Table 2.
Number of eigenvalues explaining 90, 95 or 98% of the variance for genomic relationship matrices
Option | Number of eigenvalues | |||||
---|---|---|---|---|---|---|
100 QTN | 1000 QTN | |||||
90% eigenvalue | 95% eigenvalue | 98% eigenvalue | 90% eigenvalue | 95% eigenvalue | 98% eigenvalue | |
60 k | 8496 | 12,185 | 16,978 | 8502 | 12,192 | 16,984 |
60 K-BL5 | 9553 | 13,787 | 19,111 | 9560 | 13,796 | 19,120 |
60 K-GWAS3 | 4571 | 7537 | 13,139 | 4757 | 7704 | 13,230 |
60 K-QTN-BL5 | 9553 | 13,788 | 19,112 | 9563 | 13,806 | 19,136 |
60 k-QTN-BL5-TRUEd | 76 | 1803 | 5093 | 469 | 1942 | 5140 |
60 k-QTN10-BL5-TRUEa,b,d | 4054 | 8972 | 15,886 | 7482 | 13,320 | 19,918 |
60 K-QTN-BL5-GWAS3 | 4082 | 7084 | 12,880 | 4627 | 7594 | 13,186 |
QTN | 88 | 94 | 98 | 793 | 872 | 930 |
QTN-BL5c | 94 | 122 | 7639 | 863 | 980 | 7925 |
QTN-BL1c | 89 | 95 | 127 | 806 | 888 | 995 |
Options used to construct the genomic relation matrix: 60 k non-coding SNPs (60 k), all causative QTN (QTN), the top 10% causative SNPs (QTN10), blending at 5% (BL5) or 1% (BL1), weighted by the 3rd iteration of the single-step GWAS (GWAS3), and weighted by true QTN effects (TRUE) for datasets with 100 or 1000 causative QTN
a10 eigenvalues explained 76% of the variance of for the 100-QTN scenario
b100 eigenvalues explained 71% of the variance of
cEigenvalues after number of QTN (100 or 1000) had values approaching 0 (below 10E−4)
dSimulated true weights for QTN and a constant equal to the minimum QTN value for SNPs