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Abstract

Background: Software container technology such as Docker can be used to package and distribute bioinformatics workflows
consisting of multiple software implementations and dependencies. However, Docker is a command line–based tool, and
many bioinformatics pipelines consist of components that require a graphical user interface. Results: We present a
container tool called GUIdock-VNC that uses a graphical desktop sharing system to provide a browser-based interface for
containerized software. GUIdock-VNC uses the Virtual Network Computing protocol to render the graphics within most
commonly used browsers. We also present a minimal image builder that can add our proposed graphical desktop sharing
system to any Docker packages, with the end result that any Docker packages can be run using a graphical desktop within a
browser. In addition, GUIdock-VNC uses the Oauth2 authentication protocols when deployed on the cloud. Conclusions: As
a proof-of-concept, we demonstrated the utility of GUIdock-noVNC in gene network inference. We benchmarked our
container implementation on various operating systems and showed that our solution creates minimal overhead.
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Background

Modern workflows in computational fields such as bioinformat-
ics consist of multiple software implementations, each with
their own set of dependencies. Software container technology
such as Docker (http://www.docker.com) package the dependen-
cies with the software and provide a method to reproduce these
complex pipelines on multiple hardware and cloud platforms.
For example, BioShadock [1], BioDocker and Bioboxes [2] are
two frameworks aimed at reproducibly deploying bioinformat-
ics workflows using Docker containers.

Many bioinformatics pipelines have a component that re-
quires a graphical user interface (GUI) that can potentially limit
the portability of the Dockerized workflows as different plat-
forms use different methodologies to render the GUI. We have
previously described and implemented GUIdock-X11 [3], an X11-
based methodology for portably supporting GUI applications in
containers on different platforms. While the X11-based display
method can be conveniently deployed in the local environment
by exposing a file socket from a container, deploying the im-
age on a cloud and accessing it remotely is non-trivial. In addi-
tion, on systems such as Windows, where there is no native X11
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support, additional client software must be installed by the user
to render the X11 graphics locally. Here we describe GUIdock-
VNC, which implements an improved browser-based solution
that does not require the user to map ports, configure firewalls,
or install any additional specialized software.

GUIdock-VNC uses the Virtual Network Computing (VNC)
protocol [4] to render the graphics. Instead of transferring com-
mands and allowing a local client to render the graphics, VNC
transfers a pre-rendered screen. Bandwidth requirements are
minimized by only transferring the differences between the cur-
rent screen and the last screen. This can actually be less chatty
than the X11 methodology, which is constantly sending display
commands. noVNC is a browser-based VNC client implemented
using HTML5 Canvas and WebSockets [5]. Modern browsers can
use the HTML5-based noVNC client to display the screen locally.
The browser transparently downloads the noVNC client from
the container and becomes the terminal, thus eliminating the
need for the user to configure and install separate software. This
is a major advantage as the users of bioinformatics workflows
are not necessarily technically trained in configuring computer
systems.

Most importantly, GUIdock-VNC also facilitates the deploy-
ment of Docker applications on the cloud. With a browser-based
solution, we also have access to web-based authentication pro-
tocols such as Oauth2 [6], which allows for authentication using
an email account. The host service is accessed and authenti-
cated through theHTTP/HTTPS port, greatly simplifying the con-
figuration necessary to support cloud-based platforms.

Our contributions

We implemented GUIdock-VNC, which adds and configures a
software layer inside a Docker container to allow applications
to export a GUI using the VNC protocol. When deployed on
the cloud, authentication is provided using Oauth2. In addi-
tion, we provide a set of minimal base images to allow the
users to add the host graphical desktop interface to any ex-
isting Dockerfiles. No client software installation is necessary
for the users as GUIdock-VNC uses the HTML5 noVNC browser-
based client to display theGUI. All our tools are publicly available
on GitHub.

We benchmarked the implementation on a real-world bioin-
formatics pipeline. Our results showed that noVNC creates min-
imal overhead and GUIdock-VNC is superior to our previous
work, GUIdock-X11 [3], and other virtualmachine–based deploy-
ment solutions.

Related work

Software containers and Docker
A software container packages an application with everything
it needs to run, including supporting libraries and system re-
sources. Containers differ from traditional virtual machines

(VMs) in that the resources of the operating system (OS), and
not the hardware, are virtualized. In addition, multiple contain-
ers share a single OS kernel, thus saving considerable resources
over multiple VMs.

Linux has supported OS-level virtualization for several years.
Docker (http://www.docker.com/) is an open source project that
provides tools to setup and deploy Linux software containers.
While Docker can run natively on Linux hosts, a small Linux VM
is necessary to provide the virtualization services onMac OS and
Windows systems. On non-Linux systems, a single Docker con-
tainer consists of a mini-VM, the Docker software layer, and the
software container. However, multiple Docker containers can
share the same mini-VM, saving considerable resources over
using multiple individual VMs. Recently, support for OS-level
virtualization has been added to Windows and the Macintosh
operating system (MacOS). Beta versions of Docker for bothWin-
dows and Mac OS are now available that allow Docker to run na-
tively. Subsequently, these beta versions allow native Windows
andMac OS software to be containerized and deployed in a simi-
larmanner [7]. Docker containers therefore provide a convenient
and light method for deploying open source workflows on mul-
tiple platforms.

GUIdock-X11
Although Docker provides a container with the original soft-
ware environment, the host system, where the container soft-
ware is executed, is responsible for rendering graphics. Our
previous work, GUIdock-X11 [3], is one of the solutions in bridg-
ing the graphical information from user and Docker containers
by using the X11 common graphic interface. GUIdock-X11 passes
the container X11 commands to a host X11 client, which ren-
ders the GUI. Security is handled by encrypting the commands
through secure shell (ssh) tunneling. We demonstrated the use
of GUIdock-X11 [3] for systems biology applications, including
Bioconductor packages written in R, C++, and Fortran, as well as
Cytoscape, a standalone Java-based application with a graphical
user interface. Neither Windows nor Mac OS uses X11 natively
to render their graphics. Additional software such as MobaX-
term [8] or socat [9] is needed to emulate X11 and locally ren-
der the graphics commands exported by the Docker container.
However, a major advantage of the X11 method is that the com-
mands to render the graphics and not the graphics themselves
are transmitted, potentially reducing the total bandwidth re-
quired.

Table 1 summarizes the differences between GUIdock-VNC
and our previous work, GUIdock-X11.

Case study: inference of gene networks
The inference of gene networks is a fundamental challenge
in systems biology. We use gene network inference as a case
study to demonstrate that GUIdock-X11 and GUIdock-VNC
can be used to yield reproducible results from bioinformatics
workflows. We have previously developed inference methods

Table 1: Comparison between GUIdock-X11 and GUIdock-VNC

Feature GUIdock-X11 GUIdock-VNC

Can be deployed on phones/tablets? No Yes
Security ssh-tunnel OAuth2
Bandwidth Low Low to medium
Cloud integration difficulty Medium Simple
Dockerfile setup Manual editing Automatic conversion of base Docker images

http://www.docker.com/
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Figure 1: Architectural overview of GUIdock-VNC. In the proposed architecture,

each container is a self-contained web server that can be accessed using a single
port. When deployed on the cloud, the services can be accessed using the cloud
provider’s network address translation (NAT) mechanism. Each container is also
capable of OAuth2 authentication that can be enabled while deploying the ap-

plication. Once enabled, the user will be required to sign in through an identity
provider (such as Google in the current prototype). After the authentication, the
user browser will be automatically redirected to the application.

using a regression-based framework, in which we searched
for candidate regulators (i.e., parent nodes) for each target
gene [10–12]. Our methods are implemented in R, C++, and
Fortran, and the implementation is available as a Bioconductor
package called networkBMA (http://bioconductor.org/packages/
release/bioc/html/networkBMA.html) [13]. In order to visualize
the resulting gene networks, we previously developed a Cy-
toscape app called CyNetworkBMA (http://apps.cytoscape.org/
apps/cynetworkbma) [14]. Cytoscape is a Java-based stand-alone
application with a GUI to analyze and visualize graphs and
networks [15–17]. Our app, CyNetworkBMA [14], integrates our
networkBMABioconductor package into Cytoscape, allowing the
user to directly visualize the resulting gene networks inferred
from networkBMA using the Cytoscape utilities. The integration
ofmultiple pieces of software, eachwith its own software depen-
dencies, makes CyNetworkBMA an ideal proof-of-concept appli-
cation for the illustration of the utility of GUIdock-VNC.

Implementation of GUIdock-VNC

Fig. 1 shows an overview of GUIdock-VNC.

Virtual Network Computing
VNC is a framebuffer-based protocol that was written to view
and control a remote desktop over the internet [4]. VNC is essen-
tially a server program that attaches to a display server like X11
and creates a proxy between the client and the display server.
The proxy server takes in input from the client and relays it
to the display server while at the same time the display server
sends pre-rendered display images to the client. VNC is thus a
network intensive protocol, although the amount of data trans-
ferred back and forth can be reduced by using various com-
pression technologies on the transfer layer. In our implemen-
tation, we use Xvnc/Xvfb (X virtual frame buffer) [18] to provide
a lightweight VNC/X11 display server.

noVNC
noVNC is a browser-based VNC client [5]. The name ‘noVNC’
means that the traditional VNC client is not needed and that
a modern browser with HTML5 and WebSocket support can be
used to access and control a remote VNC server. This noVNC
technology is particularly interesting as almost all browsers,
both desktop and mobile versions, have HTML5 extensions

Figure 2: Services running inside container. Apart from user applications, there

are two web services running inside the container and a reverse proxy (nginx)
to act as an interface for the container. The first web service is the noVNC inter-
face connected to the VNC server. The noVNC server is a Python plus JavaScript
application framework used for establishing WebSocket for VNC packet inter-

change. The second web service is an optional broker service that helps in ex-
changing data through a datastore interface (Mongodb) and a message-passing
queue (RabbitMQ).

built in. An additional layer on the host is required for the
VNC server to communicate through WebSocket. We use ng-
inx (https:/www.nginx.com/), a fast and light reverse-proxy web
server, for this purpose.

Authentication methods: Oauth2
For containers that are not deployed locally, i.e., on a network
or cloud, security is a concern as the traffic between the viewer
and server can be seen by anyone with access to the net-
work. Oauth2 [6] is an authentication method that is commonly
used by major corporations to validate third-party applications.
Specifically, Oauth allows users to log onto third-party web-
sites using their existing Google, Twitter, or Facebook accounts,
thus avoiding the creation of additional accounts for the third-
party websites. In the present era, where it is extremely diffi-
cult to host identity services and secure communication, pub-
lic authentication services like Oauth2 plays an important role.
Providers like Google, Facebook, and LinkedIn can be used to val-
idate any user registered with an email at one of these websites.
In our prototype, we have created a prototype for the Google
identity server. Each container can be forced to login through
one of these public providers.

Automatic conversion of base Docker images

To add the noVNC graphical desktop to a Docker image, the con-
verted image requires a web server, a headless display server
running inside the container, and a VNC server (see Fig. 2).
The web server is required to serve the JavaScript-based noVNC
client, and the headless display server routes all drawing in-
structions to the VNC server; they are then sent to the client
running the browser-based noVNC JavaScript client. Due to the
three active components running inside the container, we gen-
erate a bash script to work as the entry point for the con-
tainer. Therefore, in order to assist users and to let them start
application-dependent services, we have created a tool to boot-
strap standard images with noVNC capability. The tool accepts
a JSON script as input with defined parameters for files to be
copied, additional software to be installed (using apt-get), and
the location of the startup script, which is then tied into the en-
try point.

http://bioconductor.org/packages/release/bioc/html/networkBMA.html
http://bioconductor.org/packages/release/bioc/html/networkBMA.html
http://apps.cytoscape.org/apps/cynetworkbma
http://apps.cytoscape.org/apps/cynetworkbma
https:/www.nginx.com/
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Figure 3: CyNetworkBMA on various browsers and operating systems: (a) Internet Explorer on Windows 8.1, (b) Google Chrome on Ubuntu Linux, (c) Safari on Mac OS,
and (d) Google Chrome on Android. Given that the interaction to the container is made through a browser, any device with a browser supporting HTML5 will have

consistent user experience and results, even on mobile devices such as Android and iOS devices. In the case of mobile devices, the Docker container runs on remote
machines (e.g., on a virtual machine instance on cloud).

The tool is extensible and can be used to define all Dockerfile
parameters as standard run commands.

Applications

We illustrated the utility of GUIdock-VNC in a proof-of-concept
case study of gene network inference. Specifically, we applied
GUIdock-VNC to a RNA-seq dataset consisting of 675 human
cancer cell lines [19]. We downloaded the variance-stabilized
version of the normalized RNA-seq data and extracted a sub-
set of 84 genes that belong to 21 cancer-related pathways
(see Supplementary Table 12 in Klijn et al. [19]). We applied
the ScanBMA [12] gene network inference algorithm as imple-
mented in the CyNetworkBMA app from within the GUIdock-
VNC container.

We show that we get identical results after deploying the
package across different browsers on different operating sys-
tems. Fig. 3 shows screenshots of using (a) Internet Explorer
on Windows 8.1, (b) Google Chrome on Ubuntu Linux, (c) Safari
on Mac OS, and (d) Google Chrome on Android. To summarize,
we demonstrate the reproducibility of analytical results when
GUIdock-VNC is deployed on different browsers and different
operating systems.

Benchmarking computational efficiency

Since we have added extra services to the container, it is es-
sential to investigate the performance overhead introduced by

these additional services and the container. We conducted an
extensive empirical study on comparing performance over dif-
ferent platforms with different hypervisors using GUIdock-X11
and GUI-VNC. As a baseline, we compared the performance of
running GUIdock-X11 and GUIdock-VNC on Docker containers
to running the CyNetworkBMA app natively. In addition, we also
compared our results to running the CyNetworkBMA via a vir-
tual machine (VM). We tested the performance of each of these
four options (native, GUIdock-X11, GUIdock-VNC, VM) on the
Linux, Macintosh, and Windows operating systems.

In our benchmarking experiments, we used the time series
data of the first network from the DREAM 4 crowdsourcing chal-
lenge [20,21]. This simulated dataset consists of 100 genes across
21 time points. In order to account for variability in our empiri-
cal experiments, we repeated each configuration, i.e., each (OS,
option) pair four times. These replicated experiments are repre-
sented by “RUN1,” “RUN2,” “RUN3,” “RUN4” in Table 2. In addi-
tion, we added warm-up runs to ensure steady-state execution
time.

Table 2 shows a consistent minimal overhead of running the
proposed container, which is only marginally higher than run-
ning the application natively. In particular, we computed the ra-
tio of the average execution time over the four runs to the “na-
tive” baseline execution time. Fig. 4 shows the ratio of the aver-
age execution time of each of GUIdock-X11, GUIdock-VNC, and
VM to the baseline “native” on the Linux, Mac OS, and Windows
operating systems. On the Linux, Mac OS, and Windows operat-
ing systems, we observed comparable execution time for both
GUIdock-X11 and GUIdock-VNC.
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Table 2: Execution time in empirical study across the Linux, Macintosh, and Windows operating systems

Platform Environment RUN 1 RUN 2 RUN 3 RUN 4 Average Ratio

Linux Native 104 100 97 102 100 1
GUIdock-X11 130 131 131 130 130 1.29
GUIdock-VNC 134 133 133 134 134 1.39
VM 187 185 186 185 186 1.92

Mac OS Native 97 97 96 96 96 1
GUIdock-X11 120 116 118 123 119 1.23
GUIdock-VNC 123 121 120 124 122 1.26
VM 148 143 151 150 148 1.54

Windows Native 125 127 130 128 127 1
GUIdock-X11 155 157 155 156 155 1.22
GUIdock-VNC 157 160 162 161 160 1.25
VM 179 179 182 184 181 1.42

“Native” means running the CyNetworkBMA app natively on the corresponding OS. “VM” means running the CyNetworkBMA app from a virtual machine on the
corresponding OS. The column “average” is the average execution time over the four runs. The column “ratio” is the ratio of the average running time to the “native”
baseline.

Figure 4:The bar graph shows the ratio of the average execution time to the base-
line of running CyNetworkBMAnatively for each of Linux,MacOS, andWindows.
The first value for each platform is the ratio of the native execution runtime to
itself, and therefore is always equal to 1. The remaining three values correspond

to the ratio of the average execution time for GUIdock-X11, GUIdock-VNC, and
VM, respectively, to the baseline “native.”

Discussion

We present a container tool called GUIdock-VNC that uses a
graphical desktop sharing system to provide a browser-based in-
terface for containerized software. The merits of GUdock-VNC
are summarized in the following sections.

No installation on client side.

Our proposed container GUIdock-VNC is a self-contained display
server with user application and an HTML5-based VNC client,
which can be accessed using the web browser. Therefore, any
HTML5-capable browser is sufficient on the client side. Almost
all modern popular browsers such as Mozilla Firefox, Webkit
(Apple Safari and Google Chrome), and Microsoft Edge support
HTML5 extensions.

Mobile capable.

Since HTML5 extensions that are required to access noVNC are
also supported onmobile versions onmodernweb browsers, our
GUIdock-VNC solution is also accessible throughmobile devices

such as phones and tablets. The container is a stateful solu-
tion, such that it preserves session information even after a dis-
connected user session. Therefore, researchers can access the
container on the go and subsequently continue working on the
workstations in the labs.

Cloud integration.

There is a self-contained web server inside the GUIdock-VNC
container that is required to access the applications. Our
GUIdock-VNC container can be hosted on the cloud by using a
reverse proxy or simple NAT rule to pass on any incoming re-
quest to the container. We tested the solution with major cloud
vendors such as Amazon AWS, Google Cloud, and Microsoft
Azure, and the NAT forwarding works without any network in-
terference.

Security using OAuth2.

To ensure secure access to the container, we are using OAuth2
from Google (replaceable by any other identity provider such as
LinkedIn, Facebook, Twitter, etc.) to authenticate users by ensur-
ing that the identity registered with the container is owned by
the user requesting container access. This can be done by pro-
viding email ID, provider user ID and secret password as param-
eters to the container. If these parameters are provided while
initiating the container, the broker will redirect the user to the
identity provider to verify the email address. Once authenti-
cated, the identity provider redirects the user to the container.

Availability and requirements
� Project name: GUIdock-VNC
� Project home page: https://github.com/biodepot
� Contents available for download: Docker Images, Dockerfiles,
installation scripts, and execution scripts.

� Operating systems: Linux, Mac OS X, Microsoft Windows;
specifically, we tested GUIdock-VNC on
– Linux: Fedora 22/23, Ubuntu 15.04
– Mac OS X: 10.9, 10.10
– Microsoft Windows: 7, 8.1, 10
– Android, IOS

� Programming languages: Python, HTML, JavaScript

https://github.com/biodepot
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� Browsers tested
– Google Chrome
– Firefox
– Safari
– Microsoft Edge on Windows 10 Pro (using Docker for Win-
dows, and with pop-up blocker off)

� License: MIT License

Availability of supporting data

Snapshots of the code supporting this article are available in the
GigaScience GigaDB repository [22].

Additional Files

Additional file 1 — User manual for GUIdock-VNC.
Additional file 2 — Video of GUIdock-VNC demo

Available on YouTube: https://youtu.be/iaVPnLhOLg0.
Additional file 3—Video of deploying GUIdock-VNC on the cloud

Abbreviations

GUI, graphical user interface; NAT, network address translation;
VM, virtual machine; VNC, Virtual Network Computing.
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