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ABSTRACT
Objective A genome-wide association study (GWAS)
of gout and its subtypes was performed to identify
novel gout loci, including those that are subtype-
specific.
Methods Putative causal association signals from a
GWAS of 945 clinically defined gout cases and 1213
controls from Japanese males were replicated with 1396
cases and 1268 controls using a custom chip of 1961
single nucleotide polymorphisms (SNPs). We also first
conducted GWASs of gout subtypes. Replication with
Caucasian and New Zealand Polynesian samples was
done to further validate the loci identified in this study.
Results In addition to the five loci we reported
previously, further susceptibility loci were identified at a
genome-wide significance level (p<5.0×10−8): urate
transporter genes (SLC22A12 and SLC17A1) and
HIST1H2BF-HIST1H4E for all gout cases, and NIPAL1
and FAM35A for the renal underexcretion gout subtype.
While NIPAL1 encodes a magnesium transporter,
functional analysis did not detect urate transport via
NIPAL1, suggesting an indirect association with urate
handling. Localisation analysis in the human kidney
revealed expression of NIPAL1 and FAM35A mainly in
the distal tubules, which suggests the involvement of the
distal nephron in urate handling in humans. Clinically
ascertained male patients with gout and controls of
Caucasian and Polynesian ancestries were also
genotyped, and FAM35A was associated with gout in all
cases. A meta-analysis of the three populations revealed
FAM35A to be associated with gout at a genome-wide
level of significance (pmeta=3.58×10

−8).
Conclusions Our findings including novel gout risk loci
provide further understanding of the molecular
pathogenesis of gout and lead to a novel concept for
the therapeutic target of gout/hyperuricaemia.

INTRODUCTION
Gout is a common disease characterised by acute
painful arthritis, and its global burden continues to
rise with the increasingly ageing population.1 Gout
is caused by hyperuricaemia, and can be classified
according to patients’ clinical parameters reflecting
its causes2 3 as renal overload (ROL) gout and renal
underexcretion (RUE) gout. As shown in online
supplementary figure S1, patients with gout with
increased urinary excretion of urate due to overpro-
duction and/or decreased extra-renal underexcre-
tion of urate are classified as having ROL gout,
whereas those with decreased renal excretion of
urate are defined as having RUE gout.2 Reflecting
their causes, almost all patients with gout are
divided into those two subtypes. Although these
subtypes are important from both genetic and
pathophysiological points of view,2 4 genome-wide
association studies (GWASs) of gout subtypes have
never been performed, partly due to the difficulty
in assembling sufficient gout cases with requisite
clinical data, including data from a time-consuming
urinary collection examination.
We and other groups5–9 recently reported gout/

hyperuricaemia to have relatively strong genetic
risk factors. More recently, and for the first time,
we performed a GWAS with only clinically defined
Japanese male gout cases in which 16 single
nucleotide polymorphisms (SNPs) were replicated,
and five gout-risk loci were identified including two
novel loci (MYL2-CUX2 and CNIH-2).10 In the
present study (see online supplementary figure S2),
we extended our analysis to identify novel suscepti-
bility loci for gout by replicating approximately
2000 SNPs top-ranked in the GWASs of all gout
and/or its subtypes. In addition, for the first time,
we performed GWASs of gout subtypes to identify
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subtype-specific (cause-specific) risk loci. Furthermore, we con-
ducted a replication study with independent Caucasian and
Polynesian populations to validate loci.

METHODS
Subjects and genotyping
Genome-wide genotyping was performed with the Illumina
HumanOmniExpress-12 v1.0 (Illumina) platform using 946
clinically defined gout cases and 1213 controls, all Japanese
males. Detailed methods of genotyping and quality control are
previously described.10 Ultimately, 570 442 SNPs passed filters
for 945 cases and 1213 controls. At the replication stage, 1246
cases were genotyped with a custom genotype platform using
iSelect HD Custom Genotyping BeadChips (Illumina) on 1961
SNPs, as described in online supplementary methods and
supplementary figure S3, and 150 gout cases were genotyped
with the Illumina HumanOmniExpress-24 v1.0 (Illumina) plat-
form. For controls, 1268 Japanese males with a serum uric acid
(SUA) level ≤ 7.0 mg/dL and without gout history were
recruited from BioBank Japan11 12 and genotyped with the
Illumina HumanOmniExpress-12 v1.0 (Illumina) platform.
Finally, 1961 SNPs with 1396 gout cases and 1268 controls
were successfully genotyped (see online supplementary table
S1). A genome-wide significance threshold was set to be
α=5.0×10−8 to claim evidence of a significant association.

GWASs of the two subtypes of gout, ROL gout and RUE gout
(see online supplementary figure S1), were also performed, fol-
lowed by replication studies with a custom SNP chip (see online
supplementary figure S3) and a subsequent meta-analysis. As
described previously,2 10 and shown in online supplementary
figure S1 and supplementary methods, ROL gout and RUE gout
are defined when patients’ urinary urate excretion is over
25.0 mg/hour/1.73 m2 (600 mg/day/1.73 m2) and patients’ urate
clearance (urate clearance/creatinine clearance ratio, FEUA) is
under 5.5%, respectively. For GWASs of gout subtypes, 1178
cases were classified as ROL gout (560 cases at GWAS stage and
618 cases at replication stage) and 1315 cases as RUE gout (619
cases at GWAS stage and 696 cases at replication stage), respect-
ively (see online supplementary table S2).

A replication study with independent Caucasian and New
Zealand (NZ) Polynesian sample sets was also performed to val-
idate the genetic risk loci identified in the present study. This
replication was done in a data set recruited from New
Zealand13 and from Europe by the Eurogout Consortium14

comprising 1319 male cases and 514 male controls of European
ancestry and 971 male cases and 565 male controls of NZ
Polynesian ancestry. SNPs were genotyped by an allelic discrim-
ination assay (TaqMan) with a LightCycler 480 Real-Time PCR
(RT-PCR) System (Roche Applied Science, Indianapolis,
Indiana, USA). Detailed information of clinical characteristics
and genetic analysis is shown in online supplementary methods
and tables S1–S3.

Statistical analyses
The inverse-variance fixed-effects model was used for meta-
analysis. In the meta-analysis with Japanese, Caucasian and NZ
Polynesian populations or in the presence of heterogeneity (phet
< 0.05 or I2 > 50%), we implemented the DerSimonian and
Laird random-effects model for meta-analysis.15 For the replica-
tion analysis with Caucasian and NZ Polynesian sample sets,
ORs were adjusted by age and ancestral group. All the
meta-analyses were performed using the R V.3.1.1 and 3.2.2 (R
Development Core Team. R: a language and environment for
statistical computing. Vienna: R. Foundation for Statistical

Computing, 2006) with meta package. All calculations of linkage
disequilibrium (LD, measured in r2) were conducted using the
Japanese population. The detailed information for statistical ana-
lyses is described in online supplementary methods.

Functional and localisation analyses
Urate transport analysis of NIPAL1 was performed with an
oocyte expression system16 17 with high potassium (HK) buffer
or HK buffer without magnesium. For immunohistochemical
analysis, the human kidney sections (3 μm) incubated with anti-
human NIPAL1 antibody (1:50) (LS-C164878; LifeSpan
BioSciences, Washington, USA) or with anti-human FAM35A
antibody (1:75) (HPA036582; Sigma-Aldrich, Missouri, USA)
were used, and then visualised with diaminobenzidine
(0.8 mM).18 19 Intracellular localisation of NIPAL1 was also
studied in Xenopus oocytes and Madin-Darby canine kidney II
(MDCKII) cells. Detailed information for the functional and
localisation analyses is described in online supplementary
methods.

RESULTS
GWAS of all gout and its subtypes
In addition to the GWAS stage previously performed with 945
patients with clinically defined gout and 1213 controls, all
Japanese males10 (see online supplementary figure S4), the repli-
cation stage for all cases of gout was carried out by genotyping
1961 SNPs (see online supplementary figure S3 and
supplementary note) in a further 1396 male patients and 1268
male controls, and a meta-analysis then conducted (see online
supplementary figure S2). Furthermore, GWASs of two subtypes
of gout, ROL gout (figure 1A) and RUE gout (figure 1B), were
also performed in the present study, followed by replication
studies with a custom SNP chip and a subsequent meta-analysis.

Meta-analysis of both the GWAS and the replication
study for all gout cases (table 1) identified eight loci which
showed evidence for associations at the genome-wide signifi-
cance level: rs3114020 of ABCG2 (pmeta=8.66×10−35; OR=
1.89), rs1014290 of SLC2A9 (pmeta=6.50×10−26; OR=1.57),
rs4766566 of CUX2 (pmeta=4.03×10−20; OR=1.51), rs2285340
of SLC22A12 (pmeta=4.61×10−11; OR=1.40), rs1260326
of GCKR (pmeta=7.19×10−11; OR=1.31), rs1165176 of
SLC17A1 (pmeta=1.47×10−9; OR=1.42), rs11758351 of
HIST1H2BF-HIST1H4E (pmeta=1.63×10−8; OR=1.40) and
rs4073582 of CNIH-2 (pmeta=3.56×10−8; OR=1.58). Among
these eight loci, SLC22A12, SLC17A1 and HIST1H2BF-
HIST1H4E (figure 2A–C) were first identified as gout-risk loci
by the GWAS approach at the genome-wide significance level.
SLC17A1 was identified here by the GWAS approach for the
first time, while Hollis-Moffatt et al20 reported that rs1183201,
another SNP of SLC17A1, is strongly associated with gout in
Caucasians and NZ Polynesian sample sets by the candidate
gene approach. While rs11758351 of HIST1H2BF-HIST1H4E
is located 374 kb downstream from rs1165176 of SLC17A1,
they are not in LD with each other (r2=0.03), demonstrating
them to be independent susceptibility loci for gout. There
was also a significant signal from rs2532941 of VARS2
(pmeta=2.74×10−8; OR=1.32), which is located downstream of
HIST1H2BF-HIST1H4E by 4.7 Mb, and is reported to be asso-
ciated with mitochondrial respiration.21 Since rs2532941 of
VARS2 showed mild LD with rs11758351 of HIST1H2BF-
HIST1H4E (r2=0.37), its significance did not remain for the
GWAS stage samples after adjustment with rs11758351 of
HIST1H2BF-HIST1H4E (p=0.08), or with both rs1165176 of
SLC17A1 and rs11758351 (p=0.11).
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For GWASs of gout subtypes, 1178 cases were classified as
ROL gout (560 cases at GWAS stage and 618 cases at replica-
tion stage) and 1315 cases as RUE gout (619 cases at GWAS
stage and 696 cases at replication stage), respectively (see
online supplementary table S2). The meta-analysis of a GWAS
of the ROL gout subtype and a replication study revealed
significant SNPs in the following four loci: rs2728104 of
ABCG2 (pmeta=5.08×10−33; OR=1.84), rs4766566 of CUX2
(pmeta=8.14×10−17; OR=1.59), rs3733589 of SLC2A9
(pmeta=2.25×10−13; OR=1.47) and rs1260326 of GCKR
(pmeta=5.39×10−9; OR=1.35).

Another subtype analysis, that is, the meta-analysis of a GWAS
of RUE gout and a replication study (table 1) demonstrated sig-
nificant SNPs in the following seven loci: rs1014290 of SLC2A9
(pmeta=8.71×10−25; OR=1.69), rs1871744 of ABCG2 (pmeta=
2.49×10−22; OR=1.81), rs4766566 of CUX2 (pmeta=2.17×
10−18; OR=1.60), rs2285340 of SLC22A12 (pmeta=8.79×
10−10; OR=1.44), rs780094 of GCKR (pmeta=1.62×10−9;
OR=1.35), rs11733284 of NIPAL1 (pmeta=1.13×10−8;
OR=1.34) and rs7903456 of FAM35A (pmeta=4.29×10−8;
OR=1.34). The latter two loci, NIPAL1 and FAM35A, were
novel risk loci by the GWAS of the RUE gout subtype (figure 2D,
E). In total, 10 loci were identified from the present GWAS
of gout and its subtypes (table 1 and see online supplementary
table S4).

Of the seven loci newly identified by GWAS of the RUE gout
subtype, only NIPAL1 and FAM35A had not been implicated
previously in the GWASs of SUA levels or gout. Analysis with
data from previously reported GWAS22 of SUA in Caucasians
revealed the association with NIPAL1 and FAM35A loci (see
online supplementary figure S5).

Urate transport analysis of NIPAL1 transporter
NIPAL1 and FAM35A were revealed to be associated with RUE
gout in the present study. NIPAL1 has been reported to be a
magnesium transporter,23 which has nine transmembrane
domains (figure 3A), whereas FAM35A is predicted to be a
soluble protein. In this context, we hypothesised that NIPAL1
could be involved in the regulation of urate handling as a renal
urate efflux transporter. However, our functional analysis using
Xenopus oocytes did not show urate transport via NIPAL1,
regardless of the presence of magnesium (figure 3B).

Localisation analysis of NIPAL1 and FAM35A
By immunohistochemical analysis, NIPAL1 and FAM35A
showed cytosolic expression in the renal distal tubules of human
kidney (figure 4A, B). Both proteins were also weakly detected
in the cytoplasm of collecting ducts. NIPAL1-expressing
Xenopus oocytes and MDCKII cells also showed intracellular
localisation of NIPAL1 (see online supplementary figure S6).

Replication study of all gout cases with Caucasian and
Polynesian populations
A replication study for the discovered loci (SLC22A12,
SLC17A1, HIST1H2BF-HIST1H4E, NIPAL1 and FAM35A) was
performed for all gout cases with males drawn from Caucasian
(1319 cases and 514 controls) and NZ Polynesian populations
(971 cases and 565 controls). Because a gain-of-function SNP of
SLC17A1, rs1165196 (Ile269Thr),16 was in strong LD with
rs1165176 (r2=0.99), we performed the following analyses
using rs1165196, assuming that the causal SNP in this locus was
rs1165196 of SLC17A1. Among these five loci, the

Figure 1 Manhattan plots of GWASs
of subtypes of gout. Manhattan plots
of GWASs of (A) ROL gout subtype and
(B) RUE gout subtype. X-axis shows
chromosomal positions. Y-axis shows
−log10 p values. The upper and lower
dotted lines indicate the genome-wide
significance threshold (p=5.0×10−8)
and the cut-off level for selecting
single nucleotide polymorphisms for
replication study (p=0.001),
respectively. GWAS, genome-wide
association study; ROL, renal overload;
RUE, renal underexcretion.
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Figure 2 Regional association plots of five discovered loci. Three loci were revealed to exceed the genome-wide significance level from the
meta-analysis with all gout cases, and two loci with renal underexcretion (RUE) gout cases. The highest association signal in each panel is located
on (A) SLC22A12, (B) SLC17A1 and (C) HIST1H2BF-HIST1H4E for all gout cases, and (D) NIPAL1 and (E) FAM35A for RUE gout cases. The region
within 250 kb from the single nucleotide polymorphism (SNP) indicating the lowest p value is shown. (Top panel) Plots of −log10 p values for the
test of SNP association with gout in the genome-wide association study stage. The SNP showing the lowest p value in the meta-analysis is depicted
as a pink diamond. Other SNPs are colour-coded according to the extent of linkage disequilibrium (measured in r2) with the SNP showing the lowest
p value. (Middle panel) Recombination rates (centimorgans per Mb) estimated from HapMap Phase II data are plotted. (Bottom panel) RefSeq
genes. Genomic coordinates are based on NCBI human genome reference sequence build 37.

Figure 3 Functional analysis of
NIPAL1 transporter. (A) The topological
model of the NIPAL1 transporter.
NIPAL1 is predicted to have nine
transmembrane regions. The amino
acid sequences of NIPAL1 were
obtained from GenBank (accession
code NM_207330). (B) Urate transport
analysis of NIPAL1. SLC2A9 (also
known as GLUT9) is a renal urate
transporter and is used for a positive
control for the urate transport analysis.
In contrast to SLC2A9, urate transport
via NIPAL1 was not detected,
regardless of the presence of
magnesium. Data are expressed as
mean±SEM (n=8). Statistical analyses
for significant differences were
performed according to Student’s
t-test. (**p<0.01; N.S., not
significantly different as compared
with control.).
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meta-analysis of those populations for all gout revealed a
significant association with rs7903456 of FAM35A
(pmeta=9.72×10−3; OR=1.17) (table 2). Although SLC17A1
did not show significance (pmeta=0.119) in the present study of
those populations (table 2), a previous paper20 revealed a signifi-
cant association of SLC17A1 with gout in Caucasian and NZ
Polynesian sample sets, indicating the necessity of further repli-
cation studies to investigate the ancestral differences in the sig-
nificance of other genetic loci including SLC17A1. Genotyping
the CUX2 and CNIH-2 loci, which were identified in both our
present and previous GWASs of Japanese,10 was also performed,
and the CUX2 locus was replicated successfully for the first time
in other populations (see online supplementary table S5). The
results of further association analyses and expression quantita-
tive trait locus (eQTL) analysis are shown in online
supplementary note and tables S6 and S7. Significant effects on
FEUA were detected in NIPAL1, FAM35A and SLC22A12 loci in
the Japanese population, and were also observed at SLC17A1 in
NZ Polynesian population.

A further meta-analysis of all gout cases with Japanese,
Caucasian and NZ Polynesian populations was performed for
NIPAL1 and FAM35A, which were at a genome-wide signifi-
cance level in the Japanese population only for the RUE gout
subtype, and not for all gout cases. rs11733284 of NIPAL1 was
not associated with all gout (pmeta=0.16; OR=1.11), suggesting
the presence of ancestral differences in genetic effects of this
locus, or a subtype-specific effect. On the other hand,
rs7903456 of FAM35A showed an association with all gout at a
genome-wide level of significance (pmeta=3.58×10−8;
OR=1.23) (figure 5), indicating that rs7903456 is a susceptibil-
ity locus for all gout as well as the RUE gout subtype.

Figure 4 Localisation analysis of NIPAL1 and FAM35A in the human
kidney. Cytosolic expression was detected strongly in distal tubules and
weakly in collecting ducts in human kidney for (A) NIPAL1 protein and
(B) FAM35A protein. Bar=100 μm.
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Meta-analysis of all gout for the other three loci (SLC22A12,
SLC17A1 and HIST1H2BF-HIST1H4E) was also performed
with Japanese, Caucasian and NZ Polynesian populations as
shown in online supplementary figure S7. rs11758351 of
HIST1H2BF-HIST1H4E did not show a significant association
with gout (pmeta=0.40; OR=1.12). rs2285340 of SLC22A12
and rs1165196 of SLC17A1 did not reach a genome-wide level
of significance (pmeta=2.47×10−4; OR=1.31; and pmeta=
1.28×10−3; OR=1.25, respectively) partly due to statistical
fluctuation in relatively small sample sets, although the effects
were consistently in the same direction.

DISCUSSION
With clinically defined gout cases, we previously performed a
GWAS10 and revealed that ABCG2, SLC2A9, MYL2-CUX2,
GCKR and CNIH-2 were associated with gout at a genome-wide
significance level (see online supplementary figure S4). A more
recent GWAS by Li et al24 with clinically ascertained gout cases
revealed three novel loci (BCAS3, RFX3 and KCNQ1) in Han
Chinese. In the present study, we performed a gout follow-up
study focused on loci not reaching the genome-wide level of sig-
nificance in the previous GWAS,10 genotyping 1961 SNPs in an
additional 1396 cases and 1268 controls. We revealed a total of
eight loci to be associated with all gout cases in Japanese males
(table 1). Among them, three loci (SLC22A12, SLC17A1 and
HIST1H2BF-HIST1H4E) were first identified as gout risk loci at
a genome-wide significance level by the present GWAS
approach.

Both SLC22A12 and SLC17A1 encode urate transporters at
the apical side of the renal proximal tubule16 25 (see online
supplementary figure S8) and are reportedly associated with
SUA level in humans by previous GWASs of SUA.12 22 26 27

Therefore, it is reasonable that SNPs around these loci would
display significant associations with gout or sequelae of hyperur-
icaemia (see also online supplementary note for detail).

The HIST1H2BF and HIST1H4E genes encode histone 1
H2bf and histone 1 H4e, respectively, both of which have a role
of binding DNA to form a chromatin structure. Both are
replication-dependent histone proteins with expression depend-
ent on cell cycle. Therefore, functional SNPs in this locus might
affect the stability of the chromatin structure, varying the cell
cycle, cell amount or reaction to inflammation by changing the
expression level of histones in the kidney and/or intestine. Since
it is also possible that rs11758351 is a surrogate marker near
these histone genes, further studies concerning this locus will be
necessary.

In this study, we first performed GWASs of gout subtypes,
that is, RUE gout and ROL gout (figure 1). From the results of
meta-analysis for GWASs of both ROL gout and RUE gout, four
shared loci of GCKR, SLC2A9, ABCG2 and CUX2 were identi-
fied at a genome-wide significance level, showing the import-
ance of these loci for the pathogenesis of both gout subtypes.
Especially for RUE gout, three more loci, SLC22A12, NIPAL1
and FAM35A, were identified to be associated at a genome-wide
significance level. As described above, it is compatible for
SLC22A12 to be associated with RUE gout, because SLC22A12
(like SLC2A9) encodes a renal urate reabsorption
transporter.25 28

Of note, NIPAL1 and FAM35A were identified as novel loci
by performing GWAS of the RUE gout subtype. Associations
with gout and SUA have never been previously reported with
NIPAL1 and FAM35A. Furthermore, to our knowledge, there is
no study reporting an association between any diseases and
NIPAL1 or FAM35A.

NIPAL1, also known as NIPA3, is reportedly expressed on the
membrane of some organs including kidney, and to be a magne-
sium transporter,23 as another magnesium transporter NIPA2.23

Because NIPAL1 was associated with RUE gout (ie, gout with
renal urate underexcretion), we hypothesised that NIPAL1 is a
urate transporter in the human kidney. However, our functional
study did not show urate transport via NIPAL1, regardless of
the presence of magnesium (figure 3B). Moreover, localisation
to the membrane was not detected for NIPAL1 protein, which
was mainly expressed within the distal tubules of human kidney,
as revealed by immunohistochemical analysis (figure 4A). A
similar result was obtained in confocal microscopic observation,
with NIPAL1-expressing oocytes showing intracellular localisa-
tion of NIPAL1 protein (see online supplementary figure S6).
These findings suggest that NIPAL1 is not a urate transporter
and that it might be involved in the indirect regulation of urate
transport kinetics. Nevertheless, recent studies have revealed
associations between hyperuricaemia and magnesium intake,29

serum magnesium level30 and magnesium excretion.31 Together
with previous reports, our findings support the hypothesis that
there could be some relationship between gout and magnesium
handling via magnesium transporters including NIPAL1, and
that the present study could well provide new insights into the
genetic background of urate and magnesium handling in
patients with gout/hyperuricaemia.

FAM35A is ubiquitously expressed in organs including the
kidney, and our immunohistochemical analysis of human kidney
also revealed cytosolic immunoreactivity of the FAM35A
protein mainly in the distal tubules (figure 4B). Our findings
from FAM35A and NIPAL1 suggest the involvement of the
distal nephron in gout progression as well as dysfunction in
urate handling in humans (see online supplementary figure S9).
To date, the molecular function of FAM35A is totally unknown.
Although further studies are necessary to confirm this, it is pos-
sible that genes near FAM35A including GLUD1 (figure 2E)

Figure 5 Forest plots for all gout among Japanese, Caucasian and
New Zealand (NZ) Polynesian populations. Although rs11733284 of
NIPAL1 (A) did not show significant association with all gout,
rs7903456 of FAM35A (B) revealed an association with all gout at a
genome-wide significance level (pmeta=3.58×10

−8; OR=1.23). GWAS,
genome-wide association study.
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have some relationship with gout (see also online
supplementary note for details).

In addition to studying the Japanese population, we per-
formed a replication study with male Caucasian and NZ
Polynesian sample sets for the five newly discovered loci. Since
they were not divided into subtypes, further evaluations by
meta-analysis were conducted with all gout groups. While other
loci were not replicated, rs7903456 of FAM35A was replicated
with a significant association with gout (table 2). CUX2, which
was reported by both our present and previous gout GWAS in
Japanese,10 was also replicated in these sample sets (see online
supplementary table S5).

A meta-analysis of all gout with Japanese, Caucasian and NZ
Polynesian populations for these five SNPs revealed FAM35A to
be associated with all gout at the genome-wide significance level
(figure 5B), and that rs2285340 of SLC22A12 and rs1165196
of SLC17A1 showed a significant association but did not reach a
genome-wide significance level (see online supplementary figure
S7). rs11758351 of HIST1H2BF-HIST1H4E and rs11733284
of NIPAL1 were not associated by this meta-analysis, although
these loci showed a genome-wide significant association in the
Japanese population. Since this might be due to the differences
in LD structure among these populations, a replication analysis
with East Asian populations will be necessary for these loci.
rs2285340 of SLC22A12 was monomorphic (only G allele) in
Caucasians and not associated with NZ Polynesians. Therefore,
replication studies of this locus in East Asian populations would
also be insightful for future analysis. Although the underlying
molecular mechanism of gout by FAM35A is unknown, this
locus seems to have a common pathophysiological risk of gout
for Japanese, NZ Polynesians and Caucasians.

In summary, we performed GWASs of all gout as well as gout
subtypes and identified five loci in addition to the five loci that
we reported previously.10 Furthermore, the FAM35A locus
showed an association with all gout by meta-analysis among the
Japanese, Caucasian and NZ Polynesian sample sets at a
genome-wide level of significance. Together with their expres-
sion in the renal distal tubules, the identification of NIPAL1 and
FAM35A as gout loci suggests the involvement of the distal
nephron (see online supplementary figure S9) in the urate hand-
ling of the human kidney and in the pathogenesis of gout/hyper-
uricaemia. These findings could well provide a clue leading to a
novel concept for the therapeutic target of gout (see online
supplementary figure S10).
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