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Abstract

To boost the power of classifiers, studies often increase the size of existing samples through the 

addition of independently collected data sets. Doing so requires harmonizing the data for 

demographic and acquisition differences based on a control cohort before performing disease 

specific classification. The initial harmonization often mitigates group differences negatively 

impacting classification accuracy. To preserve cohort separation, we propose the first model 

unifying linear regression for data harmonization with a logistic regression for disease 

classification. Learning to harmonize data is now an adaptive process taking both disease and 

control data into account. Solutions within that model are confined by group cardinality to reduce 

the risk of overfitting (via sparsity), to explicitly account for the impact of disease on the inter-

dependency of regions (by grouping them), and to identify disease specific patterns (by enforcing 

sparsity via the l0-‘norm’). We test those solutions in distinguishing HIV-Associated 

Neurocognitive Disorder from Mild Cognitive Impairment of two independently collected, 

neuroimage data sets; each contains controls and samples from one disease. Our classifier is 

impartial to acquisition difference between the data sets while being more accurate in diseases 

seperation than sequential learning of harmonization and classification parameters, and non-

sparsity based logistic regressors.

1 Introduction

Popular for improving the power of classifiers is to expand application from a single data set 

(Fig. 1(a)) to multiple, independently collected sets of the same disease (Fig. 1(b)) [1]. To 

analyze across multiple sets, neuroimage studies generally first harmonize the data by, for 

example, regressing out demographic factors from MRI measurements and then train the 

classifier to distinguish disease from control samples [2]. However, harmonization might 

mitigate group differences making classification difficult (such as in Fig. 2). To improve 

classification accuracy, we propose the first approach to jointly learn how to harmonize MR 

image data and classify disease. Harmonization relies on both controls and disease cohorts 

to reduce differences in the image based measurements due to acquisition differences 

between sets while preserving the group separation investigated by the classifier. We 

evaluate our approach on the challenging task (Fig. 1(c)) of being trained on two data sets 
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differing in their acquisition and diseases they sample, and tested on accurately 

distinguishing the two diseases while being impartial to acquisition differences, i.e., the 

controls of the two sets.

Training of our approach is defined by an energy function that combines a linear 

harmonization model with a logistic regression classifier. Minimizing this function is 

confined to group cardinality constrained solutions, i.e., labeling is based on a small number 

of groups of image scores (counted via the l0-‘norm’). Doing so reduces the risk of 

overfitting, accounts for inter-dependency between regions (e.g., bilateral impact of 

diseases), and identifies disease distinguishing patterns (defined by non-zero weights of 

classifiers) that avoid issues of solutions based on relaxed sparsity constraints [3]. Inspired 

by [4], our method uses block coordinate descent to find the optimal parameters for 

harmonizing the two data sets and correctly labeling disease samples while being indifferent 

to control cohorts (i.e., acquisition differences). During testing, we use those parameters to 

harmonize the image scores before performing classification ensuring that the data set 

associated with a subject is not part of the labeling decision.

Using 5-fold cross-validation, we measure the accuracy of our method on distinguishing 

HIV-Associated Neurocognitive Disorder (HAND) from Mild Cognitive Impairment (MCI) 

of two independently collected data sets; each set contains controls and samples of one 

disease only. Distinguishing HAND from MCI is clinically challenging due to similarity in 

symptoms and missing standard protocols for assessing neuropsychological deficits [5]. Not 

only is our classifier indifferent to the controls from both groups but is also significantly 

more accurate in distinguishing the two diseases than the conventional sequential 

harmonization and classification approach and non-sparsity based logistic regression 

methods.

2 Jointly Learning of Harmonization and Classification

Let a data set consists of set SA of controls and samples with disease A, and an 

independently collected set SB of controls and samples of disease B. The four subsets are 

matched with respect to demographic scores, such as age. Each sample s of the joint set is 

represented by a vector of image features xs and a label ys, where ys = −1 if s ∈ SA and ys = 

+1 for s ∈ SB. The acquisition differences between SA and SB are assumed to linearly impact 

the image features. To extract disease separating patterns from this joint set, we review the 

training of a sequential model for data harmonization and classification, and then propose to 

simultaneously parameterize both tasks by minimizing a single energy function.

2.1 Sequential Harmonization and Classification

Training the linear regression model for data harmonization results in parameterizing matrix 

U so that it minimizes the difference (with respect to the l2-norm ‖·‖2) between the inferred 

values U · [1 ys]⊤ (1 is the bias term of the linear model) and the raw image scores xs across 

nC controls of the joint data set, i.e.,
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(1)

A group sparsity constrained logistic regression classifier is trained on the residuals 

, i.e., harmonized scores, across samples ‘s’ of two groups, which 

are nD samples of the two disease cohorts. Note, classification based on the inferred values 

 is uninformative as all scores of a region are mapped to two values. Now, let the 

logistic function be θ(α) := log(1+exp(−α)), the weight vector w encode the importance of 

each score of rs and v ∈ ℝ be the label offset, then the penalty (or label) function of the 

classifier is defined by

(2)

The search for point  minimizing  often has to be limited so that  conforms 

to disease specific constraints, such as the bilateral impact of HAND or MCI on individual 

regions. These constraints can be modeled by group cardinality. Specifically, every entry of 

w is assigned to one of nG groups . The search space  is composed of 

weights where the number of groups with non-zero weight entries are below a certain 

threshold k ∈ ℕ, i.e.,  with ‖·‖0 being the l0-‘norm’. 

Finally, the training of the classifier is fully described by the following minimization 

problem

(3)

which can be solved via penalty decomposition [4, 6]. Note, that Eq. (3) turns into a sparsity 

constrained problem if each group gi is of size 1. Furthermore, setting ‘k = nG’ turns Eq. (3) 

into a logistic regression problem. Finally, Eq. (3) can distinguish a single disease from 

controls by simply replacing ys in Eq. (2) with a variable encoding assignment to cohorts 

instead of data sets.

2.2 Simultaneous Harmonization and Classification

We now determine  for a single minimization problem composed of the linear 

(harmonization) and logistic (classification) regression terms, i.e.,

(4)
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Algorithm 1

Joint Harmonization and Classification.

1:

Set ϱ = 0.1,  (according to [4]) and U′ = 0, w′ = 0, q′ = 0, v′ = 1

2: Repeat

3:  Repeat (Block Coordinate Descent)

4:   U″ ← U′, w″ ← w′, q″ ← q′, v″ v′

5:   U′ ←argminU (1 − λ)lD (U, v′, q′) + λhC (U) (via Gradient Descent)

6:

    (via Gradient Descent)

7:   Update w′ by

   Sort groups gj(q′) so that 

   Define  to be the set of indices of q′ associated with groups  if  ∈  and 0 otherwise.

8:

 Until 

9:  ϱ ← σ · ϱ

10: Until ‖w′ − q′ ‖max <εP.

where λ ∈ (0, 1). Note, the model fails to classify when λ = 1 (  and  are undefined) or 

harmonize when λ = 0 (entries of  are undefined). Motivated by [4], we simplify 

optimization by first parameterizing the classifier with respect to the ‘unconstrained’ vector 

q before determining the corresponding sparse solution . The solution to Eq. (4) is 

estimated by iteratively increasing ϱ of

(5)

until the maximum of the absolute difference between elements of wϱ and qϱ is below a 

threshold, i.e., ‖wϱ−qϱ‖max<εP. (Uϱ,vϱ,wϱ,qϱ) are determined by block coordinate descent 

(BCD). As outlined in Alg. 1, let (U′, v′, w′, q′) be estimates of (Uϱ, vϱ, wϱ, qϱ), then U′ 
is updated by solving Eq. (5) with fixed (v′, w′, q′):

(6)

As this minimization is over a convex and smooth function, Eq. (6) is solved via gradient 

descent. Note, that determining U′ is equivalent to increasing the separation between the 

two disease groups by minimizing lD(·, v′, q′) while reducing the difference between the 

two control groups by minimizing hC(·).
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Next, BCD updates v′ and q′ by keeping (U′, w′) fixed in Eq. (5), i.e.,

(7)

This minimization problem is defined by a smooth and convex function. Its solution is thus 

also estimated via gradient descent. Finally, w′ is updated by solving Eq. (5) with fixed (U′, 

v′, q′), i.e.,

(8)

As shown in [4, 6], the closed form solution of Eq. (8) first computes ‖gi(q′)‖2 for each 

group i and then sets w′ to the entries of q′, who are assigned to the k groups with the 

highest norms. The remaining entries of w′ are set to 0. The procedures (6)~(8) are repeated 

until the relative changes of (U′, v′, w′, q′) between iterations are smaller than a threshold 

εB. (Uϱ, vϱ, wϱ, qϱ) is updated with the converged (U′, v′, w′, q′), ϱ is increased and 

another BCD loop is initiated until wϱ and qϱ converge towards each other (see Alg. 1 for 

details).

Fig. 2 showcases the differences between sequential and joint harmonization and 

classification. Two synthetic data sets consist of a control and disease cohort, where the raw 

scores for each cohort are 20 random samples from a Gaussian distribution with the 

covariance being the identity matrix multiplied by 0.01. The mean of the Gaussian for 

Disease A of Set I (blue) is (1.3,2) resulting in samples that are somewhat separated from 

those of Disease B of Set II (mean=(1.5,2), red). The difference in data acquisition between 

the two sets is simulated by an even larger separation of the means between the two control 

groups (Set I: mean=(0.9,1), green; Set B: mean=(1.2,1), black). The Sequential method (see 

Sec. 2.1 without sparsity) harmonizes the scores so that the classifier assigns the controls to 

one set, i.e., the separating plane (black line) is impartial to acquisition differences. This 

plane fails to perfectly separate the two disease cohorts as the cohorts are ‘pushed’ together 

with the mean of Disease B being now to the right of the mean of Disease A. Higher 

accuracy in disease classification is achieved by our joint model (omitting sparsity) with λ = 

0.8. Comparing this plot to the results with λ = 0.5 shows that as λ decreases the emphasis 

on separating the two disease increases as intended by Eq. (6). The classifier is still impartial 

to acquisition differences and perfectly labels the samples of the two disease cohort. In 

summary, the joint model enables data harmonization that preserves group differences, 

which was not the case for the sequential approach.

3 Distinguishing HAND from MCI

We tested our method on a joint set of two independently collected data sets: the ‘UHES’ set 

[7] contained cross-sectional MRIs of 15 HAND cases and 21 controls while the ‘ADNI’ set 

contained MRIs of 20 MCIs and 18 controls. The 4 groups were matched with respect to sex 

and age. Each MRI was acquired on a 3T Siemens scanner (with the two sets having 
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different acquisition protocols) and was processed by [8] resulting in 102 regional volume 

scores. We assigned those scores to (nG = 52) groups to account for the bilateral impact of 

MCI and HAND on both hemispheres. We now review our experimental setup and results 

highlighting that jointly learning harmonization and classification results in findings that are 

indifferent to the two control cohorts and more accurate in distinguishing the two disease 

groups compared to alternative learning models.

To measure the accuracy of our method, we used 5 fold-cross validation with each fold 

containing roughly 20% of each cohort. On the training sets, we used parameter exploration 

to determine the optimal group cardinality k ∈ {1, 2, …, 10} and weighing λ ∈ {0.1, 0.2, 

…, 0.9}. Across all folds and settings, our algorithm converged within 5 iterations while 

each BCD optimization converged within 500 iterations. For each setting, we then computed 

the disease accuracy of the classifier by separately computing the accuracy for each cohort 

(MCI and HAND) to be assigned to the right set (UHES or ADNI) and then averaging the 

scores to consider the imbalance of cohort sizes. We determined the control accuracy 

repeating those computations with respect to the two control groups. Since higher control 

accuracy infers worse harmonization, an unbiased control accuracy, i.e., around 50%, 

coupled with a high disease accuracy was viewed as preferable. Note, an unbiased control 

accuracy only qualifies the harmonization in that the remaining acquisition differences do 

not impact the separating plane (or weights ) of the classifier. For each training set, we 

then chose the setting (λ, k) with corresponding weights  and harmonization parameters 

that produced the largest difference between the two accuracy scores. This criteria selected a 

unique setting for 2 folds, 2 settings for 2 folds, and 3 settings for 1 fold.

On the test set, we computed the harmonized scores (residuals) of all samples for each 

selected setting. We then hid the subjects’ data set associations from the ensemble of 

selected classifiers by applying the residuals to classifiers parameterized by the 

corresponding weight settings. Based on those results, we computed control and disease 

accuracy as well as the corresponding p-values via the Fisher exact test [9]. We viewed p < 

0.05 as significantly more accurate than randomly assigning samples to the two sets. An 

ensemble of classifiers was viewed as informative, if separating HAND from MCI resulted 

in a significant p-value and a non-significant one for controls.

We repeated the above experiment for the sequential harmonization and classification 

approach of Section 2.1, called SeqGroup, to show the advantages of our joint learning 

approach, called JointGroup. To generalize our findings about joint learning of 

harmonization and classification parameters to non-sparsity constrained models, we also 

tested the approach omitting the group sparsity constraint, i.e., k = 52. JointNoGroup refers 

to the results of the corresponding joint method and SeqNoGroup to the sequential results.

Table 1 shows the accuracy scores and p-values of all implementations listed according to 

the difference between disease and control accuracy. The method with the smallest 

difference, SeqNoGroup, was the only approach recording a significant control accuracy 

score (68.4%, p = 0.024). The corresponding separating plane was thus not impartial to 

acquisition difference so that the relatively high disease accuracy (82.5%) was insignificant. 

The next approach, SegGroup, obtained non-significant accuracy scores for controls (64.6%) 

Zhang et al. Page 6

Med Image Comput Comput Assist Interv. Author manuscript; available in PMC 2017 July 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



indicating that the group sparsity constrain improved generalizing the results from the 

relatively small training set to testing. The difference between control (52.8%) and disease 

accuracy (83.3%) almost doubled (30.5%) for the joint approach JointNoGroup. As reflected 

in Fig. 2, learning data harmonization separated from classification does not generalize as 

well as the joint approach, who harmonizes data so that differences between disease groups 

are preserved. Confirming all previous findings, the overall best approach (i.e., control and 

disease accuracy differ most) is our proposed JointGroup approach achieving a disease 

accuracy of 90%.

The group sparsity constraint aided in separating diseases and identified patterns of regions 

(i.e., non-zero weights ) impacted by either MCI or HAND (or HIV). Each column of Fig. 

3 shows the largest, unique pattern associated with a training set. For those training sets that 

selected multiple patterns (i.e.,  settings), patterns with less regions were always included 

in the largest pattern. The precentral gyrus, cerebellum VIII, and lateral ventricle were parts 

of all patterns. HIV is known to impact the cerebellum [10] and accelerated enlargement of 

ventricles is linked to both HIV [11] and MCI [12]. These findings indicate that the 

extracted patterns are informative with respect to MCI and HAND (and HIV), which 

requires an in-depth morphemic analysis for confirmation.

4 Conclusion

We proposed an approach that simultaneously learned the parameters for data harmonization 

and disease classification. The search for the optimal separating plane was confined by 

group cardinality to reduce the risk of overfitting, to explicitly account for the impact of 

disease on the inter-dependency of regions, and to identify disease specific patterns. On 

separating HAND from MCI samples of two disease specific data sets, our joint approach 

achieved better classification accuracy than the non-sparsity based model and sequential 

approaches.
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Fig. 1. 
Examples for classifying data: (a) Classification based on a single set, (b) separating healthy 

and disease based on multiple sets requiring harmonization, and (c) part two disease groups 

based on harmonizing controls of disease specific data sets.
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Fig. 2. 
Impact of harmonization on classification (black line) of two synthetic sets. Compared to the 

raw scores, the Sequential approach mitigated differences between the two disease groups by 

‘pushing’ them together. Our joint model with λ = 0.5 is the only approach that is indifferent 

to controls and correctly labels all disease cases.
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Fig. 3. 
Each column shows the largest, unique pattern extracted by JointGroup on one of the 5 

training sets. Identified regions are impacted by HAND, HIV, or MCI.
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