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Abstract

variation

Somatic evolution of malignant cells produces tumors composed of multiple clonal populations, distinguished in
part by rearrangements and copy number changes affecting chromosomal segments. Whole genome sequencing
mixes the signals of sampled populations, diluting the signals of clone-specific aberrations, and complicating
estimation of clone-specific genotypes. We introduce ReMixT, a method to unmix tumor and contaminating normal
signals and jointly predict mixture proportions, clone-specific sesgment copy number, and clone specificity of
breakpoints. ReMixT is free, open-source software and is available at http://bitbucket.org/dranew/remixt.
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Background

Chromosomal rearrangements pattern the genomes of
cancer cells. Owing to various forms of DNA repair
deficiency, such structural variations accumulate on cell
division, leading to genome instability in the life histo-
ries of cancer cells. Coupled with evolutionary selection
and clonal expansion, genomic instability and consequent
segmental aneuploidies mark expanded cell populations
within a tumour, forming important components of their
genotypes. Within each tumour, branched evolution pro-
duces mixed populations of tumour cells with ancestrally
related, but divergent chromosomal structures.

Accurate detection and quantification of genomic struc-
tural changes in a population of cancer cells as measured
by bulk, whole genome sequencing (WGS) remains a sig-
nificant computational challenge. The process of DNA
extraction from a tumour sample pools and admixes
molecules from the input material without labelling the
assignment of DNA to its parent cell. The resulting
sequencing data represent a randomly sampled subset of
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DNA fragments from the admixed pool, leaving the prob-
lem of unmixing the structural rearrangements which
mark the constituent clones in the input material. The key
difficulty of the problem is that the admixed pool dilutes
the signal of genomic rearrangements and copy number
alterations in the data, often to a level approaching that of
the experimental noise.

Rearrangements and copy number changes are intrin-
sically linked, with unbalanced rearrangements pro-
ducing changes in copy number, and loss or gain of
rearranged chromosomes resulting in segment-specific
copy changes. Rearrangement breakpoints representing
tumour-specific adjacencies can be predicted with rea-
sonable accuracy from WGS data using a variety of
tools [1-4]. However, existing methods for copy num-
ber analysis do not consider tumour-specific adjacen-
cies, and instead model segments as adjacent only
if they are adjacent in the reference genome [5-9].
This results in only partial ability to leverage the spa-
tially correlated nature of the data to borrow statistical
strength.

We propose that breakpoints provide the potential for a
more comprehensive model of genome structure. Knowl-
edge of long-range connectivity between segments of a
cancer genome provides the opportunity to simultane-
ously analyse breakpoints and copy number in a unified
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model and to reconstruct the true genomic topology. Inte-
grating both copy number and breakpoints also provides
additional information about each breakpoint: whether
the breakpoint is real or a false positive, the prevalence
of the breakpoint in the clone mixture, and the number
of chromosomes harbouring the breakpoint per clone. A
natural hypothesis then emerges: a comprehensive model
of genome structure will improve both copy number infer-
ence and biological interpretation through reconstructed
tumour genomes.

Some progress has been made on more comprehen-
sive modelling of genome structure in tumour clones.
Mahmoody et al. [10] propose an algorithm to infer
missing adjacencies in a mixture of rearranged tumour
genomes; however, they do not model copy number.
Zerbino et al. [11] propose a framework for sampling
from the rearrangement history of tumour genomes.
Oesper et al. [12] propose PREGO, a method for infer-
ring the copy number of segments and breakpoints
using a genome graph-based approach, though they do
not model normal contamination or tumour hetero-
geneity, limiting applicability of their method to real
tumour data. More recently, Li et al. [13] formulate a
Markov random field model of allele-specific copy num-
ber change and apply their method, Weaver, to sam-
ples harbouring a single tumour clone and contaminating
normal cells.

We propose ReMixT, a method for jointly inferring
clone mixture proportions, clone- and allele-specific seg-
ment copy numbers, and clone-specific breakpoint copy
number from WGS data. We formulate the problem as
a posterior inference problem on a probabilistic graph-
ical model. Our model captures the spatial correlation
both between segments that are adjacent in the reference
genome in addition to correlations between segments
adjacent in the tumour genome as nominated by pre-
dicted breakpoints. We describe an algorithmic solution
using structured variational inference. Importantly, our
algorithm is similar in complexity to a breakpoint-naive
hidden Markov model (HMM) of segment copy number.
We leverage haplotype blocks to more accurately measure
allele-specific read counts and infer allele-specific copy
number for each clone.

We assert that joint inference of all three features of
genome sequencing described above will result in more
accurate prediction compared to independent inference.
Knowledge of rearrangement breakpoints will prevent
the smoothing over of copy number changes produced
by true rearrangements. Incorrect smoothing of highly
rearranged chromosomes may have detrimental effects
on the estimation of mixing proportions and variance
parameters, as the model would be forced to compen-
sate for an unexpected increase or decrease in read
depth across the smoothed chromosomes. Finally, post
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hoc prediction of rearrangement breakpoint copy num-
ber based on segment copy number may fail if the exact
locations of associated copy number transitions are not
identified, particularly for rearrangements present in a
minor fraction of clones.

We show using simulations that a more complete model
of genome structure that includes breakpoint informa-
tion results in improved inference of mixture proportion
and segment copy number over an otherwise equivalent
HMM combined with post hoc annotation. Performance
improvements are most dramatic when the proportion
of one clone is small. We benchmark ReMixT against
TITAN [5], THetA2 [14], Battenberg [8], and CloneHD
[7] using a novel framework for generating realistic par-
tially simulated WGS datasets from an existing WGS
dataset. As further validation, we applied ReMixT to
four primary tumour samples from a patient with high-
grade serous ovarian cancer (HGSOvCa) and performed
single cell breakpoint sequencing on a subset of the
clone-specific breakpoints. Next we applied ReMixT to
a primary breast cancer sample and its derived mouse
xenograft samples, recapitulating previously described
[15] clonal dynamics identified using deep sequencing of
single nucleotide variants (SN'Vs). Finally, we analysed two
HGSOvCa cell lines, providing examples of how ReMixT-
predicted clone-specific breakpoints can phase disparate
subclonal genomic regions into partial tumour chromo-
somes towards fully reconstructing clone-specific cancer
genomes.

Results

The ReMixT model of genome structure

We consider the problem of predicting segment and
breakpoint copy number given WGS data from tumour
and matched normal samples. Assume as input a set of
alignments of uniquely mapped concordant reads and
a set of putative breakpoints predicted from discordant
reads. Given N segments indexed by n, n € {1...N}; K
breakpoints indexed by k, k € {1...K}; and assuming M
clones indexed by m, m € {1... M}, we aim to predict the
following:

1. Mixture proportions of tumour clones and normal
cells p,,

2. Clone- and allele-specific copy numbers of genomic
segments ¢y,

3. Clone-specific copy number of rearrangement
breakpoints by,

Data preprocessing

Preprocessing of tumour WGS data produces measured
total and allele-specific read counts for a set of genomic
segments in addition to tumour-specific adjacencies
between those segments. First, the genome is partitioned
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into regular length segments, with segments containing
the breakends of input breakpoints further partitioned
such that each breakend coincides with a segment bound-
ary. Total read counts are obtained by counting the
number of uniquely aligned paired-end reads fully con-
tained within each segment. Next, haplotype blocks are
predicted from single nucleotide polymorphisms (SNPs)
using shapeit2 [16] and a 1000 Genomes reference panel.
Reads containing heterozygous SNPs are assigned to hap-
lotype blocks, and haplotype block counts are aggregated
within segments, resulting in per-segment allele-specific
read counts. GC and mappability biases contribute signif-
icant variance to segment read counts. We use a position-
specific model [17] to calculate a bias-adjusted effective
length for each segment, where segments with shorter
effective lengths are statistically less well represented by
read counts. For visualization purposes, we calculate raw
major and minor copy numbers for each segment from
observed depths and allele ratios and inferred normal
and tumour depth. Additional details are provided in
Additional file 1: Sections 1.1 and 1.2.

Probabilistic model

We propose a probabilistic model of genome structure
and a structured variational inference algorithm for calcu-
lating the optimal clone mixture and segment and break-
point copy number (Fig. 1). Below we focus on a model
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of total copy number and defer the details of the allele-
specific model and modelling of outliers to Additional
file 1: Section 1.3. Let p(x|c, /1, 1,0) be the likelihood of
observed total read count x given per clone segment copy
number ¢, segment length /, global likelihood parameters
60, and per clone haploid read depths /. The haploid read
depths encode both the mixture and depth of sequenc-
ing and are specified as reads per nucleotide for a single
copy of a segment. The expected read count u, of seg-
ment # is a linear combination of the segment length,
clone-specific copy number, and clone-specific haploid
read depth, summed over clones (Eq. 1):

M =y Z NinCum

A reasonable starting point is to assume read counts
are Poisson distributed [18] (x,, ~ Pois(u,)); however,
we show in Additional file 1: Section 1.2.3, that a two-
component negative binomial mixture provides a signifi-
cantly better fit to real data.

Let p(C, B|O, 1) be the joint probability of segment and
breakpoint copy number (C and B respectively) given
breakend orientations O. We assume the copy numbers
of a sequence of segments have the Markov property-
given breakpoint copy number, and represent the resulting
chain structure as a product of un-normalized transition
factors!. A breakpoint with breakend interposed between
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Fig. 1 An overview of the ReMixT Method. a) Bulk sequencing is applied to a mixture of cells modeled as a set of clones of unknown proportion
each with distinct sets of chromosomes with unknown structure. b) Observed data include binned read counts per segment, and rearrangement
breakpoints connecting segment ends. €) The ReMixT graphical model as a factor graph. d) Calculation of the transition factor involves calculating
the number of telomeres t, the number of segment ends left unconnected to another segment end in the model
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two segments will result in a copy number transition
between those segments. For instance, a transition in copy
number is expected between two segments to either side
of the start of a deletion, with the difference in segment
copy number equal to the number of chromosomes har-
bouring the deletion event, or equivalently, the number of
copies of the deletion breakpoint. A mismatch in segment
and breakpoint copy number implies that at least one seg-
ment end is left disconnected (Fig. 2d). We call these free
ends telomeres, and define the transition factors of our
probability model in terms of the number of telomeres
¢t implied by the segment and breakpoint copy number.
Without a breakpoint, the number of telomeres is simply
the absolute difference in copy number between adjacent
segments t(c,¢’) = |c — ¢/|. Depending on its orienta-
tion, a positive copy number for a breakpoint may explain
some or all of the difference in copy number between
adjacent segments. The number of telomeres at a transi-
tion coincident with a breakpoint can thus be calculated
as t(c,c/,b',0) = |c — ¢ — o - b|, with orientation o €
{—1,+1}. For multiple clones, £ may be a more complex
function of the copy number differences for each clone
(see Additional file 1: Section 1.4).

Define transition factors f(c,c,blo,A) = e
and let k, be the index of the breakpoint interposed
between segment # and #n + 1. Write the joint proba-
bility over the observed read counts and segment and
breakpoint copy number as given by Eq. 2:

—At(c,c,blo)
’

pX,C,B|h,L,0,0,)) = p(X|C,L,h,0)p(C,B|O, 1)
N
o [ [ p@enlens b, 1, 0)
n=1
N-1
X l_[f(cmcn—i-ly bkn|0ru}\)
n=1

2)

Exact inference in the ReMixT model is intractable due
to additional dependencies introduced by modelling the
long-range connectivity of breakpoints.

Structured variational inference

We are seeking to infer the posterior probability p(z|x)
of the unobserved model variables z given observed data
x. The variational inference approach seeks to approxi-
mate an intractable posterior p(z|x) with a more tractable
family of distributions g(z), typically characterized by an
increased number of parameters and fewer dependen-
cies [19]. An optimal g(z) is computed by minimizing the
Kullback-Leibler (KL) divergence between p(z|x) and g(z)
as given by Eq. 3:
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D (4@)lp(zl)) = fQ(Z) log (q(z)> dz
p(zlx)

= logp(x) — /q(z)p(x,z)dz

+ / q(2)logq(z)dz

= logp(®) — B, [p(x,2) —logq(z)] (3)

The expectation given in the final form of Eq. 3
forms a lower bound on the model evidence p(x), since
Dx1 (q(2)|p(z]x)) is positive and approaches zero for a per-
fect approximation. Importantly, the difficult problem of
directly minimizing the KL divergence is equivalent to the
easier problem of maximizing this evidence lower bound
(ELBO). The mean field approximation assumes a distri-
bution g(z) = [];qi(z;) that factorizes over single model
variables. In structured variational inference, each z; is a
disjoint set of model variables, allowing g to have a more
complex dependency structure that better approximates
the posterior [20, 21]. Independence between factors of g
allows for application of a coordinate descent algorithm
that iteratively maximizes the ELBO with respect to each
qi using general updates given by Eq. 4:

logq*(z) = El_[j#- 4z [log p(x,z)] + const (4)

We approximate the posterior p(C,B,h,60|X,L,0, )
using a distribution g with factorization given by Eq. 5:

q(C,B,h,0) = q(q(6)q(C) l_[qk(bk) (5)
k

Taking a variational expectation maximization (EM)
approach, we specify the distributional form of g(/#) and
q(0) to be the Dirac delta function, and compute point
estimates for those parameters. Applying Eq. 4 to ¢(C)
results in Eq. 62:

logg*(C) = Y (H q(b/a) logp(X, C, B, h,0|L, O, 1)

B k
-+ const
N—1
= Z Enlen) + Z ¢u(cn, 1) + const  (6)
n n=1
Culen) = logp(xulcn, b, 1y, 0) (7)
;n(cn; CVH—I) - qun(b) logf(cn:0n+1:b|0n; )‘4) (8)
b

By inspection, the probability distribution g*(C) given
by Eq. 6 has a chain topology equivalent to an HMM, with
an emission calculated as a function of the read count
likelihood and transition matrices calculated by modify-
ing f according to g, (b) (Egs. 7 and 8). The emission and
transition terms ¢,(c,) and ¢,(cy, cyq1) define the vari-
ational parameters of g(C). The sum product algorithm
can be used to calculate the single and pairwise posterior
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Fig. 2 Simulation results for the integrated breakpoint model and an equivalent hidden Markov model (HMM) with postprocessing to infer
breakpoint copy number. Also shown are results for the breakpoint model with perfect initialization. Two sets of simulations were performed,
varying fraction of the descendant tumour clone (left column) and proportion of the genome with divergent copy number (right column). Boxplots
show proportion of the genome (a, b) and proportion of breakpoints (¢, d) for which the tool correctly called clone-specific copy number, in
addition to relative normal fraction error (e, f) and relative minor clone fraction error (g, h). Boxes show the interquartile (/QR) range with a line
depicting the median. Whiskers extend 1.5 x IQR above quartile 3 and below quartile 1. Diamonds show positions of outlier data points
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marginal probabilities of g(C), denoted y,(c) and y,(c, ¢')

respectively. The posterior marginals of g(C) will appear

in the updates of the other factors of g, as shown below.
Applying Eq. 4 to optimize g (by) results in Eq. 9:

logqi(bx) = Y _ q(C)logp(X,C,B,h,0]|L, 0, ) + const

C
Z Z Z vn(c, ) logf(c,c, bilo, \)

nky=k ¢ ¢

+ const 9)

Intuitively, the variational updates for g(C) and g (by)
described above involve first updating the transition
matrices of an HMM, weighting specific transitions that
correspond to copy number changes induced by high-
probability breakpoint copy number states, and then
updating breakpoint copy number states according to the
probabilities over adjacent segments in the HMM.

Since the entropy of a delta function is constant, opti-
mal estimates of /# and 6 involve minimizing only the
E, [log px, z)] term of the ELBO. Read counts are inde-
pendent of breakpoints given segment copy number; thus,
the expectation is calculated over g(C) only (Eq. 10).
Minimization is accomplished by computing derivatives
with respect to the parameters and using quasi-Newton
methods to find a local minimum.

E, [logp(x, z)] = Z q(C)logp(X,C,B, h,0|L, O, 1)
C

= ZZW(C) logp(xulc, h,1,,0)  (10)

Realistic simulations of bulk genome sequencing

We developed a principled method of simulating rear-
ranged genomes that fulfilled three important criteria.
First, the simulated tumour genomes were required to
have been produced by a known evolutionary history
composed of duplication, deletion, and balanced rear-
rangement events applied successively to an initially non-
rearranged normal genome. Second, the copy number
profile of the simulated tumour genome should be rea-
sonably similar to those of previously observed tumours.
Third, the simulated data should be subject to the same
biases seen in real genome sequence data.

To satisfy the first two criteria, we developed a sam-
pling framework for generating realistic evolutionary his-
tories based on a scoring and re-sampling strategy (see
Additional file 1: Section 2.1). This first step produces
a set of rearrangements, in addition to per-clone per-
segment copy numbers. WGS read-level data are gener-
ated from segment copy numbers in one of two possible
ways. For segment count simulations, read counts are
simulated directly from a likelihood model given simu-
lated segment copy number. For aligned read re-sampling,
individual reads are re-sampled from a very high depth
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source normal genome dataset based on simulated seg-
ment copy number. By using an appropriate likelihood
model, segment count simulations can be used to gen-
erate read counts with a distribution that reflects the
over-dispersion and outliers in real data. Aligned read re-
sampling datasets are computationally more intensive to
generate, but are able to produce read count data with GC
and mappability bias similar to that of the source dataset.
See Additional file 1: Section 2.2 for additional details.

Breakpoint model improves inference for segment count
simulations

We first sought to understand the benefit of an inte-
grated breakpoint model using segment count simula-
tions. We compared the ReMixT model with an equivalent
breakpoint-naive HMM followed by post hoc breakpoint
copy number calculation. For the breakpoint-naive model,
we first infer segment copy number using the ReMixT
model with breakpoint copy number at zero. We then use
a simple greedy algorithm (see Additional file 1: Section
2.5) to perform a post hoc computation of the break-
point copy number based on the segment copy number
inferred using the HMM. As variational inference is sen-
sitive to initialization, we also included results using the
ReMixT breakpoint model with perfect initialization. We
performed our evaluation on two sets of simulations, one
in which we varied the proportion of the genome sim-
ulated to be subclonal, and one in which we varied the
descendant clone fraction (see Additional file 1: Section
2.3 for details)3.

We evaluated the breakpoint model and the HMM on
the model’s ability to recover the true clonal mixture, seg-
ment copy number, and breakpoint copy number (Fig. 2).
Mixture prediction was assessed by calculating the relative
deviation of the predicted normal fraction and descen-
dant clone fraction from the simulated values. Segment
and breakpoint copy number prediction was assessed by
calculating the proportion of segments/breakpoints for
which the true clone-specific copy number was recovered
by the method.

For both segment and breakpoint copy number pre-
diction, the breakpoint model outperformed the base-
line HMM. The proportion of segment copy number
called correctly was significantly higher for the breakpoint
model for all simulations with the exception of those sim-
ulations with a descendant clone fraction of 55% (paired
t test, p value < 0.05, Fig. 3a and b). Additionally, the
proportion of breakpoints with correctly predicted copy
number was significantly higher for the breakpoint model
for all simulations with the exception of those with the
proportion of the genome subclonal set at 45% (paired ¢
test, p value < 0.05, Fig. 3c and d). Improvement with
respect to prediction of minor clone fraction was observed
for descendant clone fractions 0.05 and 0.3 (paired ¢ test,
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p value < 0.05, Fig. 3g). No improvement was observed
with respect to normal fraction prediction, though we
did observe a decrease in accuracy for descendant clone
fraction 0.55 (paired ¢ test, p value = 0.03, Fig. 3e). Per-
fect initialization showed improved results over our cur-
rent initialization method, indicating additional room for
improvement with respect to this aspect of the algorithm.

Comparison with existing copy number inference methods
We used our aligned read re-sampling framework to
compare the performance of ReMixT to four existing
methods for subclonal copy number inference: TITAN
[5], CloneHD [7], Battenberg [8], and THetA2 [12, 14].
We performed our comparison on two sets of genome
mixtures, one in which we varied the proportion of the
genome simulated to be subclonal, and one in which we
varied the descendant clone fraction. We used aligned
read re-sampling to produce realistic simulated datasets
using 200X sequencing of the NA12878 hapmap individ-
ual provided by Illumina [22]. Each tool was run with
default parameters according to available instructions (see
Additional file 1: Section 4 for details).

Performance of the four tools varied significantly across
each measure (Fig. 3). CloneHD was unable to recover
the copy number of the dominant clone with reasonable
accuracy for a majority of the simulations (< 43% accu-
rate for 50% of simulations). In general, CloneHD copy
number results showed a higher mean ploidy and higher
divergent proportion (proportion of the genome predicted
to have clonally divergent copy number) than simulated
results (average 37% higher and 44% higher respectively).
However, in many instances, CloneHD was able to esti-
mate normal fraction with reasonable accuracy (within
6.6% of simulated for 50% of the simulations). Minor clone
fraction estimation was less accurate (within 28% of sim-
ulated for 50% of the simulations). Our results imply that
CloneHD is prone to over-fitting, producing unrealistic
copy number profiles.

THetA, by contrast, produced solutions accurate with
respect to mean ploidy (within 6.5% of simulated for 75%
of simulations) and, to a lesser extent, divergent propor-
tion (within 20% of simulated for only 25% of simulations).
Additionally, THetA copy number predictions were more
consistent in their accuracy, with the dominant copy num-
ber predicted with greater than 81% accuracy for 50% of
the simulations. The normal fraction estimation error was
in general higher than for the other tools (within 17%
of simulated for 50% of simulations). THetA’s estimated
descendant clone fractions were also less accurate than
those of the other tools (within 21% of simulated for only
25% of simulations).

TITAN's results were the most variable, with dominant
copy predicted accurately for a large number of simula-
tions (> 88% for 25% of simulations) but poorly for many
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other simulations (< 21% for 25% of simulations). As with
CloneHD, TITAN appeared to over-fit for a subset of the
simulations, producing solutions for which mean ploidy
and divergent proportion were higher than simulated
(> 28% higher than simulated ploidy for 25% of sim-
ulations and > 66% higher than simulated divergent
proportion for 50% of simulations). TITAN estimated
normal fractions with low error for a majority of simu-
lations (within 5% of simulated for 50% of simulations),
though prediction of minor clone fractions was more
variable (error greater than 19% of simulated for 75% of
simulations).

Battenberg’s results were the most consistent of the
competing tools. For the simulations with 50/50 tumour
mixtures, Battenberg produced a solution at double the
simulated ploidy, highlighting the unidentifiability of this
particular scenario. Excluding the 50/50 tumour mixture
simulations, Battenberg predicted dominant copy num-
ber within 3% for 75% of the simulations and ploidy
within 4% for 75% of the simulations. Battenberg in gen-
eral under-estimated the divergent proportion, 13% lower
than simulated for 75% of simulations. Normal fractions
were also accurate, within 6% of simulated for 100% of
simulations, excluding 50/50 mixtures. Battenberg does
not estimate minor clone fraction and was thus excluded
from such analyses.

ReMixT consistently outperformed the four competing
tools on all measures. For 75% of the simulations, ReMixT
was able to infer integer copy number for both clones with
greater than 91% accuracy. Lower accuracy results were
obtained for 50/50 tumour mixtures, primarily due to the
inherent ambiguity of assigning copy numbers to specific
clones for such mixtures. Normal fraction estimation was
slightly biased, and was over-estimated by 1.4% of sim-
ulated on average, though never by more than 2.6%. As
expected, minor clone fraction estimation was less accu-
rate for mixtures with the smallest simulated minor clone
fractions, up to 50% of simulated, averaging 5%. For the
remaining simulations minor clone fraction estimation
error averaged 0.6% with a maximum of 8%.

Targeted single cell validation of clone-specific breakpoints
Next we sought to establish the accuracy of breakpoint
copy number inference in a realistic setting using tar-
geted single cell sequencing in a set of specially separated
high-grade serous ovarian tumour samples [23]. The set
of samples included two obtained from the patient’s right
ovary, one from the left ovary, and one from the omentum
(Fig. 5b). Each sample was whole genome sequenced to an
approximate depth of 30X.

We hand-selected 12 breakpoints associated with puta-
tive copy number changes for validation by targeted single
cell sequencing (Fig. 4). Specifically, for each of the 12
candidate breakpoints, at least one breakend coincided
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with a transition in copy number in at least one sample,
where copy number was inferred using an earlier version
of ReMixT [23]. In addition, we selected 60 somatic and 24
germline single nucleotide changes based on their utility
as clonal markers [23]. Targeted single cell sequencing was
performed as previously described [23], cells were clus-
tered into clones using the Single Cell Genotyper [24], and
breakpoints were assigned to clones if they were present in
at least three cells of that clone. Joint analysis of the break-
point and single nucleotide data produced a robust esti-
mate of the clonal genotypes with respect to the targeted
breakpoints (Fig. 4a).

Next we evaluated the ability of ReMixT to accu-
rately determine which breakpoints were present/absent
and clonal/subclonal in each sample. We calculated the
F measure for present/absent and clonal/subclonal calls
(Fig. 4c). F measure values were similar to results obtained
from running ReMixT on aligned read re-sampling simu-
lations.

Tracking clonal expansions using clone-specific
breakpoints

Several previous studies have used clone-specific SN'Vs to
identify patterns of clonal evolution [25], infer patterns of
cancer cell dissemination to metastatic sites [23, 26], and
track expansion and contraction of tumour clones over
time and in response to therapy [27] and in response to
xenograft passaging [15]. We sought to evaluate the util-
ity of clone-specific breakpoints predicted by ReMixT for
investigating clonal evolution in successive xenograft pas-
sages. To this end, we analysed primary and xenograft
tumour samples derived from a patient with breast cancer
(SA501 from [15]). Our analysis focused on four samples,
the primary tumour sample and three xenograft samples

labelled X1A, X3A, and X3F. The relationship between
these four samples and the additional two un-sequenced
xenograft samples X2A and X2F is shown in Fig. 5b.

For validation of X3F clone-specific copy number
changes, we used recently published single cell WGS data
[28]. We inferred total integer copy number and per-
formed phylogenetic analysis using previously described
techniques [15, 28]. Three major clones were identified.
Proportions of cells assigned to each clone were 0.82, 0.11,
and 0.07 for clones A, B, and C respectively. Clones B and
C were highly similar and formed a distinct clade; thus,
for this analysis we merged clones B and C. For clone A
and merged clone BC, we reconstructed clone copy num-
ber profiles by selecting the most prevalent copy number
within each clone for each segment. Segments with copy
number 6 or higher were removed, as specific copy num-
ber states above 5 could not be inferred using available
techniques.

ReMixT analysis using default parameters estimated a
clonal mixture of 0.85 for the dominant clone and 0.15 for
the minor clone. Clone-specific copy numbers matched
single cell copy number for 91% of the genome. Accu-
racy was highest for segments in lower copy number states
(< 3 total copies). Segments with higher copy number
(> 4 total copies) and no clonal divergence were fre-
quently predicted as subclonal by ReMixT, evidence that
ReMixT over-fits some segments with higher copy num-
ber (Fig. 5c). Additional disparity appeared to be the
result of noisy segments in lower copy states predicted as
subclonal.

Next we identified a set of high confidence sub-
clonal breakpoints for analysis of clonal dynamics in
the xenograft passages. We smoothed segments smaller
than 100 kb and aggregated adjacent segments with the
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confidence segments. This technique was used to identify
17 subclonal breakpoints in one of X1, X3A, X3F, and X5
or the primary tumour sample. In X3F, the ReMixT copy
number matched the single cell copy number for 84% of
the 1-Mb regions to either side of each breakend. For 11
of the predictions, corroboration was >92%, and for the
remaining predictions, corroboration was closer to 50%,
indicating a lack of corroboration on one side of each
breakend. Included in the set of breakpoints were inter-
chromosomal translocations linking subclonal segments
on disparate chromosomes, indicative of clone-specific
loss or gain of rearranged tumour chromosomes (Fig. 5d
and e).

Patient SA501 was previously shown to have exhibited
reproducible patterns of clonal expansions across multiple
replicate xenografts using a combination of targeted bulk
and single cell sequencing of SN'Vs [15]. In particular, X3A
and X3B showed similar patterns of clonal expansions
for clusters of SNVs used as clonal markers. We sought
to establish whether the same clonal dynamics were evi-
dent in X3F, and whether those clonal dynamics could
be understood using clonal-specific breakpoints. To that
end, we classified each of the high confidence subclonal
breakpoints according to whether they exhibited the same
expansion patterns from X1 to X3A and X1 to X3F. Of
the 17 high confidence breakpoints, 6 could be classified
as ascending in both X3A and X3F, 6 as descending in
both X3A and X3F, with the remaining stable from X1 to
either X3A or X3F (Fig. 5a). Strikingly, we did not identify
any conflicting breakpoints, those ascending in X3A and
descending in X3F or vice versa.

Assembling tumour chromosomes using subclonal
breakpoints

We applied ReMixT to WGS data from two tumour-
derived cell line samples and a matched normal sample
obtained from a patient with HGSOvCa [29]. The two
cell lines are derived from an ascites sample (DAH354)
and a primary tumour sample (DAH355) obtained during
debulking surgery. Cell line samples and matched normals
were sequenced to approximately 30X and analysed with
ReMixT using default parameters. Tetraploid solutions
were selected based on ploidy evidence from preliminary
single cell sequencing experiments for DAH355 (data not
shown).

As expected of HGSOvCa, the copy number profiles
of the cell line samples showed substantial evidence
of genome instability. For both samples, the fraction
of the genome predicted to be diploid heterozygous
was insignificant, and the fraction of the genome with
loss of heterozygosity was 40% and 35% for DAH354
and DAH355 respectively. Both DAH354 and DAH355
showed evidence of multiple genomically distinct clonal
populations, with dominant clone fractions of 0.7 and
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0.61 respectively, and fraction of the diploid genome pre-
dicted as subclonal as 14% and 32% respectively. A total
of 348 somatic breakpoints were identified by deStruct
[4], of which 278 were determined to be present (posi-
tive copy number) by ReMixT in one or both samples.
A total of 97 breakpoints were predicted to have clone-
specific copy number in one or both samples, with 17
having clone-specific copy number in both samples.

In both DAH354 and DAH355, we observed several
clone-specific translocations adjacent to large segments
with clonally divergent copy numbers. As with SA501, we
suspected that the loss or duplication of a single tumour
chromosome would result in multiple clonally divergent
segments across the reference genome. We thus searched
for clonally divergent segments connected by subclonal
breakpoints as a method for understanding the struc-
ture of tumour chromosomes with divergent copy number
across the clonal population (Fig. 6). In DAH354, we iden-
tified a tumour chromosome composed of three segments
from reference chromosomes 7, 11, and 9 (Fig. 6a), and in
DAH355, we identified a tumour chromosome composed
of four segments from reference chromosomes 6, 1, 3,

and 15 (Fig. 6b).

Discussion

We have demonstrated that ReMixT improves both
inference and interpretation of copy number changes
and genomic rearrangements. Improved accuracy was
observed for prediction of clone fraction, clone specific
copy number, and clone specificity of breakpoints. We
show how breakpoint copy number changes can be used
a markers of clonal populations, and used to track clonal
population dynamics in the same way as SN'Vs. By link-
ing clone specific copy number changes to breakpoints
we show how targeted single cell sequencing can be used
to jointly profile clonal genotypes in SNV and copy num-
ber space. Furthermore, we are able to reconstruct partial
tumour chromosomes lost or gained in sub-populations
of cells.

Although our method shows performance gains over
other methods, further improvements are possible. The
performance of our variational inference algorithm is
highly dependent on the quality of the initialization.
Improvement may be gained using more sophisticated or
informed initialization methods, or extensions to vari-
ational inference using annealing or MCMC. Our cur-
rent implementation is limited to two tumour clones,
largely due to the increased computational complexity
of modelling additional clones. An approximating distri-
bution factorized per clone would solve the complexity
issue within the context of structured variational infer-
ence, however based on our own experimentation, such
a factorization exacerbates the initialization problem and
was found to be infeasible. Thus improvements to the
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variational inference method may also allow for the use of
a more factorized approximation, removing the limitation
on the number of clones.

Conclusions

Traditionally, classes of genomic aberration have been
predicted and characterized independently, with post-hoc
analysis to determine correlation between events in each
class. However, there are clear dependencies between
classes of aberrations with respect to their generation via
mutational processes and their observation using genome
sequencing. A number of existing methods partially lever-
age class dependencies|7, 30, 31], and the development of
ReMixT represents a further step towards a comprehen-
sive model of genomic aberrations in tumour populations.
We anticipate further benefit may be gained from jointly
modelling copy number changes, rearrangements, SNPs
and SNVs, all within the context of an appropriate phylo-
genetic model. Future research leveraging the patterns of
genome damage and the totality of somatic alterations in a
cancer’s evolutionary history to elucidate its biologic and
mutagenic properties will derive benefit from ReMiXT’s
improved accuracy in structural alteration detection and
interpretation.

Endnotes

L A product of normalized conditional probabilities and
a prior probability for the first segment would also be pos-
sible, though we believe integration of breakpoints into
the model would be less intuitive.

2 Assuming uniform improper priors over 4 and 0,
we have logp(X, C,B|h,0,L,0,1) = logp(X,C,B,h,0|L,
O, A) + const.

3We
tral/descendant clone mixtures of x / 1 — x and the

maintained a distinction between ances-

reversed 1 — x / x clone mixture, as results for these

mixtures differ.
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