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ABSTRACT
Graphs and tables are indispensable aids to quantitative
research. When developing a clinical prediction rule that
is based on a cardiovascular risk score, there are many
visual displays that can assist in developing the
underlying statistical model, testing the assumptions
made in this model, evaluating and presenting the
resultant score. All too often, researchers in this field
follow formulaic recipes without exploring the issues of
model selection and data presentation in a meaningful
and thoughtful way. Some ideas on how to use visual
displays to make wise decisions and present results that
will both inform and attract the reader are given. Ideas
are developed, and results tested, using subsets of the
data that were used to develop the ASSIGN
cardiovascular risk score, as used in Scotland.

BACKGROUND
A cardiovascular clinical prediction rule is typically
based on a risk score that attempts to identify those
at the greatest risk of cardiovascular disease (CVD),
thereby informing clinicians as to who should be
given treatment. The earliest widely used cardiovas-
cular risk score was the Framingham Risk Score of
1976.1 In recent times, such risk scores have
become commonplace, including scores that target
specific manifestations of CVD2 and scores that
target a broader definition of vascular disease.3

Although most scores are for primary prevention,4 5

others are for secondary prevention;6 some study
all outcomes, non-fatal or fatal,4 5 whereas some
study only mortal outcomes.7 Other differences
relate to the underlying statistical model and the
prognostic variables included in the risk score, but
the general approach almost always follows six
steps:8–16

1. Choose a set of prognostic variables as potential
factors to include in the risk score.

2. Decide on the most appropriate way to model
the associations between these variables and
CVD.

3. From among the set of variables, suitably mod-
elled, select those variables that are important
enough to include in the risk score.

4. Formulate the risk score.
5. Evaluate the risk score.
6. Package and interpret the risk score for use in

clinical practice.

STEP 1: CHOOSING THE PROGNOSTIC
VARIABLES
This first step generally requires clinical knowledge
and would typically be based on past research. If
the risk score is to be used to motivate change, one
may prefer to only consider factors that are

believed to be on the causal pathway to CVD.
Allowing for other factors may enable more accur-
ate risk prediction and thus more efficient alloca-
tion of treatment, which we will take as the
underlying aim in this exposition. We will assume
that a set of putative risk factors is available and
only discuss the remaining steps.
To illustrate our exposition, we will use a subset of

data from the Scottish Heart Health Extended Cohort
(SHHEC) study that were used to create an actual
CVD risk score used in current clinical practice: the
ASSIGN score.4 This was the first CVD risk score to
include social deprivation as a risk factor, but here we
take a smaller set of variables than those used in the
variable selection process for ASSIGN, to give a more
tractable example. We will consider age, systolic blood
pressure (SBP), serum total cholesterol (TC) and high-
density lipoprotein cholesterol (HDLC), diabetes,
current smoking and body mass index (BMI) as poten-
tial factors for inclusion in the risk score. Our sub-
sample is the 2301 women from Glasgow who
contributed data to ASSIGN, except a few who did
not have BMI (not used in ASSIGN) measured. As in
ASSIGN itself, these women were aged 30–74 years,
were initially free of CVD and were followed-up for
between 10 and 21 years. ASSIGN predicts 10-year
risk of incident CVD, fatal or non-fatal.

STEP 2: MODELLING
Statistical distribution
Associations between potential prognostic variables
and CVD are generally modelled in one of two
ways, depending on the data available or the aims
of the research. A key issue is whether the dates of
CVD events are known. For example, a database
may record the 12-month recurrence (yes/no) of
myocardial infarction after hospital discharge, but
not record the dates of each recurrence. Assuming
that no one was (or an insignificant number were)
lost to follow-up or died from other causes
(so-called censoring) within 12 months, then a
logistic model would be appropriate.17 18 If censor-
ing is present, with event and censoring times
known, then a survival model, most often Cox or
Weibull,17 19 is used. Sometimes censoring is
ignored and analyses, including visual displays, suit-
able to a logistic model are used, but this is only
acceptable if censoring is rare, as it assumes that
those who are censored have no event.
Even when the underlying statistical model has

been decided, it would be prudent to check
whether the assumptions behind it are reasonable
in the current case, both in this early stage of
model development and before the final model has
been fixed. Logistic models are generally robust to
assumptions,18 but Cox and (the basic) Weibull
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survival models assume so-called proportional hazards (PHs),17 19

which means that the hazard ratios (HRs) should be constant over
time. One can test the PH assumption graphically through log
cumulative hazards plots,17 19 or other graphical procedures.19

Violation of PHs may lead to the use of an alternative model.19

Shape of association
Having ascertained the appropriate statistical model, one now
has to consider what relationship each continuous putative prog-
nostic variable has with CVD. Often researchers assume that all
such variables have a linear relationship (strictly, a log-linear
relationship since logistic, Cox and most other appropriate
models work on the log scale17–19), but this may not be true
and may misrepresent, or even mask, a true effect. Although
tests of non-linearity can be useful,17 as with all tests, their
results depend on the sample size or number of events. In these
days of ‘big data’, small perturbations, of no real clinical import-
ance, can attract extreme significance levels. A graphical display
of estimates is more robust, and almost always useful. The sim-
plest approach is to divide the continuous variable according to
its percentiles, such as the four quintiles (which produce five
groups), into ordered categorical groups and plot the HRs. One
group, often that with the lowest risk, is chosen as the reference
group (hazard ratio (HR)=1), as is the case in figures 1A and
2A. A log (or ‘doubling’) scale should be used on the vertical
(‘y’) axis, and the best choice of plotting positions on the hori-
zontal (‘x’) axis is often the medians of the groups. As we have
done, it may help in interpreting the pattern that emerges to use
floating absolute risks (FARs),17 20 which (in broad terms) redis-
tribute the overall variance across the groups such that the refer-
ence group has a confidence intervals (CI)—unlike the classical
approach where the HR of unity is taken as a fixed value—and
the other groups have narrower CIs.

However, with or without the use of FARs, ordered categor-
ical grouping cuts the exploratory (‘x’) variable artificially into
disconnected points of mass. To get round this problem, one
could use splines,17 21 the simplest type of which are straight
line sections fitted between pre-assigned ‘knots’. Generally, it is
more helpful to fit cubic functions, which allow more flexibility.
In figures 1B and 2B, we have used such cubic splines, and have
taken the knots to be the quintiles. Since outliers can be a
problem in the extreme ends of a distribution, it is even more
essential than usual to show variability in a spline plot, as in
figures 1B and 2B.

The biggest drawback with both of these types of plot is that
the choice of categories/knots is arbitrary and different conclu-
sions might be drawn when different choices are made. Hence,
another approach worth considering, for obtaining a continuous
‘fit’ to examine non-linearity, is lowess smoothing,22 which does
not require the same types of thresholds. However, generally
this produces similar results to splines.

Whichever way we graph the data, the conclusion is that SBP
is approximately log-linear and BMI is not. So we can proceed
with variable selection by modelling SBP in a linear fashion
(generally denoted simply, but perhaps confusingly, as ‘continu-
ous’), but modelling BMI in a different way. We have chosen to
use the international conventions for BMI groupings23 to define
categories of BMI, taking the lowest to be the reference group.
Based on earlier work, we will assume that age, TC and HDLC
also have log-linear associations with the risk of CVD.

STEP 3: VARIABLE SELECTION
Now we proceed to select the variables for the risk score. Often
this is done by using a stepwise regression selection procedure,24

which aims to pick the parsimonious set of prognostic variables
which are statistically significant (p<0.05) after cross-
adjustment for each other. This has the advantages of speed and
simplicity. However, the methodology cannot be relied upon to
get the best model, by any statistical criterion.25 26 Moreover, it
gives no information as to the relative importance of different
sets of variables. A better approach may be to use the LASSO
method for model building,27 which both penalises putative
models for additional complexity and attenuates unlikely
extreme variable weights (employing so-called shrinkage). More
fundamentally, one might question the underlying idea that the
most parsimonious model is the best; for instance, it may be
worth retaining a variable that is not formally significant, but
has some effect on the estimated risk and can be useful to
motivate lifestyle change.

When feasible, much knowledge can be gained from fitting all
possible models, record the goodness of fit (GOF) of each and
plot the results in a GOF plot. There are several ways to
measure GOF; it is important to pick one that adjusts for the
number of variables in the model, otherwise the full model with
all factors will inevitably be the winner. We will use the Akaike
information criterion (AIC),17 28 for which the lowest score is
the best. AIC is a relative measure, which compares each model
with all others within the current dataset, and thus has no units
of measurement. In our running example, there are seven poten-
tial prognostic factors, so there will be 128 possible models
(without considering interactions). Figure 3 shows a GOF plot
for our example, produced from Cox regression models. It is
clear that the best single predictor is age; models that include
age are the best, and models including BMI but excluding age
are generally the worst, for any given number of prognostic
variables; and the best multiple variable model has all variables
except BMI. However, it is also clear that BMI is still a decent
predictor, as swapping it for some other variables has little
effect on the overall GOF, at least when age is included. This is
important, for example, when BMI is easy to measure, but
lipids are not. The obvious disadvantages with GOF plots are
the time taken to produce them, although clever programming
will help, and the difficulty of labelling the results. It may be
possible to reduce the number of candidate models in the GOF
plot by practical (eg, cost) or theoretical (eg, by introducing a
GOF threshold or by fitting preliminary submodels within vari-
able domains) considerations, or to tabulate the results instead.

Having selected our variables, one should consider whether
interactions between them are important. Interactions are best
dealt with by traditional significance testing. Sometimes an a
priori decision will have been made to produce stratified results;
for example, ASSIGN has separate scores for women and men.4

Such separation can be achieved by fitting a single prediction
model with interactions between sex and all other variables.

STEP 4: FORMULATING THE RISK SCORE
Once the important prognostic variables have been selected, the
risk score is computed as a function of the weighted sum of
these variables, where the weights are the regression coefficients
from the multiple regression model (log odds ratios (ORs) for
logistic models and log HRs for Cox and Weibull models).17–19

The only other decision needed is the time lag to be imposed
upon risk prediction: as in ASSIGN, we will assume 10 years.

Risk is defined, mathematically, as a probability and thus takes
values between 0 and 1; in cardiology, it is more common to see
it defined in the equivalent range of 0%–100%. The risk score
from the Glasgow data is given in box 1.
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STEP 5: EVALUATING THE RISK SCORE
Discrimination
Deciding how well the score performs in predicting who will
and who will not get CVD (so-called discrimination) is
complex, since the score only gives a likelihood of someone
having CVD, typically on a scale of 0%–100%. The reality is

that one either gets it or not, within the next 10 years. One
might impose a clinical threshold, such as a 10-year risk of
10%, and see how well the score performs in relation to this.
For simplicity, let us suppose that a logistic model is used. Then
performance can be tested in terms of sensitivity and specifi-
city.17 As with risk, sensitivity and specificity are strictly defined

Figure 1 Ordered categorical plot and associated spline plot for a roughly linearly related risk factor. Association between systolic blood pressure
and the HR (log scale) for cardiovascular disease using floating absolute risks (left panel) and restricted cubic splines (right panel). The cut-points
used for ordinal categorical groupings and knots are 120, 140, 160 and 180 mm Hg. The vertical lines and shaded regions show 95% CIs.

Figure 2 Ordered categorical plot and associated spline plot for a non-linearly related risk factor. Association between body mass index and the
hazard ratios (HRs) (log scale) for cardiovascular disease using floating absolute risks (left panel) and restricted cubic splines (right panel). The
cut-points used for ordinal categorical groupings and knots are 20, 25, 30 and 35 kg/m2. The vertical lines and shaded regions show 95% CIs.
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in the range 0–1, but in practice are often expressed as percen-
tages. For example, table 1 shows the sensitivity and specificity
of the logistic risk score we have produced from our data on
Glaswegian women, using the variables of the best model from
figure 3, where we have treated every woman censored before
the 10-year cut-off as a negative outcome for CVD. Neither sen-
sitivity nor specificity is very strong, but this may be expected
because risk factor distributions of those with and without CVD
overlap.

However, instead of restricting to one threshold, it would be
preferable to judge the utility of the score across many thresh-
olds. This is conventionally done by (in theory) producing

tables such as table 1 for every possible threshold within the
observed data. That is, each woman has a unique percentage
risk score and one can use each such risk score to compute sen-
sitivity and specificity, just as we did for 10% in table 1. In prac-
tice, it could be that some people have the same risk score, but
the principle remains the same. The set of such sensitivity/speci-
ficity pairs is then plotted as a receiver operating characteristic
(ROC) curve,17 29 such as figure 4. Note that the x axis is ‘one
minus specificity’ (expressed here as a percentage).

If the two risk score distributions do not overlap, then one
has an ideal tool because CVD and non-CVD cases would be
perfectly discriminated. The ROC curve would, as the threshold
increases, describe a line that runs from the bottom right, to the
top right, to the top left of the plotting space. An ROC curve

Figure 3 Goodness-of-fit plot for all
possible prediction models. Akaike
information criterion (AIC) for all
possible models (disregarding potential
transformations and interactions)
employing none, any or all of the
seven selected risk factors. A lower
AIC indicates a better fit. Cox models
were used. Results are presented in
columns defined by the number of
variables in the model. The first
column shows the AIC for the model
with no variables and the last shows
the AIC for the model with all seven
variables. The model content relating
to two of the risk factors is
highlighted: age and body mass index
(BMI). Different colours are used to
show the AIC for all models that
include: neither age nor BMI, BMI but
not age, age but not BMI, and both
BMI and age. Otherwise no specific
risk factors are identified in this
particular plot.

Box 1 Risk score from Scottish Heart Health Extended
Cohort study data on Glaswegian women

The estimated 10-year risk of cardiovascular disease is
1� S(10; �xÞexpðwÞ;
where Sð10; �xÞ=0.939601,
w=0.0674338 (age−48.48631)+0.131075(TC−6.119344)
+(−0.3576948) (HDLC−1.513783)+0.0096177(SBP−129.5398)
+0.8807747 (diabetes−0.013907)+0.7006343(smoker
−0.4358974),
diabetes=1 if the woman has diabetes and 0 otherwise,
smoker=1 if the woman smokes and 0 otherwise.

Multiply by 100 to obtain percentage risk scores.
This was derived from the best Cox model identified in figure 3.
HDLC, high-density lipoprotein-cholesterol; SBP, systolic blood
pressure; TC, total cholesterol.

Table 1 Performance of a clinical decision rule where those with
a 10% or greater 10-year cardiovascular risk are considered positive
for CVD (ie, at a high enough risk to require treatment, such as
with statins): Glaswegian women in SHHEC

Truth

Clinical decision rule CVD No CVD Total

Treat (risk ≥10%) 124 (62%) 584 708
Do not treat (risk <10%) 76 1517 (72%) 1593
Total 200 2101 2301

Risk was estimated from a logistic regression model, including age, systolic blood
pressure, total and high-density lipoprotein-cholesterol, diabetes and smoking status.
Sensitivity (true positive frequency)=124/200=0.620% or 62.0%.
Specificity (true negative frequency)=1517/2101=0.722% or 72.2%.
Note: This ignores censoring and bias from self-testing.
CVD, cardiovascular disease; SHHEC, Scottish Heart Health Extended Cohort.
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that is nearer to this ideal is, thus, a more discriminating score.
The area under the ROC curve (AUC) is thus a sensible measure
of discrimination, which is directly related to the correlation
between the score and CVD disease status.17 30 Accordingly, the
AUC is sometimes called the concordance statistic or ‘c-statistic’.
The AUC is also the chance that, when two risk scores are com-
pared, only one of which comes from someone with the
outcome (CVD), the person with CVD will have the higher
score.

On the other hand, if the risk score distributions for those with
CVD and those without CVD overlap completely, sensitivity plus
specificity will always be 100%, and the ROC curve would
describe the diagonal dashed line—the line of ‘no concordance’
or ‘no discrimination’. Clearly, the c-statistic in this case would
be 0.5. So a risk score that is, in any way, useful will have an
ROC curve above the diagonal (with a c-statistic above 0.5).

Before interpreting figure 4, consider that any decision rule
will routinely work best in the study population whence it was
derived.9 12 This bias from self-testing can be avoided by using a
so-called validation sample (a better name would be a ‘testing
sample’). We have the luxury of using the non-Glaswegian
portion (n=4440) of the female SHHEC database (conditionally
sampled as for the Glasgow selection) as our testing sample.
Unlike table 1, figure 4 was thus drawn by applying scores based
on the Glasgow data to the non-Glasgow data; as in table 1,
logistic models were used. Two ROC curves are shown, one for
a score based on age alone (the best single risk factor in figure
3) and one for the risk score based on the overall best model,
with all considered risk factors except BMI. There is consider-
able ‘daylight’ between the two, reflected by the difference in

AUCs, which shows that the other variables do add substantial
discrimination to age.

Unfortunately, the ROC curve and the AUC do not allow for
censoring. Thus, when a survival model is appropriate, alterna-
tives are needed. Harrell defined a survival c-statistic to be the
chance that, when two risk scores are compared, only one of
which comes from someone with the outcome (CVD), the
person with CVD will have the shortest survival time.31 A good
way to compare survival c-statistics is via a forest plot: figure 5
shows Harrell c-statistics for the ‘best’ models for each column
in figure 3, in the testing sample. Notice that the c-statistic only
measures discrimination, not GOF. It is thus not generally
recommended to choose models through differences in c-
statistics32 (which, themselves, might be usefully presented in a
forest plot). Alternatives to evaluating changes in c-statistics are
the integrated discrimination improvement and net reclassifica-
tion improvement (NRI),33–35 which have intuitive interpreta-
tions when there is no, or insignificant, censoring. The version
of NRI that includes thresholds is the most useful when evaluat-
ing the change from one risk model to another in relation to a
clinical decision rule.

Calibration
Besides discrimination, the other important feature of a risk
score is its calibration. Whereas discrimination, as outlined
above, is a measure of how well the predictions line up in rank
order, relative to outcomes, calibration measures how well key
summary features of the risk score, such as its mean, compare
with reality. Perfect calibration would be where all those with
CVD have a risk score of unity (100%) and all those without
have a risk score of zero. Generally speaking, CVD risk scores
derived in one population have similar discrimination when
applied in other populations,36 or in the same population
several years later, but can have drastically different calibra-
tion.37 This is due to the, usually considerable, unexplained
variability after any CVD risk prediction model has been
applied.

It is impractical to expect anything like perfect calibration, but
one can test for acceptable calibration through the
Hosmer-Lemeshow test,5 17 38 which compares observed risks of
CVD events from the raw data with those predicted (‘expected’)
from the CVD risk score within the tenths (or other exclusive
and exhaustive groupings) of the distribution of expected risks.
To obtain expected values, one would take the mean values of
the risk score within each of its tenths; the observed risks are
simply the relative frequencies in each of the same 10 groups.
Once again, this test is rather a blunt instrument due to its
dependence on sample size, while a lack of agreement in a soli-
tary tenth can cause rejection even when the score would gener-
ally give useful results in clinical practice.

A better approach is to use a calibration plot,17 which com-
pares expected and observed risks on a square plot, as in figure 6
where the Glasgow score (box 1) is applied to the non-Glasgow
testing sample. Clearly, calibration is poor since the score overes-
timates risk across the board. This is explained by the relatively
socially deprived nature of certain parts of Glasgow, relative to
the rest of the country. As noted earlier, the ASSIGN risk score4

dealt with the previously unaddressed issue, of social deprivation
having a role to play in predicting CVD risk, by including a
measure of it in the ASSIGN risk score. We deliberately omitted
this in the example created for this article. Taking the SHHEC
data as a whole, living in Glasgow had a significant adverse effect
on CVD risk before, but not after, adjusting for social deprivation

Figure 4 Receiver operating characteristic curve showing results for
two selected models, applied to the testing cohort. Sensitivity versus
one minus specificity plotted for every observed threshold, and
expressed in percentage terms. Logistic models, applied to the data on
Glaswegian women, were used to obtain the test results, which were
then tested against the actual outcomes in the non-Glaswegian data.
The two models illustrated in this plot are those that predict
cardiovascular disease using (1) age as the single prognostic variable;
(2) the model with the best (lowest) Akaike information criterion in
figure 3; that is, using age, systolic blood pressure, total cholesterol,
high-density lipoprotein-cholesterol, smoking and diabetes. AUC, area
under the receiver operating characteristic curve.
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in both sexes. We would need to recalibrate17 our Glasgow score,
should we wish to use it in other parts of Scotland.

The calibration plot is superior to the compound bar chart,
which is sometimes5 used for comparing expected and observed
risk. This is because systematic patterns, which illustrate the lack
of concordance between expected and observed risks, are easier
to see on the calibration plot; multiple risk scores (eg, involving
only clinic variables and involving both clinic and laboratory
variables) can be directly compared on the calibration plot
(especially if lines are drawn between adjacent points for each
constituent score), and the bar chart cannot convey the distribu-
tion of the risk score, which is of fundamental importance.

STEP 6: PACKAGING AND INTERPRETING THE RISK SCORE
Risk scores are often presented as ‘heat maps’, such as those from
the European SCORE project,7 39 or using a points system40

which simplifies the underlying mathematical model so that
points for each risk factor can be added up and summarised.
Both give, however, only approximate results and in the modern
age a much better way of presenting the score for general use is
through a computer application, such as the web tool for
ASSIGN.4 41 For motivational purposes, ‘vascular age’ might be
defined from the risk score, and presented interactively.42 43

Finally, having got an acceptable risk score, it is useful to con-
sider what it means in practice. To apply the score, one needs to
decide on a threshold (or perhaps multiple thresholds) above
which recommended care, such as statins, will be given. That is, a
clinical decision rule is needed that is based on the score (as in
table 1). A useful way of examining the effect of different thresh-
olds is through a how-often-that-high graph44 (otherwise known
as an inverse ogive), such as figure 7 which shows the distribution
of ASSIGN scores in the SHHEC data from which ASSIGN was
derived.4 This graph highlights the expected consequences
(among women) of changing the current clinical decision rule in
Scotland,45 which is to treat people, currently free of CVD, with
statins at a 10-year risk of 20% or higher, to a new rule with a
10% threshold. The lower threshold is expected to lead to
approximately one-fifth more women being treated within the
total population, corresponding to roughly a tripling of the exist-
ing clinical workload (not accounting for those women with pre-
existing CVD or women in other age groups). To put this in abso-
lute terms, the right-hand axis scales up to the total number of
women in Scotland free of CVD aged 30–74 years at the current
time.46 Although SHHEC, based on risk factor surveys dating
from 1984 to 1995, cannot reasonably be expected to represent
contemporary Scotland, as a purely hypothetical example one
can see that, if it did, this increase of 20% would lead to almost
an extra 300 000 women being treated.

CONCLUSIONS
Both clinical and statistical expertise are required to produce a
clinical prediction rule. We have summarised the key steps

Figure 5 Forest plot showing survival c-statistics for selected models, applied to the testing cohort. Harrell’s c-statistics (with 95% confidence
interval) for the Cox models that have Akaike information criteria (AICs) at the base of each column (except the first) in figure 3, that is, models
that have the best AIC for a given number of variables. Risk scores derived from these models were evaluated in the testing cohort of
non-Glaswegian women. The variable list shown builds downwards, adding to the existing variables; for example, the c-statistic shown in the third
row is for the model that comprises age, smoking status and body mass index, which is the model that gave the AIC at the base of the column
labelled ‘3’ in figure 3. BMI, body mass index; HDLC, high-density lipoprotein-cholesterol; SBP, systolic blood pressure; TC, total cholesterol.

Figure 6 Calibration plot, applied to the testing cohort. Expected risk
(from the best model from figure 3: see box 1) versus the observed risk
(relative frequency of cardiovascular disease events) in the testing
cohort of non-Glaswegian women. Results are shown for the
(approximately) equal number of women in each of the tenths of
expected risk.
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involved in producing a useful rule, concentrating on the role of
visual display to guide development, judge quality and draw
conclusions. For greater insight, we encourage the reader to
consult the citations provided. Code, for the R package, to
carry out the analyses and produce the graphs for this article is
given in the online supplementary material.

Contributors MW wrote the manuscript. HT-P and SAEP provided comments.
SAEP wrote the R programs.

Competing interests MW is a consultant to Amgen.

Provenance and peer review Commissioned; internally peer reviewed.

Open Access This is an Open Access article distributed in accordance with the
Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which
permits others to distribute, remix, adapt, build upon this work non-commercially,
and license their derivative works on different terms, provided the original work is
properly cited and the use is non-commercial. See: http://creativecommons.org/
licenses/by-nc/4.0/

REFERENCES
1 Kannel WB, McGee D, Gordon T. A general cardiovascular risk profile: the

Framingham Study. Am J Cardiol 1976;38:46–51.
2 Gage BF, Waterman AD, Shannon W, et al. Validation of clinical classification

schemes for predicting stroke: results from The National Registry of Atrial
Fibrillation. JAMA 2001;285:2864–70.

3 Woodward M, Hirakawa Y, Kengne AP, et al. Prediction of 10-year vascular risk in
patients with diabetes: the AD-ON risk score. Diabetes Obes Metab
2016;18:289–94.

4 Woodward M, Brindle P, Tunstall-Pedoe H, for the SIGN group on risk estimation.
Adding social deprivation and family history to cardiovascular risk assessment: the
ASSIGN score from the Scottish Heart Health Extended Cohort (SHHEC). Heart
2007;93:172–6.

5 D’Agostino RB Sr, Vasan RS, Pencina MJ, et al. General cardiovascular risk profile
for use in primary care: the Framingham Heart Study. Circulation
2008;117:743–53.

6 Marschner IC, Colquhoun D, Simes RJ, et al. Long-term risk stratification for
survivors of acute coronary syndromes. Results from the Long-term Intervention with
Pravastatin in Ischemic Disease (LIPID) Study. J Am Coll Cardiol 2001;38:56–63.

7 Conroy RM, Pyörälä K, Fitzgerald AP, et al. Estimation of ten-year risk of fatal
cardiovascular disease in Europe: the SCORE project. Eur Heart J
2003;24:987–1003.

8 Moons KG, Kengne AP, Woodward M, et al. Risk prediction models:
I. Development, internal validation, and assessing the incremental value of a new
(bio)marker. Heart 2012;98:683–90.

9 Moons KG, Kengne AP, Grobbee DE, et al. Risk prediction models: II. External
validation, model updating, and impact assessment. Heart 2012;98:691–8.

10 Moons KG, Royston P, Vergouwe Y, et al. Prognosis and prognostic research: what,
why, and how? BMJ 2009;338:b375.

11 Royston P, Moons KG, Altman DG, et al. Prognosis and prognostic research:
developing a prognostic model. BMJ 2009;338:b604.

12 Altman DG, Vergouwe Y, Royston P, et al. Prognosis and prognostic research:
validating a prognostic model. BMJ 2009;338:b605.

13 Moons KG, Altman DG, Vergouwe Y, et al. Prognosis and prognostic research:
application and impact of prognostic models in clinical practice. BMJ 2009;338:
b606.

14 Steyerberg EW, Vergouwe Y. Towards better clinical prediction models:
seven steps for development and an ABCD for validation. Eur Heart J
2014;35:1925–31.

15 Moons KG, de Groot JA, Bouwmeester W, et al. Critical appraisal and data
extraction for systematic reviews of prediction modelling studies: the CHARMS
checklist. PLoS Med 2014;11:e1001744.

16 Moons KG, Altman DG, Reitsma JB, et al. Transparent Reporting of a multivariable
prediction model for Individual Prognosis Or Diagnosis (TRIPOD): explanation and
elaboration. Ann Intern Med 2015;162:W1–73.

17 Woodward M. Epidemiology: study design and data analysis. 3rd edn. Boca Raton:
CRC Press, 2014 (particularly Chapter 13: “Risk scores and clinical decision rules”).

18 Collett D. Modelling binary data. 2nd edn. London: Chapman and Hall, 2002.
19 Collett D. Modelling survival data in medical research. 3rd edn Boca Raton: CRC

Press, 2015.
20 Easton DF, Peto J, Babiker AGAG. Floating absolute risk: an alternative to relative

risk in survival and case-control analysis avoiding an arbitrary reference group. Stat
Med 1991;10:1025–35.

21 de Boor C. A practical guide to splines. New York: Springer, 1978.
22 Cleveland WS. Robust locally weighted regression and smoothing scatterplots. J Am

Stat Assoc 1979;74:829–36.
23 http://www.who.int/mediacentre/factsheets/fs311/en/ (accessed 19 Sept 2016).
24 Montgomery DC, Peck EA, Vining GG. Introduction to linear regression analysis. 5th

edn. New York: Wiley, 2012.
25 Harrell FE Jr. Regression modeling strategies. 2nd edn. New York: Springer, 2015.
26 Judd CM, McClelland GH, Ryan CS. Data analysis. A model comparison approach.

2nd edn. New York City: Routledge, 2015.
27 Tibshirani R. Regression shrinkage and selection via the lasso. J Royal Stat Soc B

1996;58:267–88.
28 Akaike H. A new look at the statistical model identification. IEEE Trans Automatic

Control 1974;19:716–23.
29 Hanley JA, McNeil BJ. The meaning and use of the area under a receiver operating

characteristic (ROC) curve. Radiology 1982;143:29–36.
30 Newson R. Parameters behind “non-parametric” statistics: Kendall’s τα and

Somer’s D and median differences. Stata J 2001;1:1–20.
31 Harrell FE Jr, Califf RM, Pryor DB, et al. Evaluating the yield of medical tests. JAMA

1982;247:2543–6.
32 Cook NR. Use and misuse of the receiver operating characteristic curve in risk

prediction. Circulation 2007;115:928–35.
33 Pencina MJ, D’Agostino RB Sr, D’Agostino RB Jr. Evaluating the added predictive

ability of a new marker: from area under the ROC curve to reclassification and
beyond. Stat Med 2008;27:157–72.

34 Pencina MJ, D’Agostino RB Sr, Steyerberg EW. Extensions of net reclassification
improvement calculations to measure usefulness of new biomarkers. Stat Med
2011;30:11–21.

35 Chambless LE, Cummiskey CP, Cui G. Several methods to assess
improvement in risk prediction models: extension to survival analysis. Stat Med
2011;30:22–38.

36 Hajifathalian K, Ueda P, Lu Y, et al. A novel risk score to predict cardiovascular
disease risk in national populations (Globorisk): a pooled analysis of prospective
cohorts and health examination surveys. Lancet Diab Endocrinol 2015;3:339–55.

37 Woodward M. On validation of cardiovascular risk scores. BMJ 2016;353:i2416.
38 Hosmer DW, Lemeshow S, Sturdivant RX. Applied logistic regression. 3rd edn.

Hoboken: Wiley, 2013.
39 http://www.escardio.org/Education/Practice-Tools/CVD-prevention-toolbox/

SCORE-Risk-Charts (accessed 19 Sept 2016).

Figure 7 How-often-that-high graph showing anticipated effects of
two different clinical prediction rules among Scottish women free of
cardiovascular disease (CVD) and aged 30–74 years, based on the
ASSIGN score in the Scottish Heart Health Extended Cohort (SHHEC)
study population and contemporary Scottish demographic data. This
shows (left axis) the expected percentage of women in Scotland,
currently free of CVD, above a particular value of predicted 10-year
cardiovascular risk, using the ASSIGN score applied to all the female
data in SHHEC that were used to create ASSIGN, and the corresponding
expected number in the Scottish population (right axis). The number of
women free of CVD was estimated by down weighting the total
number currently living in Scotland, aged 30–74 years,46 by the
percentage in SHHEC with prevalent CVD.

Review

489Woodward M, et al. Heart 2017;103:483–490. doi:10.1136/heartjnl-2016-310210

http://dx.doi.org/10.1136/heartjnl-2016-310210
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
http://dx.doi.org/10.1016/0002-9149(76)90061-8
http://dx.doi.org/10.1001/jama.285.22.2864
http://dx.doi.org/10.1111/dom.12614
http://dx.doi.org/10.1136/hrt.2006.108167
http://dx.doi.org/10.1161/CIRCULATIONAHA.107.699579
http://dx.doi.org/10.1016/S0195-668X(03)00114-3
http://dx.doi.org/10.1136/bmj.b375
http://dx.doi.org/10.1136/bmj.b604
http://dx.doi.org/10.1136/bmj.b605
http://dx.doi.org/10.1136/bmj.b606
http://dx.doi.org/10.1093/eurheartj/ehu207
http://dx.doi.org/10.1371/journal.pmed.1001744
http://dx.doi.org/10.7326/M14-0698
http://dx.doi.org/10.1002/sim.4780100703
http://dx.doi.org/10.1002/sim.4780100703
http://www.who.int/mediacentre/factsheets/fs311/en/
http://www.who.int/mediacentre/factsheets/fs311/en/
http://dx.doi.org/10.1109/TAC.1974.1100705
http://dx.doi.org/10.1109/TAC.1974.1100705
http://dx.doi.org/10.1148/radiology.143.1.7063747
http://dx.doi.org/10.1001/jama.1982.03320430047030
http://dx.doi.org/10.1161/CIRCULATIONAHA.106.672402
http://dx.doi.org/10.1002/sim.2929
http://dx.doi.org/10.1002/sim.4085
http://dx.doi.org/10.1002/sim.4026
http://dx.doi.org/10.1016/S2213-8587(15)00081-9
http://www.escardio.org/Education/Practice-Tools/CVD-prevention-toolbox/SCORE-Risk-Charts
http://www.escardio.org/Education/Practice-Tools/CVD-prevention-toolbox/SCORE-Risk-Charts
http://www.escardio.org/Education/Practice-Tools/CVD-prevention-toolbox/SCORE-Risk-Charts
http://www.escardio.org/Education/Practice-Tools/CVD-prevention-toolbox/SCORE-Risk-Charts
http://www.escardio.org/Education/Practice-Tools/CVD-prevention-toolbox/SCORE-Risk-Charts
http://www.escardio.org/Education/Practice-Tools/CVD-prevention-toolbox/SCORE-Risk-Charts
http://www.escardio.org/Education/Practice-Tools/CVD-prevention-toolbox/SCORE-Risk-Charts
http://www.escardio.org/Education/Practice-Tools/CVD-prevention-toolbox/SCORE-Risk-Charts
arvinth
Sticky Note
None set by arvinth

arvinth
Sticky Note
MigrationNone set by arvinth

arvinth
Sticky Note
Unmarked set by arvinth

arvinth
Sticky Note
None set by arvinth

arvinth
Sticky Note
MigrationNone set by arvinth

arvinth
Sticky Note
Unmarked set by arvinth



40 Sullivan LM, Massaro JM, D’Agostino RB Sr. Presentation of multivariate data for
clinical use: the Framingham Study risk score functions. Stat Med 2004;23:1631–60.

41 http://www.assign-score.com/ (accessed 19 Sept 2016).
42 http://www.knowyournumbers.co.nz/heart-age-forecast.aspx (accessed 27 Sept

2016).
43 Groenewegen KA, den Ruijter HM, Pasterkamp G, et al. Vascular age to determine

cardiovascular disease risk: a systematic review of its concepts, definitions, and
clinical applications. Eur J Prev Cardiol 2016;23:264–74.

44 Tunstall-Pedoe H, Smith WC, Tavendale R. How-often-that-high graphs of serum
cholesterol. Findings from the Scottish Heart Health and Scottish MONICA studies.
Lancet 1989;1:540–2.

45 Scottish Intercollegiate Guidelines Network. Risk estimation and the prevention of
cardiovascular disease. Edinburgh: NHS Quality Improvement Scotland, 2007.

46 http://www.nrscotland.gov.uk/files//statistics/population-estimates/
mid-15-cor-12-13-14/mype-2015-corrections-for-12-13-14-correctedb.pdf (accessed
14 Sept 2016).

Review

490� Woodward M, et al. Heart 2017;103:483–490. doi:10.1136/heartjnl-2016-310210

http://www.assign-score.com/
http://www.assign-score.com/
http://www.assign-score.com/
http://www.knowyournumbers.co.nz/heart-age-forecast.aspx
http://www.knowyournumbers.co.nz/heart-age-forecast.aspx
http://www.knowyournumbers.co.nz/heart-age-forecast.aspx
http://www.knowyournumbers.co.nz/heart-age-forecast.aspx
http://dx.doi.org/10.1177/2047487314566999
http://www.nrscotland.gov.uk/files//statistics/population-estimates/mid-15-cor-12-13-14/mype-2015-corrections-for-12-13-14-correctedb.pdf
http://www.nrscotland.gov.uk/files//statistics/population-estimates/mid-15-cor-12-13-14/mype-2015-corrections-for-12-13-14-correctedb.pdf
http://www.nrscotland.gov.uk/files//statistics/population-estimates/mid-15-cor-12-13-14/mype-2015-corrections-for-12-13-14-correctedb.pdf
http://www.nrscotland.gov.uk/files//statistics/population-estimates/mid-15-cor-12-13-14/mype-2015-corrections-for-12-13-14-correctedb.pdf
http://www.nrscotland.gov.uk/files//statistics/population-estimates/mid-15-cor-12-13-14/mype-2015-corrections-for-12-13-14-correctedb.pdf
http://www.nrscotland.gov.uk/files//statistics/population-estimates/mid-15-cor-12-13-14/mype-2015-corrections-for-12-13-14-correctedb.pdf
http://www.nrscotland.gov.uk/files//statistics/population-estimates/mid-15-cor-12-13-14/mype-2015-corrections-for-12-13-14-correctedb.pdf
http://www.nrscotland.gov.uk/files//statistics/population-estimates/mid-15-cor-12-13-14/mype-2015-corrections-for-12-13-14-correctedb.pdf
http://www.nrscotland.gov.uk/files//statistics/population-estimates/mid-15-cor-12-13-14/mype-2015-corrections-for-12-13-14-correctedb.pdf
http://www.nrscotland.gov.uk/files//statistics/population-estimates/mid-15-cor-12-13-14/mype-2015-corrections-for-12-13-14-correctedb.pdf
http://www.nrscotland.gov.uk/files//statistics/population-estimates/mid-15-cor-12-13-14/mype-2015-corrections-for-12-13-14-correctedb.pdf
http://www.nrscotland.gov.uk/files//statistics/population-estimates/mid-15-cor-12-13-14/mype-2015-corrections-for-12-13-14-correctedb.pdf
http://www.nrscotland.gov.uk/files//statistics/population-estimates/mid-15-cor-12-13-14/mype-2015-corrections-for-12-13-14-correctedb.pdf
http://www.nrscotland.gov.uk/files//statistics/population-estimates/mid-15-cor-12-13-14/mype-2015-corrections-for-12-13-14-correctedb.pdf
http://www.nrscotland.gov.uk/files//statistics/population-estimates/mid-15-cor-12-13-14/mype-2015-corrections-for-12-13-14-correctedb.pdf
http://www.nrscotland.gov.uk/files//statistics/population-estimates/mid-15-cor-12-13-14/mype-2015-corrections-for-12-13-14-correctedb.pdf
http://www.nrscotland.gov.uk/files//statistics/population-estimates/mid-15-cor-12-13-14/mype-2015-corrections-for-12-13-14-correctedb.pdf
arvinth
Sticky Note
None set by arvinth

arvinth
Sticky Note
MigrationNone set by arvinth

arvinth
Sticky Note
Unmarked set by arvinth

arvinth
Sticky Note
None set by arvinth

arvinth
Sticky Note
MigrationNone set by arvinth

arvinth
Sticky Note
Unmarked set by arvinth


	Graphics and statistics for cardiology: clinical prediction rules
	Abstract
	Background
	Step 1: choosing the prognostic variables
	Step 2: modelling
	Statistical distribution
	Shape of association

	Step 3: variable selection
	Step 4: formulating the risk score
	Step 5: evaluating the risk score
	Discrimination
	Calibration

	Step 6: packaging and interpreting the risk score
	Conclusions
	References




