Skip to main content
. 2017 Jul 26;49:59. doi: 10.1186/s12711-017-0335-0

Table 2.

Number of eigenvalues explaining 90, 95 or 98% of the variance for genomic relationship matrices

Option Number of eigenvalues
100 QTN 1000 QTN
90% eigenvalue 95% eigenvalue 98% eigenvalue 90% eigenvalue 95% eigenvalue 98% eigenvalue
60 k 8496 12,185 16,978 8502 12,192 16,984
60 K-BL5 9553 13,787 19,111 9560 13,796 19,120
60 K-GWAS3 4571 7537 13,139 4757 7704 13,230
60 K-QTN-BL5 9553 13,788 19,112 9563 13,806 19,136
60 k-QTN-BL5-TRUEd 76 1803 5093 469 1942 5140
60 k-QTN10-BL5-TRUEa,b,d 4054 8972 15,886 7482 13,320 19,918
60 K-QTN-BL5-GWAS3 4082 7084 12,880 4627 7594 13,186
QTN 88 94 98 793 872 930
QTN-BL5c 94 122 7639 863 980 7925
QTN-BL1c 89 95 127 806 888 995

Options used to construct the genomic relation matrix: 60 k non-coding SNPs (60 k), all causative QTN (QTN), the top 10% causative SNPs (QTN10), blending at 5% (BL5) or 1% (BL1), weighted by the 3rd iteration of the single-step GWAS (GWAS3), and weighted by true QTN effects (TRUE) for datasets with 100 or 1000 causative QTN

a10 eigenvalues explained 76% of the variance of G for the 100-QTN scenario

b100 eigenvalues explained 71% of the variance of G

cEigenvalues after number of QTN (100 or 1000) had values approaching 0 (below 10E−4)

dSimulated true weights for QTN and a constant equal to the minimum QTN value for SNPs