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Abstract

Objective—Heart rate variability (HRV) characterizes changes in autonomic nervous system 

function and varies with posttraumatic stress disorder (PTSD). In this study we developed a 

classifier based on heart rate (HR) and HRV measures, and improved classifier performance using 

a novel HR-based window segmentation.

Approach—Single-channel ECG data were collected from 23 subjects with current PTSD, and 

25 control subjects with no history of PTSD over 24 h. RR intervals were derived from these data, 

cleaned, and used to calculate HR and HRV metrics. These metrics were used as features in a 

logistic regression classifier. Performance was assessed via repeated random sub-sampling 

validation. To reduce noise and activity-related effects, we calculated features from five non-

overlapping ten-minute quiescent segments of RR intervals defined by lowest HR, as well as 

random ten-minute segments as a control.

Main Results—Using a combination of the four most predictive features derived from quiescent 

segments we achieved a median area under the receiver operating curve (AUC) of 0.86 on out-of-

sample test set data. This was significantly higher than the AUC using 24 h of data (0.72) or 

random segments (0.67).
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Significance—These results demonstrate our segmentation approach improves the classification 

of PTSD from HR and HRV measures, and suggest the potential for tracking PTSD illness severity 

via objective physiological monitoring. Future studies should prospectively evaluate if classifier 

output changes significantly with worsening or effective treatment of PTSD.
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electrocardiogram

1. Introduction

Posttraumatic stress disorder (PTSD) can develop after exposure to traumatic events such as 

violence, natural disasters, or combat. Symptoms include nightmares of the trauma, 

hypervigilance, difficulty sleeping, poor concentration, and avoidance of places, activities, or 

persons that remind the affected individual of the causal incident (Yehuda et al 2015). PTSD 

has a lifetime prevalence of about 8% in the US general population (Resnick et al 1993, 

Yehuda 2002). The prevalence of PTSD is higher in developing or war-afflicted countries, in 

which people are exposed to more severe and/or more numerous traumas (Karam et al 
2014). Lifetime prevalence is thus especially high in veterans, ranging from 6–30% 

(Dohrenwend et al 2006, Kok et al 2012, Sundin et al 2014, Marmar et al 2015).

Patients with PTSD have significantly different measures of heart rate variability (HRV) 

compared to healthy controls (Minassian et al 2014, Liddell et al 2016). HRV—changes in 

beat-to-beat heart rate—can be used to assess changes in the autonomic nervous system 

(Clifford 2002, Pan et al 2016). Recently, twins with PTSD were reported to have 49% lower 

low frequency (LF) HRV compared to their brothers without PTSD (Shah et al 2013). When 

attempting to identify differences in autonomic function as measured by HRV, it is important 

to control for other factors such as stress, affect, physical activity, and cardiovascular or 

neurological disease other than PTSD.

Evaluating HRV during sleep can account for confounding from stress, affect, and physical 

activity (Germain et al 2005). Furthermore, some reports show HRV reductions due to PTSD 

are greatest during the night (Woodward et al 2009, Kobayashi et al 2014), suggesting that 

analyzing data only during nocturnal sleep could improve classifier performance. However, 

HRV metrics vary by sleep stage due to changes in vagal and sympathetic activity during 

REM, light and deep sleep (Vanoli et al 1995, Viola et al 2002). Segmentation by sleep stage 

may thus improve the signal to noise ratio. For example, in earlier work using this novel 

methodology, we showed that comparing HRV metrics in REM sleep, and separately in deep 

sleep, better separated sleep apneic patients from healthy controls (Clifford 2002, Clifford 

and Tarassenko 2004). This approach may also apply to other illnesses associated with 

changes in HRV measures, such as PTSD. However, accurately measuring sleep status or 

estimating sleep stage from other data such as HR is difficult.

PTSD has been classified using self-reported data and demographics (Kessler et al 2014, 

Karstoft et al 2015, Galatzer-Levy et al 2014). However, a multivariate classifier separating 

PTSD patients and controls using HRV measures or other objective physiological data has 
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not yet been developed. Additionally, the utility of thresholding on individual HRV measures 

to identify PTSD has yet to be evaluated.

Here we propose a novel method of controlling for activity by only evaluating quiescent 

segments of RR intervals, with quiescence determined by lowest median HR for each 

subject. This segmentation approach may reduce random error from mental and physical 

activity, highlight involvement of the autonomic nervous system, and approximate 

restfulness in the absence of validated sleep stage data.

The objectives of this work were to: (1) calculate features from HR and HRV measures 

indicative of PTSD in male veterans using 24 h Holter ECG recordings, (2) use these 

features to train a multivariate classifier whose output—a probability of membership in 

either the PTSD or control group—could potentially be used as a proxy for illness severity 

in a patient already diagnosed with PTSD, and (3) improve classifier performance using a 

novel segmentation method on RR intervals to reduce noise and potential confounders.

2. Methods

All data processing, feature extraction, and classifier training was performed using Matlab 

R2016b (Mathworks, Natick, MA).

2.1. Subject enrollment

ECG recordings were obtained from 24 male subjects with current PTSD (symptoms within 

the past 30 days) and 26 healthy control subjects in a dataset derived from the Emory Twins 

Studies first reported by Shah et al (2013). This smaller cohort was selected to balance 

classes, i.e. a similar number of subjects with PTSD as controls. Participants were subjects 

with clinical diagnoses of PTSD, and healthy control subjects examined at the same time at 

the Emory University General Clinical Research Center. Individuals lacking sufficient ECG 

data were excluded (see exclusion criteria in later section). All participants wore an 

ambulatory ECG (Holter) monitor (GE Marquette SEER digital system; GE Medical 

Systems, Waukesha, WI) for 24 h. Participants had matched recording times and schedules. 

Activity was restricted to non-strenuous walking around the university campus and medical 

center, and participants were told to refrain from smoking or drinking alcohol or coffee. This 

study was approved by the Emory Institutional Review Board (81004), and all subjects 

signed an informed consent.

2.1.1. Data recording—The ECG signal was sampled at 125 Hz. Data were downloaded 

to a local HIPAA-compliant data repository using a MARS SEER Light digital recorder. 

QRS complexes were detected and annotated in the ECG automatically using the GE MARS 

software. RR intervals were calculated from the time difference between adjacent annotated 

beats.

2.1.2. Data pre-processing and exclusion criteria—RR intervals obtained later than 

24 h after the start of recording were discarded. Ectopic beats and artifacts were removed via 

established methods (Malik 1996); non-physiological RR intervals with values >1.5 s or 

<0.33 s were discarded, and RR intervals 20% shorter or longer than the previous RR 
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interval, or 20% shorter or longer than the overall mean RR interval were discarded. Gaps in 

the time series were interpolated via linear spline. RR intervals were re-sampled at 3.413 Hz 

(1024 samples per five minute segment) to create a uniformly spaced time series for spectral 

HRV measures. One subject with PTSD and one subject without PTSD had fewer than 22 h 

of ECG recordings; both were excluded from further analysis. Cleaned RR intervals were 

obtained from 23 subjects with PTSD and 25 control subjects (48 total). To demonstrate the 

utility of data pre-processing, we also used uncleaned RR intervals as a comparison.

2.1.3. Identification of quiescent segments—To reduce confounding effects of 

mental and physical activity, five non-overlapping ten-minute periods with the lowest 

median HR—hereafter referred to as ‘quiescent segments’—were identified from cleaned 

RR data for each subject. Figure 1 illustrates a representative 24 h RR tachogram from a 

study subject, with quiescent segments indicated by shaded regions. Healthy humans cycle 

through each of the five defined sleep stages with a period of approximately 100 min, and 

each sleep stage lasts up to 20 min; this informed our selection of segment length (Clifford 

and Tarassenko 2004). For each subject, each feature was calculated for each of five 

quiescent segments, resulting in 5 × m total features per subject. For each feature, the 

median feature value from the five segments was calculated, resulting in m features per 

subject to be used for training a logistic regression model. Feature extraction was also 

performed on ten-minute segments chosen at random, excluding quiescent segments of 

lowest HR, to serve as a control and to investigate if segment length was a confounder.

2.2. Feature extraction and heart rate variability measures

Cleaned RR intervals from either (a) all 24 h of ECG recordings, (b) random control 

segments, or (c) quiescent segments were used to calculate features. These features included 

the median quiescent window time converted to radians, basic RR interval statistics (mean, 

median, mode, standard deviation (σrr), interquartile range (IQRrr), skewness, and kurtosis), 

AC, DC, power spectral measures (VLF, LF, HF, total power), and other measures of the 

distribution of RR intervals (NNN, MNN, PNN, PNN50, RMSSD, and SDNN) (Malik 

1996).

2.2.1. Power spectral measures of HRV—HRV power spectral measures were 

computed from cleaned RR interval time series with a fast Fourier transform (FFT) and a 

Parzen window, following our previous methodology (Shah et al 2013). The FFT and spectra 

were corrected for window attenuation and boxcar sampling. The power spectrum was 

integrated over four discrete frequency bands: ultra-low frequency (ULF) <0.0033 Hz; very 

low frequency (VLF) 0.0033–0.04 Hz; low frequency (LF) 0.04–0.15 Hz; and high 

frequency (HF) 0.15–0.40 Hz (Bigger et al 1992). These frequency bands measure the renin-

angiotensin, sympathetic, and parasympathetic cardiovascular control systems (Akselrod et 
al 1981). Total power, incorporating the full spectrum from 0–0.40 Hz was also estimated.

2.2.2. Phase-rectified signal averaging—Phase-rectified signal averaging (PRSA) was 

performed on cleaned RR intervals to quantify acceleration and deceleration capacity of HR. 

This method can be used to detect quasi-periodic oscillations and to separate processes 

occurring during increasing and decreasing parts of the signal (Bauer et al 2006a). 
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Furthermore, PRSA is robust to noise and non-stationarity. Heartbeat interval shortenings 

are used as anchors for acceleration-related PRSA signals, whereas heartbeat interval 

lengthenings are used as anchors for deceleration-related PRSA signals. Sampling frequency 

was set to 512 Hz, and the window length around anchors was set to 30 elements.

2.3. Assessment of PTSD

The structured clinical interview for psychiatry disorders was administered to classify 

subjects into two classes: (1) current PTSD with symptoms within the past 30 days, or (2) no 

history of PTSD (control subjects).

2.4. Feature selection and classification

All twenty features, as well one feature at a time, were used to train a logistic regression. 

The output of this binary classifier was the probability of membership in the PTSD class. 

L1L2 (elastic net) regularization was performed to reduce coefficient values for collinear or 

non-predictive features and create a sparser and more generalizable model. Unconstrained 

differentiable multivariate optimization was performed using minFunc. Specifically, 

maximum likelihood estimation was performed via Quasi-Newton limited-memory 

Broyden–Fletcher–Goldfarb–Shanno updating (Bishop 1995). Distributions of features from 

PTSD and control subjects were visualized and compared via two-sided Kolmogorov–

Smirnov tests. Additionally, given the relatively low number of features, a grid search was 

performed to assess combinations of features.

To assess classifier performance on out-of-sample data, we performed bagging with 

replacement, an ensemble method to reduce variance and avoid overfitting (Breiman 1996, 

Arlot and Celisse 2010). Data were randomly split into training and test data at a 70:30 ratio, 

with the class balance in training and test sets maintained to reflect the class balance in the 

entire data set. By random sampling with replacement, some data may be used more than 

once between models, or not be used at all. Features in the training set were transformed to 

have Gaussian distributions using either the identity, square root and logarithmic 

transformations. The transformation which provided the lowest k-statistic using the 

Lilliefors test was used on both training and test sets. Data were then z-scored to by 

subtracting the training mean and dividing by the training standard deviation on both the 

training and test sets. A grid search was performed to select the value of λ ranging from 

0.001–5.0 that maximized the test set AUC within the model. The classifier thus learned 

solely from training data, and was evaluated solely on test data. Sampling, feature 

transformation, learning, and classifier evaluation was repeated nine more times for a total of 

ten models. AUC, accuracy, sensitivity, specificity, positive predictive value (PPV), and 

negative predictive value (NPV) were calculated for training and test sets within each model.

3. Results

3.1. Temporal distribution of quiescent segments

The temporal distribution of quiescent segments does not differ by PTSD status (P = 0.23 

via two-sided Kolmogorov–Smirnov test; figure 2). Box plots are not associated with the y-

axis; + indicates the mean, the middle line indicates the median, the box denotes the 
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interquartile range (IQR) flanked by the 25th and 75th percentiles, the vertical lines outside 

of the box indicate the 9th and 91th percentiles, and circles indicate outliers.

3.2. Classifier trained on all features

All twenty features were used to train an L1L2 regularized logistic regression. Classifier 

performance was assessed for three different segmentation approaches, and using either 

uncleaned or cleaned RR intervals. Using quiescent segments of cleaned RR intervals results 

in greater predictivity compared to other segmentation approaches, with a training AUC of 

0.87 and a test AUC of 0.70 (table 1).

3.3. Classifier trained on individual features and combinations of features

To improve classifier performance, individual features and combinations of features were 

used to train a regularized logistic regression. Testing many combinations of features is 

computationally inefficient, but was feasible here given the small number of features and 

fast speed of training a logistic regression model. Classifier performance was assessed for 

three different segmentation approaches, using uncleaned or cleaned RR intervals. A 

classifier trained on the most predictive combination of four features derived from quiescent 

segments of RR intervals achieves greater predictivity (training AUC = 0.85, test AUC = 

0.84) compared to when using features derived from random segments or 24 h of RR 

intervals (table 2).

The most predictive combination of four features derived from 24 h of RR intervals is σrr, 

IQRrr, LF power, and SDNN (table 3). The most predictive combination of four features 

derived from quiescent segments of RR intervals were AC, DC, LF power, and SDNN (table 

4). The β coefficients of these most predictive models are shown in table 5, and other 

classifier performance metrics are shown in table 6.

3.4. Distributions of predictive features

Distributions of predictive features were visualized (figures 3–8). Box plots are not 

associated with the y-axis; + indicates the mean, the middle line indicates the median, the 

box denotes the IQR flanked by the 25th and 75th percentiles, the vertical lines outside of 

the box indicate the 9th and 91th percentiles, and circles indicate outliers.

Segmentation improves separability of some features as determined by two-sided 

Kolmogorov–Smirnov tests. AC does not significantly differ by PTSD status when 

evaluating 24 h of data (P = 0.24), but is significantly higher in subjects with PTSD versus 

controls when analyzing quiescent segments (P = 0.04; figure 3). Similarly, DC does not 

significantly differ by PTSD status when evaluating 24 h of data (P = 0.13), but is 

significantly lower in subjects with PTSD versus controls when analyzing quiescent 

segments (P = 0.01; figure 4). LF power is lower in PTSD for both 24 h data (P = 0.01) and 

quiescent segments of data (P = 0.01; figure 5). σrr does not differ by PTSD status for 24h of 

data (P = 0.25) but is higher in control subjects versus subjects with PTSD (P < 0.05; figure 

6). Similarly, IQRrr does not differ by PTSD status for 24h of data (P = 0.47) but is higher in 

control subjects versus subjects with PTSD (P < 0.05; figure 7). SDNN does not differ by 
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PTSD status for 24 h of data (P = 0.06), but is significantly lower in PTSD when analyzing 

quiescent segments (P = 0.04; figure 8).

4. Discussion

In this study on 23 subjects with current PTSD and 25 controls, HR and HRV features were 

calculated and used to train an L1L2 regularized logistic regression to classify PTSD status. 

A classifier trained on a combination of the four most predictive features—LF power, σrr, 

IQRrr, and SDNN for 24 h of RR intervals, and AC, DC, LF power, and SDNN for quiescent 

segments—achieved out-of-sample test AUCs of 0.67 using 24 h of RR interval data, 0.72 

using random segments, and 0.86 using quiescent segments.

Sleep disordered breathing and sleep disruption are both associated with PTSD, so proxies 

of sleep are expected to differ by PTSD status (Germain 2013, Yesavage et al 2014). 

However, the time of median quiescent segments did not significantly differ with PTSD 

status (P = 0.23; figure 2), indicating these factors were not significant in this cohort. Most 

quiescent segments occurred from midnight to early morning in control subjects. A larger 

portion of segments were distributed closer to noon in subjects with PTSD. Periods of low 

HR—a measure of restfulness, not sleep stage—can occur at any time and may reflect 

differences in sleep patterns, differences in activity, or both. Quiescent segments may 

contain less noise and movement artifact, as well as reflect lower levels of mental and 

physical activity, and thus improve the performance of a classifier trained on features from 

those segments.

Next, we used all HR and HRV measures as features for a logistic regression classifier. L1L2 

regularization was performed to reduce coefficient values associated with collinear or 

redundant features, and to isolate predictive features. A classifier trained on all 20 features 

from 24 h of RR intervals achieved a low test AUC of 0.58 (table 1). Using features 

extracted from quiescent segments improved the test AUC to 0.75, whereas the use of 

randomly selected control segments resulted in a low test AUC of 0.56. Compared to these 

low test AUCs, training AUCs were 0.75, 0.78, and 0.87 for 24 h, random segments, and 

quiescent segments of RR intervals respectively. These results show a model using all 

features over-fits training data and would not generalize to out-of-sample data despite 

regularization. Classifier performance was similar when using uncleaned RR interval data.

Regularization attempts to reduce co-linearity by effectively placing a prior on model 

coefficients, forcing sparsity with small weights. However, the posterior—formed by 

updating the prior with evidence—determines the final form of a model. Thus, with small 

data sets, even regularized models trained with many features may not work well compared 

to the use of a hard prior via manual feature selection. Therefore, we tested individual 

features and combinations of features to train lower-dimensional models.

Given m = 20 total features and a subset of k = 1, 2, …, m features, the number of possible 

combinations (i.e. possible arrangements of k features) is the binomial coefficient . To 

ensure feasible computation time and a parsimonious and interpretable model, we limited 
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the maximum number of features used in a combination to four, i.e. k = 1, 2, …, 4. 

Furthermore, using more than four features led to the selection of colinear features and 

overfitting on the training data (results not shown).

Values of some individually predictive features, and test set AUC and accuracy for classifiers 

trained these features, are shown in table 3. We compared distributions of some features via 

a two-sided Kolmogorov–Smirnov test, but selected the most predictive comnbination 

features on the basis of maximizing training AUC. For classification, features should be 

chosen on the basis of predictability rather than significance, because significance alone 

does not guarantee predictability (Lo et al 2015). For 24 h of RR intervals, LF power 

significantly differed by PTSD status and was one of the four most predictive combination 

of features (table 3). The other most predictive features were σrr, IQRrr, and SDNN, but 

these did not significantly differ by PTSD status. For quiescent segments, the median value 

of the four most predictive combination of features—AC, DC, LF power, and SDNN—

significantly differed by PTSD status (table 4).

AC did not differ by PTSD status for 24 h of RR intervals, but was higher in subjects with 

PTSD for quiescent segments (figure 3). Similarly, DC did not differ by PTSD status for 24 

h of RR intervals, but was lower in subjects with PTSD for quiescent segments (figure 4). 

AC may reflect physiologic performance when parasympathetic withdrawal occurs, whereas 

DC measures general parasympathetic augmentation (Bauer et al 2006b, Pan et al 2016). 

Although some literature suggests that AC also measures sympathetic activation, this is 

unlikely because sympathetic modulations occur at 0.1 Hz, which may be four times faster 

than the modulation frequency of AC, depending on the underlying heart rate (Julien 2006).

LF power differed by PTSD status for both 24 h and quiescent segments of RR intervals 

(figure 5). Differences in these measures by PTSD status may be exacerbated in quiescent 

segments. In PTSD, vagal augmentation is expected during slow wave sleep, which may be 

altered by increased insomnia or sleep-disordered breathing. Other physiologic pathways 

may also be affected during abnormal sleep episodes; low LF may reflect baroreceptor 

insensitivity (Khoury et al 2012). These findings underscore physiologic changes that occur 

with PTSD.

When shifting from 24 h to quiescent segments, σrr and IQRrr became less predictive, 

whereas AC and DC became more predictive. In quiescent segments, σrr in controls was 

greater than σrr in subjects with PTSD (figure 6). σrr, IQRrr, and SDNN measure variability 

of RR intervals, and were all significantly lower in quiescent segments from subjects with 

PTSD. This finding is consistent with previous reports of lower variability of HR being 

associated with PTSD (Tan et al 2009, 2011). Additionally, the lack of significance or 

predictivity of these features (aside from SDNN, which was a predictive feature) from 24 h 

of RR intervals is unsurprising because quiescent segments were selected on the basis of low 

resting HR values, which excludes periods with higher variability. Concerning AC and DC, 

quiescent segments approximate restfulness rather than sleep state, but may also correspond 

to slow-wave sleep, during which vagal activity may be augmented and the predictivity of 

PRSA measures increased.
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We calculated β coefficients of L1L2 regularized logistic regressions trained on four most 

predictive combination of features from 24 h or quiescent segments of RR intervals (table 5). 

Although LF power and SDNN were among the most predictive features when using either 

24 h or quiescent segments of RR intervals, the β coefficients of these features significantly 

differed depending on the segmentation approach. For example, the median β coefficient for 

LF power computed from 24 h of RR intervals was close to zero, but for quiescent segments, 

the median β coefficient was 0.32. This difference suggests interactions between features 

that reflect the complexity of the underlying physiology, and/or a dependence on time scale.

Although our objective was to accurately classify PTSD status—particularly on out-of-

training-sample data—rather than quantify individual features, we also estimated β 
coefficients using a logistic regression with no regularization, and all data at once rather than 

bagging with sub-sampling. When using 24 h of RR intervals, the β coefficients of the most 

predictive combination of four features were 0.08 (σrr), 0.10 (IQRrr), −0.36 (LF), and −0.01 

(SDNN) (table S1) (stacks.iop.org/PM/38/1061/mmedia). When using quiescent segments of 

RR intervals, the β coefficients of the most predictive combination of four features were: 

0.89 (AC), −1.15 (DC), −0.44 (LF), and 0.15 (SDNN) (table S2). P-values for all β 
coefficient were >0.05, likely due to collinearity. We note aggregating several nearly 

significant predictors into one overall model can still result in high discrimination 

performance. The training AUC using the most predictive combination of features from 24 h 

of RR intervals was 0.71, and the training AUC using quiescent segments was 0.87. Using 

all 20 features from quiescent segments resulted in an training AUC of 0.94. Assessments 

were performed on the same data used to train the models, resulting in overfitting. The 

performance of these models would not generalize to out-of-sample data.

A regularized classifier trained on the most predictive combination of four features from (a) 

quiescent segments outperformed classifiers using (b) all 24 h of RR intervals, or (c) on 

random control segments, with test AUCs of (a) 0.86, (b) 0.67, and (c) 0.70 respectively 

(table 6). Using quiescent segments instead of 24 h of RR intervals improved every 

performance metric except specificity, which did not change. Using quiescent segments 

instead of random segments improved every performance metric except specificity and PPV, 

which decreased. This suggests classifier performance depends on the information within 

segments rather than the quantity of data.

We also compared the distribution of probabilistic classifier output using a Wilcoxon signed 

rank test to account for the paired nature of these data, and found a statistically significant 

difference between Pestimated(PTSD|features from subjects with PTSD) and Pestimated(PTSD|

features from control subjects) (P < 0.001). This suggests the classifier accurately 

discriminated PTSD status.

Here the AUC can be interpreted as the ability of a model to classify PTSD status using 

disease-associated physiological changes. Although learning was done with data from 

healthy controls, this approach would be suited for monitoring patients with established 

PTSD. It would not be a screening test for the general population. Future studies could 

assess how treatments affect physiology, and classify or even predict post-intervention 

recovery.
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We note several limitations of our study. First, our cohort consisted only of 23 subjects with 

PTSD and 25 controls. This small sample size may not have been adequately powered to 

detect smaller effect sizes. Our study design would be more elegant with discordant pairs 

only; however, this would eliminate ten unpaired twins and could reduce statistical power. 

To evaluate this we compared classifier performance using all subjects (N = 48) versus using 

only paired twins (N = 38) (table S3). We found no statistical differences using a two-sided 

Wilcoxon rank-sum test between all subjects and only paired twins cohorts in training or test 

AUCs for any segmentation approach. This may be due to two competing effects. Reducing 

sample size could diminish the ability of the classifier to learn predictive features, and 

decrease out-of-sample test set performance by learning features not representative of the 

population distribution. Furthermore, HRV may be about 50% heritable (Su et al 2010). If 

HRV and PTSD share an underlying genetic and physiological cause, and our approach 

evaluates features related to this mechanism, adding paired twins could confound the study, 

enrich both positive and negative classes with similar physiology-based features, and reduce 

classifier performance. However, focusing on twins could reduce the random error caused by 

differences in cardiovascular or autonomic physiology between subjects. Our results suggest 

the inclusion of non-twins does not reduce the impact of our findings, since we aimed to 

developed a system for monitoring physiology of subjects with PTSD rather than for 

screening a correlated population.

A second limitation of our work was only recording 24 h of ECG data per subject. Our 

approach could potentially enable home-based continuous physiologic monitoring of the 

efficacy of a PTSD intervention. However, doing so would require longer monitoring than 

24 h and additional validation studies. Additionally, longitudinal monitoring could 

necessitate a specific, rather than sensitive assay, to prevent alarm fatigue driven by false 

positives. We emphasize the importance of prospective studies with larger sample sizes and 

a testable intervention in order to determine clinical utility.

A third limitation is our lack of locomotor activity data, which if present may have enhanced 

the accuracy of our classifier. Previously we have shown the addition of locomotor activity 

to HRV metrics improves accuracy of classification of schizophrenia (Osipov et al 2015). 

This could also be the case for PTSD; locomotor activity may improve signal quality 

assessment or directly indicate disturbed sleep, sedentary behavior, or avoidance of 

traumatic stimuli.

A fourth limitation is model output being probability of a PTSD diagnosis, which is a coarse 

proxy for illness severity. Our method would estimate a low probability of illness for a 

subject who is diagnosed with PTSD yet has atypically low levels of ANS dysfunction. 

Other aspects of PTSD symptomatology described in the DSM-V—such as negative 

alterations in mood or problems concentrating—have yet to be evaluated in the context of 

HRV measures. Estimating particular manifestations of PTSD severity may be more 

clinically useful than estimating PTSD status. However, doing so would require larger 

studies with multimodal data including high-resolution ECG recordings, locomotor activity, 

and clinical questionnaires.
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Despite several limitations, this approach of classifying mental illness from physiological 

data has applications beyond PTSD. Changes in ANS function and psychological stress 

occur in other psychiatric illnesses such as bipolar disorder and depression, and are 

detectable using noninvasive physiological sensors (Burns et al 2011, Sano and Picard 2013, 

Tsanas et al 2016, Palmius et al 2016). Previously we used HRV measures and locomotor 

activity to accurately separate subjects with schizophrenia from healthy controls (Osipov et 
al 2015). Our novel approach of extracting features from quiescent segments of RR intervals 

could also be applied to locomotor activity, which correlates with illness status and HR. 

Techniques that improve the signal-to-noise ratio and enable fusing of complementary data 

sources could aid the classification of other mental illnesses. Other possible applications of 

this approach are to monitor adherence to medication, or to assess efficacy of an 

intervention. Interpreting model output as illness severity rather than a probability of class 

membership could alert a caregiver of deterioration or a sustained problem in a patient.

The utility of computational approaches to interpret multiple statistical and dynamic features 

of physiological signals has become increasingly apparent in all fields of biomedicine. 

Complex, information-rich settings such as critical care or sleep medicine are especially 

fertile sources of data with which to build tools and address clinical questions (Monasterio et 
al 2012, Behar et al 2013).

5. Conclusion

We classified PTSD in 48 male veterans using L1L2 regularized logistic regression trained 

on HR and HRV features. Classifiers trained on the most predictive four features from 24 h 

or random ten-minute control segments of RR intervals achieved test AUCs of 0.67 and 

0.70, respectively. We improved test AUC to 0.86 by segmenting RR intervals into quiescent 

ten-minute segments to filter out activity- or noise-related effects. To our knowledge this is 

the first report of classification of PTSD status using non-invasive physiological features. 

This approach may provide a long-term ambulatory index of PTSD severity, have 

applications in the study and management of other mental illnesses, and be useful for other 

clinical disciplines where cardiovascular disease and stress are significant factors.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Representative time series of RR interval data from a single subject. Shaded red areas are 

ten-minute quiescent segments. Horizontal axis is time of day in hours; 13 corresponds to 1 

PM, 1 corresponds to 1 AM, etc. ECG recording started at the origin of the x-axis 

(approximately 1 PM).
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Figure 2. 
Temporal distribution of quiescent segments does not differ by PTSD status (P = 0.23). The 

x-axis denotes hour of the day (i.e. hours past midnight), ranging from 0 to 24; 12 

corresponds to noon. Red indicates quiescent segments from subjects with PTSD (23 

subjects); blue indicates quiescent segments for healthy controls (25 subjects).
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Figure 3. 
Acceleration capacity (AC) does not differ by PTSD status for 24 h of RR intervals (a; P = 

0.18) but is higher in subjects with PTSD for quiescent segments (b; P < 0.05). (a) 24 hours 

of data. (b) Quiescent segments.
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Figure 4. 
Deceleration capacity (DC) does not differ by PTSD status for 24 h of RR intervals (a; P = 

0.09) but is lower in subjects with PTSD for quiescent segments (b; P < 0.05). (a) 24 hours 

of data. (b) Quiescent segments.
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Figure 5. 
Low frequency (LF) power differs by PTSD status for both 24 h of RR intervals (a; P < 0.05) 

and quiescent segments (b; P < 0.05). (a) 24 hours of data. (b) Quiescent segments.
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Figure 6. 
σrr (standard deviation of RR intervals) does not differ by PTSD status for 24 h of RR 

intervals (a; P = 0.25) but but is higher in control subjects for quiescent segments (b; P < 

0.05). (a) 24 hours of data. (b) Quiescent segments.
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Figure 7. 
IQRrr (interquartile range of RR intervals) does not differ by PTSD status for 24 h of RR 

intervals (a; P = 0.47) but is higher in control subjects for quiescent segments (b; P < 0.05). 

(a) 24 hours of data. (b) Quiescent segments.
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Figure 8. 
Standard deviation of normal-to-normal RR intervals (SDNN) does not differ by PTSD 

status for 24 h of RR intervals (a; P = 0.06) but is higher in control subjects for quiescent 

segments (b; P < 0.05). (a) 24 hours of data. (b) Quiescent segments.

Reinertsen et al. Page 21

Physiol Meas. Author manuscript; available in PMC 2017 July 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Reinertsen et al. Page 22

Table 1

AUCs of L1L2 regularized logistic regression models using all HR and HRV features extracted from RR 

intervals. Values shown are medians and IQR bounds in brackets.

Train AUC Test AUC

No RR cleaning RR cleaning No RR cleaning RR cleaning

24 h 0.77 [0.75 0.82] 0.75 [0.70 0.78] 0.54 [0.46 0.64] 0.58 [0.46 0.64]

Random segments 0.76 [0.73 0.80] 0.78 [0.77 0.80] 0.50 [0.45 0.57] 0.56 [0.50 0.71]

Quiescent segments 0.89 [0.87 0.91] 0.87 [0.83 0.89] 0.73 [0.70 0.80] 0.75 [0.71 0.82]
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Table 2

AUCs of L1L2 regularized logistic regression models using the top four features extracted from RR intervals. 

Values shown are medians across sub-samples and IQR bounds in brackets.

Train AUC Test AUC

No RR cleaning RR cleaning No RR cleaning RR cleaning

24 h 0.74 [0.73 0.78] 0.73 [0.69 0.74] 0.66 [0.45 0.66] 0.67 [0.62 0.71]

Random segments 0.70 [0.66 0.76] 0.76 [0.72 0.77] 0.61 [0.50 0.64] 0.72 [0.62 0.77]

Quiescent segments 0.85 [0.84 0.88] 0.85 [0.83 0.88] 0.81 [0.70 0.84] 0.86 [0.75 0.88]
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Table 3

Features extracted from 24 h of of RR intervals, shown as medians and IQR bounds in brackets. CTRL refers 

to the control group. Test AUC reports performance of univariate classifier trained solely on one feature.

PTSD status

Feature PTSD CTRL Test AUC

AC (s) −8.28 [−1.27e1 −6.31] −1.04e1 [−1.33e1 −8.18] 0.54 [0.52 0.68]

DC (s) 8.19 [6.55 1.23e1] 1.05e1 [8.89 1.38e1] 0.58 [0.54 0.73]

LF power (s2)a,b 3.51e2 [1.37e2 4.91e2] 5.86e2 [3.76e2 8.76e2] 0.71 [0.64 0.80]

σrr (s)b 1.15e−1 [9.15e−2 1.34e−1] 1.29e−1 [1.14e−1 1.51e−1] 0.65 [0.59 0.73]

IQRrr (s)b 1.76e−1 [1.26e−1 2.11e−1] 2.08e−1 [1.52e−1 2.34e−1] 0.63 [0.59 0.67]

SDNN (s)b 3.89e1 [2.97e1 5.42e1] 5.07e1 [4.09e1 6.32e1] 0.61 [0.55 0.75]

a
P < 0.05 comparing feature values from PTSD versus control subjects via two-sided Kolmogorov–Smirnov test.

b
Feature among combination that maximizes training set AUC.
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Table 4

Features extracted from quiescent segments of of RR intervals, shown as medians and IQR bounds in brackets. 

CTRL refers to the control group. Test AUC reports performance of univariate classifier trained solely on one 

feature.

PTSD status

Feature PTSD CTRL Test AUC

AC (s)a,b −9.62 [−1.26e1 −6.22] −1.28e1 [−1.91e1 −9.72] 0.77 [0.73 0.82]

DC (s)a,b 9.43 [6.64 1.22e1] 1.40e1 [1.11e1 2.06e1] 0.82 [0.73 0.84]

LF power (s2)a,b 3.31e2 [1.52e2 5.78e2] 8.71e2 [4.44e2 1.47e3] 0.81 [0.75 0.88]

σrr (s)a 4.14e−2 [3.44e−2 5.34e−2] 7.12e−2 [4.9e−2 8.06e−2] 0.82 [0.73 0.84]

IQRrr (s)a 5.40e−2 [3.55e−2 5.60e−2] 7.20e−2 [5.50e−2 9.38e−2] 0.78 [0.71 0.81]

SDNN (s)a,b 4.68e−1 [3.16e1 5.97e1] 6.47e1 [4.32e1 7.70e1] 0.75 [0.57 0.86]

a
P < 0.05 comparing feature values from PTSD versus control subjects via two-sided Kolmogorov–Smirnov test.

b
Feature among combination that maximizes training set AUC.
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Table 5

β coefficients of L1L2 regularized logistic regression models trained on four most predictive features from 

either 24 h or quiescent segments of RR intervals. Values shown are medians across sub-samples and IQR 

bounds in brackets.

24 h Quiescent segments

Feature Coefficient value Feature Coefficient

β1 Intercept 0.06 [0.05 0.06] Intercept 0.08 [0.08 0.11]

β2 σrr 0.46 [0.35 0.51] AC 1.12 [1.03 1.60]

β3 IQRrr 0.29 [0.22 0.54] DC 0.80 [0.61 1.06]

β4 LF power 0.00 [−0.03 0.07] LF power 0.32 [0.00 0.67]

β5 SDNN −0.04 [−0.31 −0.00] SDNN 0.30 [0.01 0.39]
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Table 6

Classifier performance on test set data using most predictive logistic regression models trained on features 

extracted from RR intervals after using three different segmentation approaches. Values shown are medians 

across sub-samples and IQR bounds in brackets. PPV is positive predictive value and NPV is negative 

predictive value.

Segmentation approach

Metric 24 h Random segments Quiescent segments

AUC 0.67 [0.62 0.71] 0.70 [0.62 0.79] 0.86 [0.75 0.88]

Accuracy 0.73 [0.67 0.73] 0.73 [0.67 0.80] 0.80 [0.73 0.80]

Sensitivity 0.57 [0.43 0.71] 0.43 [0.43 0.57] 0.71 [0.57 1.00]

Specificity 0.94 [0.75 1.00] 1.00 [0.88 1.00] 0.94 [0.88 1.00]

PPV 0.92 [0.71 1.00] 1.00 [0.78 1.00] 0.94 [0.83 1.00]

NPV 0.69 [0.67 0.75] 0.67 [0.64 0.73] 0.79 [0.73 0.88]
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