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ABSTRACT: Glasses formed from nano- and micro-
particles form a fascinating testing ground to explore and
understand the origins of vitrification. For atomic and
molecular glasses, a wide range of fragilities have been
observed; in colloidal systems, these effects can be emulated
by adjusting the particle softness. The colloidal glass
transition can range from a superexponential, fragile
increase in viscosity with increasing density for hard
spheres to a strong, Arrhenius-like transition for compres-
sible particles. However, the microscopic origin of fragility
and strength remains elusive, both in the colloidal and in
the atomic domains. Here, we propose a simple model that explains fragility changes in colloidal glasses by describing the
volume regulation of compressible colloids in order to maintain osmotic equilibrium. Our simple model provides a
microscopic explanation for fragility, and we show that it can describe experimental data for a variety of soft colloidal
systems, ranging from microgels to star polymers and proteins. Our results highlight that the elastic energy per particle acts
as an effective fragility order parameter, leading to a universal description of the colloidal glass transition.
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Suspensions of colloidal hard spheres vitrify when the
particle volume fraction ϕ is increased beyond the
colloidal glass transition, often identified to occur at ϕg ≈

0.59.1,2 Upon approaching the glass transition, the structural
relaxation time of the suspension τ grows rapidly, and
fingerprints of the glassy state emerge, such as heterogeneous
dynamics,3−5 long-lived local structures,6,7 and percolating
networks of mechanically bonded neighbors.8,9 Mode-coupling
theory (MCT)10 has been successfully used to demarcate the
transition from freely flowing fluid to a glassy state at ϕg. On
the other hand, experiments suggest that this colloidal glass
transition does not involve ergodicity breaking as predicted by
MCT, but that this occurs only at slightly higher volume
fractions.11

For molecular and polymeric glasses, Angell proposed a
classification scheme depending on how steeply the liquid
viscosity η rises as the glass transition temperature Tg is
approached.12 When η shows a very steep, superexponential
increase with T/Tg, the glass is denoted as “fragile”. By contrast,
when η grows more gradually, following an exponential
Arrhenius law, the glass is classified as “strong”. In other
words, in a fragile glass former, even small changes in
temperature can have dramatic effects on the liquid viscosity;
the viscosity is more robust to small temperature fluctuations in
a strong glass.

In suspensions of nanoparticles or colloids, the phase
behavior of the system is governed by the volume fraction
rather than temperature. For hard spheres, the structural
relaxation time τ, which is proportional to the suspension
viscosity, rises superexponentially as the volume fraction
approaches its glass transition point ϕg. As a result, the hard-
sphere glass can be classified as fragile, in analogy with the
concept of fragility and strength for glasses formed by atomic,
molecular, or polymeric building blocks.12

Also, soft and compressible particles, such as microgels,13−15

star polymers,16,17 and even globular proteins18,19 and cells,20,21

exhibit a glass transition when their packing fraction approaches
a critical value. However, for many of these soft systems, the
fragile transition gradually gives way to a much weaker and
exponential growth of the relaxation time τ ∝ eϕ/ϕg,13,20

resembling strong Arrhenius glasses in the molecular realm.12

In particular, for sufficiently soft microgels, ultrasoft polymer
stars, and suspensions of cells, a pure Arrhenius behavior has
been observed experimentally.13,16,17,20

This raises the intriguing possibility that the entire range of
fragility and strength known to exist for molecular systems may
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be explored by studying glasses of colloids with varying
softness. For example, for microgel suspensions, it has been
demonstrated that a transition from fragile to strong glass
forming behavior could be induced solely by changing the
elasticity of the individual particles. Clearly, a connection must
exist between the elasticity at the scale of a single particle and
the nature of the glass transition at the macroscopic scale. For
metallic glasses, such a connection was recently established
quantitatively in which the “softness” of the interatomic
repulsions acts as a tuning fork for fragility.22,23 However,
such a framework does not yet exist for glasses formed from
nanoparticles and colloids. As a result, a universal description of
the glass transition that explains the origins of fragility and
strength has to date remained unavailable.
In this paper, we propose a description for the microscopic

mechanism of fragility transitions in glasses of compressible
colloids, based on the regulation of osmotic equilibrium. Using
a simple phenomenological model, we show how apparent
changes in fragility can arise when the particle softness is varied.
We find that the elastic energy per particle acts as an effective
order parameter for the fragility of the glass transition. A
qualitative comparison of our model with experimental data
suggests that a fragile-to-strong transition can be induced not
only by increasing particle softness but also by decreasing the
particle size. Our results provide a framework to explain the
underlying mechanisms that control the nature of the glass
transition in a variety of colloidal systems.

THEORETICAL FRAMEWORK
In most experiments with purely repulsive colloidal suspen-
sions, the phase behavior is controlled by the particle volume
fraction ϕ. For hard and incompressible colloids, the state
parameter is unambiguously defined as ϕ π= n a4

3
3, where n is

the number concentration of particles with radius a. For
compressible particles, however, defining the real particle
volume fraction is more difficult. As n increases, the osmotic
pressure of the bath, comprising all particles immersed in their
solvent, grows. To maintain osmotic equilibrium, compressible
particles, which are equilibrated with their surroundings, must
increase the pressure in the particle interior. This is
accomplished by their deswelling, which increases the internal
osmotic pressure of the polymer network.
Due to this osmotic equilibrium, the volume of compressible

particles is not constant but becomes a function of n, and as
such, the linear relation between number density and volume
fraction is lost. The osmotic deswelling of individual
compressible nano- and microparticles has been studied in
detail previously.24−29

In experiments on microgels, the particle volume fraction is
typically measured in dilute conditions and extrapolated to the
concentrated regime. This extrapolated packing fraction, which
is the experimental control parameter being used, is defined as
ζ π= n a4

3 0
3, with a0 the particle size at infinite dilution ϕ → 0.

Notably, ζ is linear in n but not in ϕ;30 for highly
compressible particles, such as soft microgels, ζ may thus
increase well beyond unity when a ≪ a0. Due to the
nonlinearity between ζ and ϕ, this discrepancy cannot be
resolved by normalizing ζ to a characteristic state point in the
particle phase diagram, for example, the freezing point or glass
transition.
To resolve this, we propose a simple qualitative model that

accounts for osmotic shrinkage of compressible particles upon

approaching their glass transition. Previously, osmotic shrinkage
of compressible spheres has been postulated to lead to the lack
of a glassy state all together,31 but a direct link to changes in
glass fragility has not been established.
We model colloidal spheres, with equilibrium radius a (ϕ →

0) = a0, where the internal volume fraction of osmolyte ϕp =
ϕp,0. For example for microgel colloids, or polymer stars, ϕp
represents the volume fraction of polymer segments within the
particle. The microscopic details of the internal equation-of-
state, which governs the balance between osmotic and elastic
pressure within a particle, Πin, vary greatly among different
experimental systems. Yet, all systems in osmotic equilibrium
with a bath of pure solvent must satisfy Πin(ϕp,0) ≡ 0. For
microgels, this is achieved by balancing a positive contribution
to the internal pressure due to mixing of chains and solvent
with a negative contribution resulting from entropic chain
elasticity, commonly expressed within the Flory−Rehner theory
for gels.32

Rather than using a microscopic theory, such as the Flory−
Rehner theory for hydrogels or the elastic description of single-
particle micromechanics proposed recently by Riest et al.,29 to
describe a specific type of compressible spheres, here, we start
with a phenomenological description of the internal equation-
of-state at a qualitative level such that analytical results can be
obtained. The aim of this paper is to arrive at a conceptual
understanding of fragility in compressible sphere packings; of
course, for specific systems, a more quantitative description can
be derived if the internal equation-of-state and that of the
suspension bath are known a priori.
Here, we use a phenomenological form for the sake of

simplicity, inspired by the mean-field description of polymers in
the marginal (i.e., theta-solvent conditions) and semidilute
regime Π ∝ ϕp

2.33 Given the additional constraint that Πin must
be equal to the external pressure at equilibrium, which is zero
for very dilute suspensions, we use the functional form

ϕ ϕΠ = −k( )in p
2

p,0
2

(1)

where k is an effective stiffness of the particles. We note that
this can be easily changed to good solvent conditions by
changing to a power of 9/4 instead of 2. Since ϕp/ϕp,0 = a0

3/a3,
the internal pressure can be rewritten as

ϕΠ = −
⎛
⎝⎜⎜

⎞
⎠⎟⎟k

a
a

1in p,0
2 0

6

6
(2)

As the overal particle concentration n increases, a significant
colloidal osmotic pressure Πout will develop in the bath, which
we describe with the empirical equation-of-state proposed by
Speedy:34

ϕ
Π =

−
s nk T

s1out
1 B

2 (3)

in which kBT is the thermal energy and s1 and s2 are numerical
constants. For hard spheres, it can be parametrized with s1 ≈
2.55 and s2 = 1/ϕrcp ≈ 1.55, in which ϕrcp is the random close
packing fraction. Here, we choose this description for the
equation-of-state of the bath as it describes the pressure at finite
volume fractions reasonably well and its simple form allows
solving the equations analytically. The Speedy equation-of-state
does not accurately represent the limit of ϕ → 0; however, this
limit is not considered in the present work, hence we do not
pursue this point further. The underlying assumption in
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choosing this form is that in the limit of full deswelling of the
particles, when ϕp → 1 and all solvent is expelled from the
particle interior, the initially soft particles become incompres-
sible, which must lead to a divergence of the bath pressure.
Moreover, this implies that at equilibrium, the bulk modulus K
of the particles must be a function of its degree of deswelling.
Within our approximate and phenomenological approach, the
bulk modulus of the particles is indeed density-dependent and
can be defined as K = ϕpdΠin/dϕp = 2kϕp

2. We note that, also
here, for a quantitative description, the bath equation-of-state of
the specific system must be known; for example, in experiments
on microgels, such as those revealing the fragility transitions
with softness,13 charged residues on the particles will
significantly alter the magnitude of the bath osmotic pressure.
In fact, it is the ratio of the intrinsic particle softness k to the
bath pressure that governs the behavior.

Using ϕ = a3ζ/a03, we find

ζ
π ζ

Π =
−

k Ts
a s a
3

4 ( )out
B 1

0
3

2
3

(4)

At each ζ, a new equilibrium is established by reducing the
particle size a < a0, simultaneously increasing Πin and reducing
the bath pressure until Πin = Πout. With

λ =
⎛
⎝⎜

⎞
⎠⎟

a
a0

3

(5)

and

π ϕ
=A

s
s

k T
k a

3
4

1

2

B

p,0
2

0
3

(6)

we can define the equilibrium condition as

ζ λ
λ λ λ

= −
− +s A

1
( )

2

2
2 3

(7)

which gives direct access to the relationship between number
density and volume fraction. Interestingly, the extent to which
osmotic balance creates a nonlinearity between ϕ and ζ is
governed solely by the normalized elastic energy per particle
ka̅0

3/kBT, with k ̅ = kϕp,0
2 the intrinsic particle elasticity. The

elastic energy per particle is directly coupled to the external
equation-of-state because 3s1/4πs2A = ka̅0

3/kBT, such that
“softness” can be defined as the relative resistance to volume

changes of the particles as compared to how steep the osmotic
pressure in the bath grows with ϕ.
In the limit of very soft particles, ka̅0

3 ≪ kBT, so that osmotic
shrinkage is strong λ ≪ 1. In this limit, eq 7 is approximated as

ζ λ λ≈ +s A1/ ( )2
2

(8)

which yields

λ
ζ

≈ + −
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟A

A
s

1
2

1
4

1
2 (9)

At high number densities, ζ ≫ A, this leads to λ ≈ 1/s2ζ. With
ϕ = ζλ, we find ϕ ≈ 1/s2 = ϕrcp. This implies that for very soft
particles at sufficiently high number concentrations, the system
equilibrates at random close packing; addition of more particles
results in a proportional isotropic compression of the system
such that the volume fraction remains constant; this could
explain the lack of a glassy state in certain cases.31 We finally
note that in this derivation we assume that the particles respond
to increasing particle density by osmotic deswelling only, and
thus that particle deformation can be ignored. This implies that
the particles we describe have a Poisson’s ratio ν < 0.5, which is
a reasonable assumption for hydrogel systems under the
appropriate conditions.35

RESULTS AND DISCUSSION
We first evaluate the effect of particle softness, regulated by k,
on the relationship between real volume fraction ϕ and
extrapolated packing parameter ζ. For small colloids, a0 = 50
nm, a significant bath pressure develops already at moderate
volume fractions. When the particles are stiff, the hard-sphere
limit k ̅ = ∞ is approached for which ϕ ≡ ζ (dotted line Figure
1a). When the effective particle elasticity is reduced, and
osmotic regulation effects become pronounced, the nonlinearity
between ζ and the real volume fraction ϕ grows. The
corresponding osmotic shrinkage of the particles, expressed
here by the deswelling ratio a/a0, as shown in Figure 1b, can be
very strong for the softest particles, with actual radii a(ϕ) more
than a factor of 3 smaller than their fully swollen dimension a0,
at reasonable volume fractions; this is in direct agreement with
experiments on microgel particles.30,36

To explore the implications this pronounced osmotic
shrinkage has on the apparent fragility of the glass transition,
we adopt the ansatz that structural relaxation slows down
universally with ϕ below the ideal mode-coupling glass
transition. The structural relaxation time, normalized to the

Figure 1. (a) Real volume fraction ϕ versus experimental control parameter ζ as a function of particle elasticity, for (top to bottom) k = 1 ×
104, 1 × 103, 5 × 102, 2 × 102, 1 × 102, and 5 × 101 Pa, with a0 = 50 nm and ϕp,0 = 0.1. (b) Extent of osmotic deswelling a/a0 with increasing
particle volume fraction for the same settings as in (a).
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characteristic time of unhindered Brownian diffusion, τ/τ0 is
thus assumed to be described by a single equation as a function
of ϕ. To this end, we use an equivalent of the classical VFT
equation in which particle volume fraction governs the
dynamics:11,37

τ
τ

=
−ϕ

ϕ

⎛
⎝⎜

⎞
⎠⎟

C
log

10 c

(10)

where C is a numerical constant and ϕc is a critical volume
fraction at which the system becomes non-ergodic. According
to extensive light scattering experiments on colloidal hard
spheres,11 the point of ergodicity breaking lies above the MCT
glass transition ϕc > ϕg. For the purposes of this article, we
parametrize the VFT law by fitting it to experimental data for
hard spheres (k ̅ ≈ ∞) as reported by Brambilla et al.11

(symbols Figure 2); these experimental data are well fitted by C
= 0.7 and ϕc = 0.625 (dotted line Figure 2).
Having expressions for both τ(ϕ) and ϕ(ζ), we can now

explore how suspensions of compressible colloids vitrify by
reconstructing τ(ζ), which is typically measured in experiments.
Our simple model qualitatively reproduces the results observed
experimentally for microgel colloids,13 where τ/τ0 grows more
slowly for softer particles, and extrapolated packing fractions of
well over unity are required to reach the glassy state (Figure
2a).
To evaluate the fragility of these predicted glass transitions,

we first define the glass transition as the packing fraction where
τ/τ0 ≡ 105, following Mattsson et al.13 For the hard-sphere data
of Brambilla et al.,11 this yields ϕg ≈ 0.59, in agreement with

MCT predictions and experimental findings.2,10 Having defined
ϕg, we can replot our predictions in the Angell representa-
tion,12,38 where the relaxation time is plotted as a function of
the rescaled packing fraction ζ/ζg; indeed, our model
reproduces the experimentally observed fragility transition13

with decreasing k ̅ (Figure 2b).
One may wonder if the observed fragility change as a

function of particle softness is a robust feature of any system
which features osmotic regulation, many of which will have a
different form of their internal or external equation-of-state as
compared to the choices above. For example, we can argue that
close to their equilibrium size a0, for small degrees of deswelling
a/a0 ≈ 1, the free energy of a single compressible particle may
be considered to be parabolic: ΔG = κ(a − a0)

2, in which κ is
the spring constant, a related measure for the particle softness
as compared to k, but with different dimensions. Since Πin =
−dΔG/dV and the particle volume π=V a4

3
3, we have

π
κ

π
Π = − Δ =

− −d G
a da

a a
a

3
4

3 ( )
2in 2

0
2 (11)

Also for this form of the internal pressure, using the Speedy
equation-of-state for the bath, we can predict how the
relaxation time grows with ζ. We solve these equations
numerically and find that also for this different shape of the
internal equation-of-state, a fragile-to-strong transition emerges
upon changing the spring constant κ (Figure 2c). This
highlights how the conceptual idea that osmotic equilibrium
governs the fragility of the colloidal glass transition is not
sensitive to the exact choice for the internal pressure. It is

Figure 2. (a) Structural relaxation time τ, normalized to the Brownian time scale τ0, as a function of extrapolated particle packing fraction ζ for
(solid lines, top to bottom) k ̅ = 20, 10, 5, 3.5, 2, and 1 Pa, with a0 = 50 nm, using eq 7. Symbols: experimental data for colloidal hard spheres
from11

fitted to the VFT equation as described in the text (dotted line). (b) Same data as in (a) in the so-called Angell representation where
the packing fraction is normalized to the glass transition ζg. (c) Angell plot for theoretical predictions using the harmonic approximation for
Πin (eq 11) for κ = 350, 400, 500, 600, 1000, and 5000 J/m2. (d) Angell plot for theoretical predictions using the Flory−Rehner equation-of-
state (eq 12) for Nx = 100, 500, 1000, 2000, 3000, and 4000.
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interesting to note that the “strong” limit of our model does not
produce a true Arrhenius curve, as some curvature remains at
low values of ζ where the effects of osmotic regulation are weak
and the inherent curvature in τ(ϕ) of the VFT equation
remains. Thus, the analogy with Arrhenius behavior is only an
apparent one and not truly reflective of a pure exponential
decay of relaxation rates with ζ/ζg.
For certain specific soft sphere systems, more precise and

microscopic descriptions of the internal equation-of-state exist.
One particular example is the Flory−Rehner swelling theory
that describes the internal pressure of uncharged microgel
particles as a balance between a mixing term to promote
swelling and the entropic elasticity of the polymer segments
between cross-links that counteracts swelling. Within this
framework, the internal equation-of-state can be written as39

ϕ ϕ χϕ

ϕ ϕ

ϕ

ϕ

ϕ

Π = + − +

− −

⎛

⎝
⎜⎜⎜

⎡

⎣
⎢⎢⎢

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎤

⎦
⎥⎥⎥

⎞

⎠
⎟⎟⎟

k T
l

N

[ ln(1 ) ]
k

x

in
B

3 p p p
2

p,c p

p,c

p

p,c

1/3

(12)

which is governed by microscopic properties, such as the
monomer dimension lk, the solvent−polymer interaction
parameter χ, and the polymer volume fraction of the collapsed
particle ϕp,c where the elastic contribution to the internal
pressure vanishes. Softness is controlled by the cross-linking

density, which determines the number of monomer repeat units
between cross-links Nx, which is thus an inverse softness
parameter within this model. Aiming to describe for example
pNIPAM microgels, we choose lk = 1 nm, ϕp,c = 0.5, and good
solvency such that χ = 0. Indeed, also for this microscopic
internal equation-of-state, an apparent fragility transition
emerges upon changing the cross-linking density Nx (Figure
2d). We note that the values of Nx required to induce fragility
changes are somewhat higher than those expected in experi-
ments;13 we attribute this to the fact that we assume a hard-
sphere equation-of-state for the bath, whereas these experi-
ments worked with partially charged microgels, in which the
bath pressure rises much more steeply, thus resulting in
effectively softer particles, as discussed in more detail below.
Finally, we observe that the exact line shape of τ versus ζ/ζg
differs depending on the choice of the internal equation-of-
state. This may hold the promise of deducing the internal
equation-of-state of compressible particles from high-resolution
measurements of the structural relaxation time and to quantify
their softness directly.
To further validate the predictions of our model, we collect

published data for particle self-diffusion in a variety of systems
composed of compressible spherical objects, ranging from
microgels of different softness,13,40 star polymers,37 and
globular proteins41 (symbols in Figure 3). Whereas the
microscopic mechanisms with which osmotic equilibrium is
regulated differ between these systems, as does the exact form
of the equation-of-state, we fit all these data with the analytical
form of our model (eqs 5−7). As a0 is known from the

Figure 3. (a) Angell plot for various systems of compressible spheres, symbols (defined in legend): experimental data for hard spheres (a0 ∼
130 nm),11 various microgels (a0 ∼ 90 nm),13,40 star polymers (a0 ∼ 20 nm),37 and the globular protein bovine serum albumin (a0 ∼ 5 nm),41

drawn lines: predictions from the model as outlined in the text with k ̅ as the adjustable parameter. (b) Fragility index m as a function of ka̅0
3 as

predicted by the model (line) and for the data sets in (a) (symbols). (c) Intensity correlation functions from dynamic light scattering for
uncharged polystyrene microgels with (from left to right) ζ = 0.64, 0.88, 1.02, 1.03, 1.19, 1.25, 1.30, 1.35. (d) Angell plot for compressible
colloids of varying charge density: hard spheres,11 weakly charged microgels,13,40 uncharged microgels from (c), and highly charged
microgels,36 drawn lines: predictions from the model.
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experiments, this leaves k ̅ as the only adjustable parameter. We
note explicitly that a comparison of the absolute values of k ̅ are
meaningless because the underlying equations-of-state for these
different systems are not the same; hence, the value of k ̅ needed
to fit the data is the effective softness of these particles with the
Speedy equation-of-state as an internal standard.
Nonetheless, the line shape and entire range of exper-

imentally observed fragilities in these soft colloidal systems can
be qualitatively reproduced with a simple phenomenological
model (drawn lines Figure 3a). This highlights how fragility
transitions in colloidal systems can be the direct result of
osmotic regulation of particle size, providing a mechanism of
feedback between number density, particle size, and thus
volume fraction and the macroscopic structural relaxation time.
This provides a theoretical foundation to the idea put forth by
Mattsson et al. that the fragility changes in microgel
suspensions are directly related to local elasticity.13 Above we
have shown how the steepness with which the structural
relaxations slow down as the particle concentration is increased
are governed by the parameter ka̅0

3. This implies that not only
the particle softness, expressed by k,̅ but also the particle size
has an effect on the fragility of the glass. In other words, hard
colloids may make strong glasses if the particles are small
enough, and soft colloids may make fragile glasses if they are
sufficiently large. To make this idea more quantitative, we can
compute the kinetic fragility index from the data for τ(ζ) as

τ τ
ζ ζ

=
ζ ζ=

m
d

d
log( / )
( / )

0

g
g (13)

We note that this is an approximation to the kinetic fragility
index that is defined as the local slope of the viscosity with
temperature in atomic and molecular glass formers. While a
more proper analogy would use the pressure rather than
packing fraction,42 this is experimentally intractable and beyond
the scope of this paper. Thus, to allow for a comparison to
experimental data, we use the slope of relaxation time versus
packing fraction as a proxy for the kinetic fragility index of the
colloidal glass.
The lower limit of m, for strong glasses that exhibit ideal

Arrhenius behavior, is set at m = 5, by our definition of the glass
transition at log(τ/τ0) = 5. At the other extreme, we have the
hard-sphere glass transition, as the most fragile case of fully
incompressible particles, which has m ≈ 37 based on
experimental data.11

Interestingly, when the elastic energy per particle is ka̅0
3 ≪

kBT, osmotic shrinkage is pronounced, which results in strong
glasses, such as for the softest microgels (Figure 3b). When ka̅0

3

becomes of the order of the thermal energy, the intrinsic
particle elasticity effectively competes with the pressure which
develops in the bath, and the transition becomes increasingly
fragile until the hard-sphere limit is reached when ka̅0

3 ≫ kBT
(Figure 3b). The bulk elastic energy per particle thus acts as an
order parameter for the fragility of the colloidal glass transition.
Indeed, the experimental data can be collapsed onto the
predicted relation between the fragility index m and the
normalized particle elasticity when the experimentally deter-
mined fragility is plotted against ka̅0/kBT, with k ̅ determined
from the fits shown in Figure 3a and a0 taken from the
experimental publications as indicated in the figure caption.
Our phenomenological model does not take the microscopic

origins of internal and external pressures into account. For

example, the Speedy equation-of-state is only valid for particles
interacting by volume exclusion alone. Additional contributions,
for example, due to charges, will affect the osmotic balance both
inside the particles and in the bath. This can have significant
effects on the phase behavior of soft particle suspensions, for
example, leading to the absence of a solid phase in fully ionic
microgels even at very high densities.31,43 For a comprehensive
description of the swelling behavior of ionic microgels, which
accounts for both polymeric and ionic terms, we refer to Colla
et al.44

To illustrate the effects of charges, we start from published
experimental data for strongly cross-linked microgels, for
systems that are highly charged36 and microgels that carry a
small amount of charges due to the ionic initiator used during
particle synthesis.13,40 As no experimental data are available for
microgels that carry absolutely zero charges, we synthesize
polystyrene microgels using a nonionic initiator resulting in
particles free of ionic groups45 (see also the Materials and
Methods section). These particles are suspended in a mixture
of bromo- and iodobenzene, which is a good solvent for the
polystyrene gel network and matches their refractive index. We
determine the structural relaxation of suspensions of these
uncharged microgels with dynamic light scattering (DLS), as a
function of ζ, which is determined by capillary viscosimetry in
the dilute limit.
With increasing particle concentration, the autocorrelation

curves g2(t) − 1 obtained from DLS experiments show both the
slowing down of particle diffusion and the emergence of a
plateau at intermediate times, indicative of the formation of
repulsive cages which hinder particle motion (Figure 3c). These
data are consistent with DLS experiments on aqueous, and
slightly charged, microgels.13,40 We note that at very long lag
times t > 500 s, a lack of statistics, due to the experimental
aqcuisition time, leads to an artifical superexponential decay of
the correlation function. Nonetheless, the data clearly show the
glass transition as the particle concentration is increased. We do
not use the data beyond >500 s to extract the characteristic
structural relaxation time such that this does not effect our
results. For these uncharged microgels, the glass transition is
very fragile and virtually traces the hard-sphere line with m = 37
(Figure 3d). For the weakly charged microgels, a small decrease
in fragility can be seen, whereas a nearly exponential Arrhenius
behavior results for highly charged microgels (Figure 3d). This,
surprisingly, suggests that a high concentration of charges,
which increases the internal osmotic pressure and thus provides
additional resistance to deswelling, effectively “softens” the
particles by reducing the effective value of ka̅0

3 required to
describe the vitrification with our phenomenological model
(lines Figure 3d).
The counterintuitive observation that charged microgels act

“softer” than uncharged particles at the same cross-linking
density is in agreement with the observation that the osmotic
deswelling of ionic microgels can be so severe that the volume
fraction at which a liquid−solid transition must occur is not
reached, even at exceedingly high values of the extrapolated
packing fraction ζ > 35.31,43 This emergent softness was
attributed to the high osmotic pressure of the bath, governed by
mobile ions unbound to the microgel particles,46 which result in
strong compression of the particles as the solid−liquid
transition is approached. This argument, and its experimental
proof,31 underpins the concept we have raised above, that
rather than particle softness alone, as hypothesized previously,13

it is in fact the balance between the osmotic pressure of the
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bath and the intrinsic softness of the particle that governs the
solid−liquid transition and its fragility. Even when the single-
particle mechanics indicate a relatively high bulk modulus, if the
bath osmotic pressure is high enough, for example, due to the
presence of ions or for sufficiently small particles, osmotic
deswelling may be significant, resulting in a strong rather than a
fragile glass. The unusually strong deswelling of ionic microgels
furthermore leads to unexpected behavior, such as the strong
shrinkage of large microgels in a crystal of smaller particles to
accommodate to the lattice and minimize the energy penalty
associated with defect formation.47,48

CONCLUSION
We have presented a simple model, based on the osmotic
deswelling of compressible colloids, which qualitatively captures
fragility changes observed in colloidal glasses. The change from
a fragile to a strong glass transition can be explained by a
nonlinear relation between the experimental control parameter
ζ and the real particle volume fraction which dictates the
dynamics of the suspension. The degree of nonlinearity
depends only on the elastic energy per particle, which thus
serves as an effective order parameter for fragility. As the elastic
energy per particle scales inversely with particle volume, hard
colloids may make strong glasses and soft colloids may make
fragile glasses depending on nominal particle size, the particle
softness, and the equation-of-state of the bath. While the
phenomenological description we present provides new insight
into the nature of the colloidal glass transition at the
macroscopic scale, it does not yet account for spatial
heterogeneity at microscopic length scales. Experiments and
simulations have shown that softness reduces both the
magnitude and spatial extent of dynamical heterogeneities49

and extends the validity range of the Stokes−Einstein relation
to higher packing densities.50,51 Perhaps this can be explained
by the weaker dependence of relaxation time on local density
for softer particles due to osmotic regulation. Extending the
simple model proposed here to account for such local effects
could aid in elucidating the intriguing connection between glass
fragility and dynamical heterogeneity.52−54

MATERIALS AND METHODS
We prepared strictly uncharged microgels using a method described in
detail elsewhere.45 Briefly, we dissolved 2 g of sodium dodecyl sulfate
in 320 mL of deionized water in a round-bottom flask. Separately, we
prepared a solution of 96 g of styrene, 6 g of the cross-linker
divinylbenzene, 5 mL of hexadecane, and 1 g of the radical initiator
2,2-azobis(2-methylpropionitrile). We mixed the aqueous and
monomer phase and first created a coarse pre-emulsion by using a
high-shear rotor-stator mixer. We subsequently formed a stable mini-
emulsion using high-intensity ultrasonication. After purging the
reaction flask with nitrogen, we allowed the mixture to react overnight
at 65 °C. The microgel particles were purified by precipitation in cold
methanol, filtration, and drying in vacuo, followed by resuspension in
THF and precipitation in methanol. This is repeated three times to
ensure complete removal of surfactant and reaction byproducts.
Finally, we resuspend the microgels in THF to swell the microgels
completely, which allows any linear polystyrene to diffuse out of the
microgels, which we remove by centrifugation at 30 000g and removal
of the supernatant. This was repeated three times to ensure complete
removal of all linear polystyrene as confirmed by gel permeation
chromatography. We then dried the microgels in vacuo. The resulting
particles have a hydrodynamic radius in the dilute limit of a0 = 93 nm,
measured in the index-matching solvent.
Samples were prepared by suspending a known weight of dried

microgels in an index-matching mixture of iodobenze and

bromobenzene (70:30 by volume). Samples were mixed extensively
by vortexing and repeated centrifugation for the most viscous samples;
in all cases, the sample was centrifuged at 1500g in the sample tube
prior to measurement to remove any air bubbles and dust from the
scattering volume. Samples were equilibrated for at least 1 h in the
thermostated sample bath at 21 °C to ensure a homogeneous
temperature within the sample. Measurements were performed using a
DLS setup based on an ALV/CGS-3 goniometer, equipped with an
avalanche photon detector, 633 nm diode laser (JDSU) and dual ALV
LSE-5004 hardware correlators for cross-correlation. All measurements
were performed at a scattering angle of 150°, which gives a scattering

vector = =π
λ

θq sin 0.024
2

nm−1. We note that to measure true self-

diffusion, measurements should be performed at scattering vectors qa
≤ 2π, with a being the particle radius. For the polystyrene microgels
we study here, this implies a minimum scattering vector of

= ≈πq 0.07
a

2 nm−1, which is not attainable in this setup. Because

our scattering vector was below this value, we probed dynamics on
somewhat larger characteristic length scales, which we took as a
measure of the sample’s viscosity or long-time particle self-diffusivity.
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