade either individually or
collectively. For both ways, tumor cells have to undergo sig-
nificant changes involving EMT to acquire higher migratory
potential concomitant with altered cell morphology and a
phenotype with certain stem cell characteristics similar to
CSCs or TICs [17, 88-94].

Tumor cells that have escaped the primary tumor site and
entered blood or lymphatic system for metastatic spread are
also defined as circulating tumor cells (CTCs) [95].

(D) Tumor Cells Disseminate to Secondary Sites as Circulating
Tumor Cells (CTCs). CTCs have to overcome several obstacles
that implicate blood and lymphatic vessels. Indeed, the
vascular environment is completely different compared to
the TME of the primary tumor site and is responsible for
high mortality rates of CTCs [96]. Clinical studies about CTC
occurrence in breast cancer patients revealed an averaged
number of around 80 CTCs per mL blood [97] equivalent to
nearly half a million of CTCs in the whole circulation. This
actually demonstrates a certain inefficiency and limitation
of the metastatic process whereby reasons are partially due



BioMed Research International

to the vascular environment. However, prognostic values
for appearance of metastatic breast CTCs/mL by diagnostic
approaches of CTC enrichment technologies using liquid
biopsy could be much lower and may depend on the genomic
heterogeneity of CTCs and individual patient conditions [98,
99].

First of all, fluid shear stress, the mechanical force of the
blood flow, and frequent collisions with blood and immune
cells represent one major hindrance for CTCs to survive and
to reach distant organs [17, 100]. Nonetheless, it was shown
that CT'Cs which underwent EMT are more resistant against
these kinds of insults than tumor cells with an epithelial
phenotype [96]. Collisions of CTCs with blood cells mainly
result from high numbers of leukocytes, erythrocytes, and
platelets affecting CTC viability [96, 101]. Moreover, CTC
survival requires rescue or self-defense against immune cell
assaults, particularly those from natural killer (NK) cells
[102]. CTCs can evade the effective antitumoral activity of
NK cells via induction of platelets to aggregate, representing
a potential mechanism of tumor cells for platelet activation
(tumor cell-induced platelet aggregation, TCIPA) [103, 104].
TCIPA proceeds directly via interaction of platelets with
CTCs or indirectly via soluble molecules like cysteine pro-
teases or ADP [105, 106]. Moreover, MMPs play an essential
role in TCIPA and cancer cells may use this possibility to
circumvent NK cell activity. For instance, in vitro studies
showed that MCF7 breast cancer cells cotransfected with
MMP14/f33-integrin caused platelet aggregation via intro-
duced MTI-MMP/MMPI4 and via activation of MMP2.
Additionally, ADP contributed to TCIPA via stimulation of
the corresponding platelet receptor P2Y,, [107, 108]. Thus,
it is feasible that tumor cell-induced platelet aggregation
promotes survival of cancer cells in vascular circulation since
platelets may shield CTCs from immune cell assaults and
from fluid shear stress and may facilitate extravasation at
distant organs resulting in enhanced metastatic potential
[109-111].

In addition to TCIPA to protect from antitumoral
immune cell activity, tumor cells can selectively reduce
tumor-suppressive TGF-f-signaling facilitating tumor pro-
gression through the suppression of the host immune system
[112, 113]. For instance, in vivo studies revealed antitumor
effects through T-cell specific inhibition of TGF-3-signaling
[114].

A further obstacle for CTCs is the lack/deficiency of
cell-matrix interactions to provide proliferation signals and
cellular stability. Nevertheless, CTCs that have undergone
EMT and acquired a mesenchymal-like phenotype do not
require such interactions for cell survival [17, 88, 115].

All these hindrances of an altered microenvironment in
the vascular system lead to an overall low survival rate of
CTCs in the vasculature. For instance, it has been demon-
strated that circulating breast cancer cells survive only a few
hours in the circulation [116]. In most patients with advanced
cancer (stage IV) the occurrence of CTCs is around 1 cell
per billion normal blood cells [117]. Accordingly, this low
number emphasizes the difficulties and challenges to detect
CTCs in early stage cancer patients for timely diagnosis and
therapy.

(E) Tumor Cells (CTCs) Escape Blood and Lymphatic Vessels
and Migrate as Disseminated Tumor Cells (DTCs) to Sec-
ondary Sites. Extravasation starts with a reduction in blood
flow velocity and a corresponding reduced CTC circulation
in smaller capillaries in order to facilitate blood vessel wall
attachment [118, 119]. There are two mechanisms for CTC
extravasation, (1) physical occlusion and (2) cell adhesion.
Whereas physical occlusion takes place in capillaries with a
diameter smaller than CTCs, cell adhesion occurs in larger
capillaries and requires direct binding to the endothelium
(120, 121].

CTC adhesion to endothelial cells necessitates the expres-
sion of appropriate ligands and receptors on both CTCs
and endothelial cells including cadherins, selectins, inte-
grins, the hyaluronan receptor CD44, and immunoglobulin
superfamily receptors [118, 122]. CD44 expressed on breast
cancer cells serves as a major ligand for endothelial cell
surface located E-selectin and mediates CTC adhesion to the
endothelium [123]. Whereas endothelial selectin and can-
cer cell surface-expressed CD44 mediate CTC attachment,
Racl and cell division control protein 42 (CDC42) promote
transendothelial migration via extension of cancer cell pro-
trusions facilitating the whole process of extravasation, for
example, invadopodia which expand through the endothelial
barrier [118, 124, 125]. Besides the interaction of breast
cancer cell-derived integrin avf33 with platelets, previous
work demonstrated that integrin avf33 also promotes CTC
attachment to the endothelium in an activation-dependent
manner [126, 127].

Following CTC attachment, metastasizing tumor
cells cross endothelium by distinct mechanisms targeting
endothelial junctions including VE-cadherin. Furthermore,
cancer cells can incorporate into the endothelium displacing
endothelial cells and disrupting the structure of the endo-
thelium. Whereas neighbored endothelial cells maintain
expression of VE-cadherin, endothelial cells in contact with
cancer cells do not express VE-cadherin which may facilitate
additional cancer cells to incorporate [128].

Breast cancer cells preferentially disseminate to lung,
bone, liver, and brain [129, 130]. In particular, breast can-
cer cells with stem cell-like properties including CD44"¢"/
CD24"" subpopulations represent candidates for metastatic
activities since this cell population can differentiate, escape
immune surveillance, display apoptosis resistance, and sus-
tain cell growth and self-renewal [90, 131-134]. Thus, different
single cancer cell progenies acquire the capability to metas-
tasize to distinct tissues/organs with features of an organ-
specific homing whereby early dissemination of cancer cells
favors metastatic capacity [2, 130, 135].

During EMT some tumor cells acquire characteristics
and develop properties of CSCs [89, 90]. Nonetheless, the
new microenvironment, which significantly differs between
the different tissues/organs, is important for survival of
extravasated CTCs and will be, most commonly, hostile for
CTCs. Friendly microenvironments may represent metastatic
niches which harbor stromal cell types including MSC and
certain ECM proteins. Such a carcinoma stem cell niche
may provide conditions via diverse tumor cell interactions
or induction of a retrodifferentiation process to reprogram



tumor cells for CSC formation and protection [9, 136].
Development of breast cancer stem-like cells are associated
with expression of low levels of CD24, high levels of CD44,
aldehyde dehydrogenase, and the IL8-binding chemokine
receptor CXCRI [137-140].

Newly formed CSCs can be kept in a dormant/quiescent
state and therefore elevate the chance for CTC survival via
cell-to-cell and cell-to-matrix interactions [10, 88, 141, 142].
Although CTCs that underwent EMT exhibit a higher migra-
tory potential and invasiveness, their proliferative capacity
and ability for cell-to-cell interactions remain limited [143].
Consequently, only a subset of CTCs will survive as dissemi-
nated tumor cells (DTCs) while the majority may die or reside
as dormant cells [129, 144].

Mesenchymal-to-epithelial transition (MET), the reverse
process of EMT at primary tumor sites, is deliberated to
favor colonization of DTCs which can occupy distant organs
as solitary cells, small preangiogenic metastases, or greater
vascularized metastases [94, 129, 145]. Crucial signaling path-
ways to initiate MET involve protein kinase A (PKA) activa-
tion and following nuclear translocation. Subsequent PKA-
mediated phosphorylation and thus activation of the histone
demethylase PHF2 promote transactivation of epithelial cell-
associated genes and protein products such as E-cadherin
[146]. One hallmark of EMT is the downregulation of E-
cadherin resulting in loss of cell adhesion [25]. Accordingly,
reexpression of E-cadherin favors colonization of DTCs at
distant organs or tissues. Recent studies revealed the expres-
sion of E-cadherin in metastases of E-cadherin-negative
breast cancer xenografts induced by a secondary organ
microenvironment [147]. Moreover, the reciprocal interplay
of ZEB1/miR200 has been suggested as regulation of EMT
and MET in cancer. Whereas transcription factor ZEBI is
known as potential inducer of EMT via repression of miR200
family members, miR200 has been reported to induce MET
by repression of ZEB1 which subsequently leads to higher
expression of E-cadherin [148-150].

In some breast cancer patients, metastases can arise
after a long time, even after years or decades following first
diagnosis. Since the majority of DTCs may reside as dormant
cells in metastatic niches, local neovascularization together
with a certain chemokine/metabolite/growth factor cocktail
can stimulate reentry into the proliferative cell cycle and con-
tributes to cancer relapse. Indeed, breast cancer cell models
revealed that endothelial cells induce and maintain dormancy
of DTCs in metastatic niches via thrombospondin-1, known
as an inhibitor of angiogenesis and tumor growth [151, 152].
Moreover, time-lapse studies indicated that neovascular tips
promote breast cancer growth and that these neovascular tips
arerich in periostin and TGF- 81 suggesting an additional role
for these two soluble factors in cancer relapse [151].

2. Concluding Remarks

The plasticity of tumor tissues and the continuous alter-
ations/adaptations during liberation of tumor cells from the
original tissue, transendothelial migration, and development
of metastases include multiple changes in tumor cell pheno-
type and functionality. These variations challenge tumor cells
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to adapt to a new tissue environment with a certain threshold
of chemokines, tissue-specific metabolites, and other soluble
factors. Moreover, variations also include formation of new
tumor cell populations, for example, by fusion or entosis with
MSC during cellular interactions of adjacent cell types. All of
these variations which are acquired in the course of metastasis
contribute to the heterogeneity of the tumor and necessitate
various tumor cell type-specific markers to provide poten-
tially successful targets. Consequently, early interference with
signaling pathways associated with tumor cell migration,
spreading of CSCs, and formation of metastases represents
a more promising therapeutic approach.
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