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Abstract

Next generation sequencing technologies have recently been applied to characterize mutational 

spectra of the heterogeneous population of viral genotypes (known as a quasispecies) within HIV-

infected patients. Such information is clinically relevant because minority genetic subpopulations 

of HIV within patients enable viral escape from selection pressures such as the immune response 

and antiretroviral therapy. However, methods for quasispecies sequence reconstruction from next 

generation sequencing reads are not yet widely used and remains an emerging area of research. 

Furthermore, the majority of research methodology in HIV has focused on 454 sequencing, while 

many next-generation sequencing platforms used in practice are limited to shorter read lengths 

relative to 454 sequencing. Little work has been done in determining how best to address the read 

length limitations of other platforms.

The approach described here incorporates graph representations of both read differences and read 

overlap to conservatively determine the regions of the sequence with sufficient variability to 

separate quasispecies sequences. Within these tractable regions of quasispecies inference, we use 

constraint programming to solve for an optimal quasispecies subsequence determination via vertex 

coloring of the conflict graph, a representation which also lends itself to data with non-contiguous 

reads such as paired-end sequencing. We demonstrate the utility of the method by applying it to 

simulations based on actual intra-patient clonal HIV-1 sequencing data.

1. Introduction

Viral sequencing has played an important role in both the study of HIV and the treatment of 

HIV patients. Viral genotyping using Sanger sequencing is now integrated into HIV patient 
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care in the developed world and aids the determination of treatment regimens for new 

patients as well as patients failing treatment [1–3]. Global databases of HIV sequences have 

been established [4–6] and serve to monitor the global diversity of viral genotypes, provide a 

reference for sequence interpretation, and catalyze discoveries related to sequence evolution 

and genotype-phenotype associations. In our own work we have used these databases to 

study the impact of different genetic backgrounds on the evolution of HIV-1 drug resistance 

[7–9]. As such, the field of HIV drug resistance serves as a model for the application of 

sequencing technologies in clinical practice.

However, standard sequencing methodologies are limited in their ability to characterize the 

viral population within an infected individual. The high rate of turnover and error-prone 

genome replication process of HIV leads to an intra-patient viral population that consists of 

genetically distinct subpopulations [10–14]. Thus the viral population is often described as a 

quasispecies [15]. Viral populations that circulate at low levels, termed minor variants, are 

clinically relevant because drug-resistant subpopulations may be selected upon treatment 

[16–18]. These minor variants are often undetectable using standard sequencing protocols. 

Specialized techniques such as clonal and single genome sequencing (SGS) have been 

developed to obtain sequences of minor variant subpopulations within patients [19–22]. 

SGS, in particular, was designed to address and minimize sequencing artifacts such as 

recombination of quasispecies sequences during PCR [19]. However, these methods require 

significant expertise and investment.

Next Generation Sequencing (NGS) is a term applied to a variety of recent sequencing 

platforms which sequence samples at high depth of coverage at relatively low monetary and 

training cost. The depth of coverage allows for the detection of minority variant 

subpopulations with prevalences < 20% [19]. Its application to HIV has been an active area 

of research in recent years [18,23–30]. Nevertheless, in most research settings, NGS data 

have primarily been applied in a restricted manner - reads are mapped to an HIV-1 reference 

genome and the mutational composition of each sequence position is examined 

independently. Determination of mutational linkage and the reconstruction of individual 

quasispecies sequences are active areas of research [31–36]. Analysis tools to address these 

problems will aid in our ability to understand and interpret the vast amounts of data 

produced when applying these new sequencing technologies to HIV.

1.1. Quasispecies sequence reconstruction

Any two virus particles with differing genomes may be considered as originating from 

genotypically distinct subpopulations. However, this view of quasispecies subpopulations is 

not especially useful in practice since it is relatively uncommon for viral sequencing to 

examine full genomes.

More commonly, viral genotypes are defined in terms of clinically-relevant regions or 

positions of the sequence. Studies of HIV drug resistance typically focus on pol gene 

sequences. One may further narrow the sequence positions under consideration depending 

on the question of interest. For example, studies of resistance to first-line regimens may 

focus on the reverse transcriptase sequence. In clinical settings, genotypes may be defined 

with respect to known drug resistance mutation positions.
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The quasispecies reconstruction problem is to construct a representation of the sequences 

underlying subpopulation sequences from the partial information provided by sequencing 

reads. In many cases, the relative population frequencies of each sequence are also inferred. 

Reads represent sampled sequence fragments of one of the underlying quasispecies 

sequences. Quasispecies reconstruction is closely related to haplotype assembly - the 

construction of haplotypes of a diploid organism from sequencing read fragments. Several 

approaches to quasispecies reconstruction have been proposed thus far [31–36], each of 

which has introduced mathematical representations which have provided new insights on the 

problem. Related problems have also arisen in genome assembly [37–43] and metagenomics 

[44]. The bipartition approach to haplotype assembly [45,46] served as an inspiration for the 

approach taken in this paper.

Due to the complex error profile of next generation sequencing, error correction is a chief 

concern. Errors and biases arise for a multitude of reasons, including recombination during 

PCR, selection of primers, and sequence-specific errors [47–49]. Successful quasispecies 

reconstruction requires robust error correction in addition to reconstruction algorithms. 

Attempts to address these errors include both analysis approaches [23,48] as well as tagging 

protocols [30,50,51].

Although robust error correction procedures are an important step in applying any method in 

practice, the focus of the current study is primarily to present a new approach to 

representation and quasispecies reconstruction. The approach is influenced by practical 

motivations – conservative reconstruction in the presence of shorter reads and the need for 

representations which encompass non-contiguous reads. Non-contiguous reads include 

paired-end sequencing and some third generation sequencing technologies [52]. While the 

majority of next-generation sequencing research in the HIV field has focused on Roche 454 

Sequencing, Illumina sequencing platforms are more widely available. One challenge in 

interpreting Illumina reads is that reads are generally shorter – ranging from 35 bp 

contiguous reads to 2 × 150 bp paired-end reads in most cases (with some newer platforms 

capable of up to 2 × 250 bp). By contrast, 454 sequencing reads can obtain contiguous reads 

ranging from 400 bp to 800 bp reads. With shorter reads, there may be conserved regions of 

the genome which are not spanned by any read regardless of the depth of coverage. A 

objective of our approach, is to conservatively determine where subpopulation sequence 

distinctions are well defined by the data and to reconstruct subsequences if reconstruction on 

the larger sequence is indeterminate and likely to introduce false recombinants. Our 

approach is to use a representation which reflects the relative tractability of different regions 

of the sequence and focus on reconstructions where there are data to support it. We refer to 

the method as QColors since it uses a graph coloring representation to perform the 

reconstruction of quasispecies subsequences from NGS reads.

2. Method

As suggested in the introduction, we adopt a different problem formulation than previous 

approaches to quasispecies reconstruction:
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QUASISPECIES SUBSEQUENCE RECONSTRUCTION PROBLEM. Given a set 
of reads r1, …, rn, find subsets of reads where quasispecies sequence distinctions 
can be inferred while minimizing the introduction of false recombinants. Within 
these read subsets, partition reads into a parsimonious generating set of 
subsequences.

Our approach was motivated by the problem that short read lengths can render full-length 

reconstructions indeterminate and a method which produces too many false recombinants 

will not be useful for scientists. Furthermore, to our knowledge, there have not been 

representations of quasispecies reconstruction which allow for non-contiguous reads. A 

summary of our approach to this problem is outlined in Algorithm 1. The algorithm and 

simulations were implemented in C++ in conjunction with the Gecode constraint 

programming library [53]. Details of the method are described in the following sections.

Algorithm 1

QColors.

Map reads to the reference sequence

Construct conflict Gc = (V, Ec) and overlap Go = (V, Eo) graphs

Determine connected subgraphs of Go and Gc using a

 Depth-first traversal

for each connected subgraph  in Go do

 for each connected subgraph  in Gc do

 Define the neighborhood conflict graph, G(V′, E′)

  with  and

   

  Find a homomorphic reduction G(V′, E′) → H

  Find maximal cliques of H

  Solve for the optimal coloring (QS sequence assignment) of H with clique and pairwise constraints

 end for

end for

2.1. Read mapping

Reconstruction of quasispecies sequences differs from more generic metagenomics problem 

formulations [44] since a well-defined reference genome for all sequence fragments is 

available. A scanning analysis of the HXB2 HIV-1 reference genome [54] shows that 95% of 

reads can be uniquely mapped to the full genome using k-mers as short as 10 bp. Since 

mapping is generally not a significant source of error for pol due to the size of the gene 

sequence, mapping is assumed to be unambiguous for the purpose of these simulations.
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With sufficiently high coverage depth, the identity of sequence characters which exhibit no 

variation across the quasispecies sequences can be easily obtained directly from the mapped 

reads. Thus the remaining problem is to assign reads with sequence variation to an 

appropriate quasispecies sequence.

2.2. Definitions of the overlap graph and the conflict graph

We can represent relationships between reads as two complementary graphs – the overlap 

graph and the conflict graph.

A read conflict occurs when two reads have inconsistent sequences within an overlapping 

region. The conflict graph is defined as Gc = (V, Ec) consisting of vertices, V, representing 

reads and edges, Ec, with pairs of vertices connected by an edge eij iff reads represented by 

vertices vi and vj overlap and conflict.

The overlap graph is defined as Go = (V, Eo) consisting of the same set of vertices V (again 

representing reads) and edges Eo which represent consistent (non-conflicting) relationships 

between overlapping reads. Pairs of vertices, vi and vj are connected by an edge eij iff reads 

represented by the vertices sufficiently overlap and do not conflict. An input parameter is 

used to determine the minimum number of overlapped positions between two reads for an 

edge to exist. This input parameter affects the conservativeness of the reconstruction 

procedure, and should be as high as the sequencing parameters (coverage, insert sizes) allow.

Unlike the overlap graph, there is no minimum number of overlapped positions required for 

a conflict graph edge because a conflict invalidates the possibility that two reads originate 

from the same quasispecies sequence, while agreement between reads does not prove that 

they originate from the same quasispecies sequence. Although the objective here is to 

describe the reconstruction approach rather than error correction strategies, for 

experimentally-derived data, the error profile can potentially be used to suggest a less-

stringent conflict definition (e.g. more than one mutation between reads).

In the limit that reads span the entire sequence, Gc will be the graph complement implied by 

Go, but this is not generally true if reads are shorter than the length of the sequence.

2.3. Reconstructing quasispecies from reads

Reconstructing quasispecies sequences from NGS reads is informed by both differences 

between reads (to distinguish sequences) and overlaps between reads (to extend sequences). 

In terms of the graph representations, quasispecies sequences can be inferred where 

connected subgraphs of the conflict and overlap graphs intersect.

We refer to these subgraphs of the conflict graph which include only vertex intersections to 

an overlap graph as a neighborhood conflict graph, G(V′, E′) (see Algorithm 1). 

Conceptually, these represent clusters of reads which are related by both mutational 

differences and overlaps. For a constant depth of coverage, longer reads will lead to 

sequence regions which encompass larger spans of the sequence, while for shorter read 

lengths, inferences may only be made on pockets of variation within the genome.
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Within the neighborhood conflict graph the objective is to partition the vertices into a 

minimal number of non-conflicting independent sets. This is equivalent to a vertex graph 

coloring problem, which is known to be NP-Hard [55], but with data reduction and a 

constraint programming (CP) formulation, useful solutions can be obtained within 

acceptable computation times. This framework naturally permits paired-end and other non-

contiguous reads, as the discontinuous character of the reads does not change the 

construction of the conflict and overlap graphs.

The set of vertices in this graph is further reduced by collapsing redundant reads. 

Redundancy is defined in terms of the graph data structures rather than the span of the reads. 

Due to the distances between variable positions in the sequence, it is common for reads to 

span different sequence positions, yet share the same set of edges. Groups of such vertices 

are collapsed into a single vertex to create a homomorphism of the neighborhood conflict 

graph. A proper coloring of a homomorphism is also a valid coloring of the original graph 

[56]. In the limit that the read length is the length of the sequence and coverage depth is 

high, this simple reduction will produce a complete graph in which each vertex corresponds 

to a distinct quasispecies sequence.

We use a Bron-Kerbosch algorithm to identify maximal cliques in the graph [57]. This 

provides a lower bound to the chromatic number of the CP [56] and also introduces a 

distinctness constraint on vertices within cliques. The colors of the maximal clique are also 

assigned a fixed set of colors 1…s where s is the size of the maximal clique, reducing the 

domain of the search space by eliminating equivalent solutions. Constraint programming 

was implemented using C++ and the Gecode constraint programming library [53]. A branch 

and bound best solution search [58] was used with the number of colors as a cost function 

along with the following constraints:

• C1: The colorings of the maximal clique in H are fixed as 1, …, s, where s is the 

size of the maximal clique.

• C2: All colors of cliques in H are distinct

• C3: Colors of vertices connected by edges in H are distinct.

Once a coloring of H is obtained, these quasispecies sequence assignments are propogated 

back to the reads modeled by H to obtain quasispecies assignments for each read. Conserved 

sequence positions are also added to generate model sequences. Figure 1 illustrates a toy 

example of how reads encode conflict and overlap graphs.

2.4. Simulation and evaluation

A read sampling simulator was written in C++ to evaluate the reconstruction. The simulation 

allows for either contiguous or paired-end fragments to be sampled from an underlying set 

of known quasispecies sequences. Quasispecies sequences were obtained from a clonal 

sequencing study of the HIV-1 pol gene by Bacheler et al. [59] available online at the Los 

Alamos HIV Database [60]. Initial simulations were performed to examine the qualitative 

characteristics of conflict graphs as read characteristics were varied.
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Simulations of 10,000 150 × 2 bp paired-end reads with inserts varying uniformly from 0 to 

50 bp were sampled from clonal sequences of 5 patients (patient ID P00001, P00003, 

P00005, P00021, P00026) with relatively high numbers of clonal sequences available (49, 

33, 42, 58, and 62, respectively) [59]. Although the size of the simulation is small compared 

to the number of raw reads which are feasible by NGS, multiplexing and error correction 

procedures, would be expected to reduce the size of the read set by several orders of 

magnitude. An overlap threshold of 295 bp was used to construct the overlap graph. 

Reconstructed quasispecies subsequences were then compared to the generating set of 

quasispecies sequences to evaluate the reconstruction. Additionally, a simulation of 5,000 

250 × 2 bp (overlap threshold 485 bp) paired-end reads with inserts varying from 0 to 100 bp 

was sampled from clonal sequences of patient ID P00003 to approximate different sampling 

conditions (sparser, longer, paired-end reads such as obtained from a MiSeq).

3. Results

To test the utility of this approach, clonal sequences [59] were used to simulate sampling and 

test quasispecies sequence reconstruction. These sequences consist of 984 bp from the pol 
gene region of the HIV-1 genome.

Figure 2 shows examples of conflict graphs using a small number of reads for clarity. 

Connected components in the conflict graph reflect sequence regions of pol for which 

variation distinguishes reads in different quasispecies sequences. In situations where reads 

are shorter than a conserved portion of the sequence, distinct connected components in the 

conflict graph will result (Fig. 2 top left), independent of depth of coverage. Inferences can 

be made within local regions, but a larger reconstruction from read consistency alone will 

have degenerate solutions (many of which will be false recombinants) unless additional 

assumptions regarding long-range characteristics are incorporated.

Simulations of paired end reads were performed on clonal sequencing data of five patients 

from [59] under the same sampling conditions (see methods). A summary of the simulations 

are shown in table 1.

Viral sequence diversity and the phylogenetic characteristics of the viral population varies 

substantially between patients and these differences lead to variability in the reconstruction 

outcome. However in all simulations only a minority of inferred subsequences corresponded 

to incorrect recombinations of reads. Of the 36 quasispecies subsequences reconstructed for 

patient P00001, 32/36 (89%) represent subsequences of actual quasispecies sequences, 16 of 

which map uniquely to a single actual quasispecies sequence, while 4 reconstructed 

sequences did not correspond to an actual quasispecies sequence. Likewise, of the 60 model 

quasispecies subsequences reconstructed for P00005 (Fig. 3), 54/60 (90%) represent 

subsequences of actual quasispecies sequences, 36 of which map uniquely to a single actual 

quasispecies sequence, while 6 of reconstructed sequences did not correspond to a actual 

quasispecies sequence.

An additional simulation was performed on patient P00003 to explore the impact of 

sequencing conditions with sparser sampling and longer paired-end inserts and reads 
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(indicated as P00003* in the table). Longer reads lead to more informative reconstructions, 

even with sparser sampling. Specifically, the subsequence reconstructions were merged into 

a smaller number of reconstructions (from 167 to 102) which were generally longer (ranging 

from 914–933 instead of 890–914), none of which were false recombinants. Slightly more of 

these reconstructions could be uniquely associated with a single underlying sequence (From 

48 to 51).

4. Discussion

Here we have developed and tested a method which contributes several new perspectives to 

the quasispecies reconstruction problem. First, we described a representation for read 

relationships which is amenable to the analysis of non-contiguous reads (e.g. paired end 

sequencing). QColors allows for the analysis of non-contiguous reads because the method 

does not rely on the ordering of the reads with respect to the genome, only the consistency/

conflict between reads. Second, we infer quasispecies sequences within tractable domains 

even if short read lengths render full-length sequence reconstructions indeterminate. Third, 

we devise a method of data reduction and graph coloring using constraint programming to 

group reads into non-conflicting sets of quasispecies subsequences. We demonstrate the 

utility of the method using simulations based on data from clonal sequencing experiments.

Previous methods for quasispecies sequence reconstruction have different objectives from 

the current method. For example, ShoRAH [34] efficiently estimates quasispecies sequence 

frequencies and incorporates error-correction, but is intended for longer, contiguous reads. 

Without paired-end information, sequences reconstructed from ShoRAH with 150 bp reads 

on three patients (P00001, P00003, and P00005) resulted in reconstructed sequences which 

differred from the generating sequences with a hamming distance of 27 or more, reflecting 

differences in its aims and target platform. Future approaches may combine the error-

correction and frequency estimation functionality of other methods, while incorporating 

representations and algorithms which model information from discontiguous reads as shown 

here. Since QColors generates subsequence reconstructions from short, non-contiguous 

reads, it may also be used as a preprocessing step which complements other approaches 

requiring longer, contiguous reads for global sequence reconstruction.

Additional challenges remain before the current method can be widely adopted. Most 

importantly is to connect these methods to robust experimental and analytical error 

correction procedures [48,50,61] and testing with simulated sequencing error models [62]. 

Second, improving the performance of the optimization procedure will allow for denser 

reconstructions with larger numbers of reads (current analyses require several hours of 

runtime on a standard laptop computer). Consideration of alternative constraints, 

probabilistic formulations, or metaheuristics in place of constraint programming should be 

considered. Third, while the motivation for this work was rooted in a practical application, 

an examination of graph coloring theory in the context of quasispecies conflict graphs would 

be beneficial. Further development of QColors, as well as alternative quasispecies 

reconstruction approaches will ultimately aid in broadening the applicability of NGS to viral 

sequencing in research and clinical practice.
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Fig. 1. 
A toy example of 6 paired-end reads with inserts ranging from 1–3 bp (left) of 2 

quasispecies sequences (represented by blue and gray). The conflict graph (middle) and an 

overlap graph with an overlap threshold of 5 (right) are shown. Reads 1, 2, 3, and 4, define a 

neighborhood conflict graph for which 1 and 3 are assigned a single color and 2 and 4 are 

assigned a second color. Characters in reads 5 and 6 exhibit no conflicts, reflecting 

conserved positions which are included in all quasispecies sequences.
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Fig. 2. 
Conflict graphs using read lengths of short (50 bp top left, 100 bp top right) and long (300 

bp bottom left, 600 bp bottom right) contiguous reads sampled from Patient ID P00001 in 

[59]. Vertices in the graph represent reads while edges represent conflicting sequences 

between overlapping reads. Only a small number of samples was used to generate these 

graphs for the sake of clarity. Colors shown correspond to the underlying quasispecies 

sequences used to generate the graph.
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Fig. 3. 
The QS reconstruction pipeline can be seen as a data reduction which aims to limit false 

explanatory sequences. The process starts with raw reads (left). These are aggregated into 

tractable quasispecies subsequences supported by read conflicts and overlap, as discussed in 

the methods. Using the mapped reads, sequence positions which are perfectly conserved 

across reads (top) are also incorporated to construct an explanatory set of quasispecies 

subsequences (center, labeled “conservative quasispecies reconstruction”, each row 

corresponds to the sequence obtained from a set of non-conflicting reads, columns 

correspond to sequence positions, and colors correspond to sequence characters – A = red, C 

= green, G = blue, T = white, undetermined = gray). Reconstruction is conservative in that 

the majority of these subsequences match at least one true underlying sequence (54/60 for 

P00005, shown in this figure). 36 of these quasispecies sequences contain sufficient 

information to map uniquely to an underlying quasispecies sequence.
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