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The sand rat Psammomys obesus is a gerbil species native to deserts
of North Africa and theMiddle East, and is constrained in its ecology
because high carbohydrate diets induce obesity and type II diabetes
that, in extreme cases, can lead to pancreatic failure and death. We
report the sequencing of the sand rat genome and discovery of an
unusual, extensive, and mutationally biased GC-rich genomic do-
main. This highly divergent genomic region encompasses several
functionally essential genes, and spans the ParaHox cluster which
includes the insulin-regulating homeobox gene Pdx1. The sequence
of sand rat Pdx1 has been grossly affected by GC-biased mutation,
leading to the highest divergence observed for this gene across the
Bilateria. In addition to genomic insights into restricted caloric in-
take in a desert species, the discovery of a localized chromosomal
region subject to elevated mutation suggests that mutational het-
erogeneity within genomes could influence the course of evolution.
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Arid environments impose extreme physiological demands on
animals because of low food and water availability. The sand

rat Psammomys obesus (Fig. 1A) is a member of the subfamily
Gerbillinae, most species of which live in deserts and arid envi-
ronments (Fig. 1B). P. obesus has emerged as a model for re-
search into diet-induced type II diabetes because, if provided
with high carbohydrate diets, the majority of individuals become
obese and develop classic diabetes symptoms, in the most ex-
treme cases leading to pancreatic failure and death (1–4).
In searching for the molecular basis of this unusual phenotype,

attention has been paid to the Pdx1 homeobox gene, also called
Ipf1, Idx1, Stf1, or Xlox (5–9), the central and most highly con-
served member of the ParaHox gene cluster (10). Pdx1 is the only
member of the Pdx gene family in tetrapods and encodes a
homeodomain that has been invariant across their evolution.
Mammalian Pdx1 is expressed in pancreatic beta cells and encodes
a homeodomain transcription factor that acts as a transcriptional
activator of insulin and other pancreatic hormone genes (11, 12).
A pivotal role in insulin regulation is also reflected in the associ-
ation of heterozygous Pdx1mutations with maturity-onset diabetes
of the young (MODY4) and type II diabetes mellitus in humans
(13). Contrary to the usual conservation, several studies have
reported inability to detect Pdx1 in multiple gerbil species, in-
cluding P. obesus, by immunocytochemistry, Western blotting, or
PCR. However, Pdx1 is readily detectable in the closely related
spiny mouse, Acomys cahirinus (Fig. 1B), leading to the hypothesis
that the gene has been lost within the Gerbillinae subfamily,
contributing to the compromised ability to regulate insulin in the
sand rat (14–16). Such a conclusion would raise further questions,
because in addition to its adult functions, Pdx1 is also essential for
pancreatic development in the embryo. For example, targeted
deletion in mice causes loss of pancreas and anterior duodenum

and is lethal (9, 17). In humans, pancreatic agenesis has been
reported in a patient with a homozygous frameshift mutation
before the Pdx1 homeobox and in a compound heterozygous
patient with substitution mutations in helices 1 and 2 of the
homeodomain (18–20).

Results
To resolve the conundrum of a putatively absent “essential” gene,
we sequenced the P. obesus genome by using a standard shotgun
strategy (Illumina), using a combination of short and long insert
libraries, initially at 85.5× coverage (SI Appendix, SI Materials and
Methods, section 1). This assembly lacked a Pdx1 gene, supporting
the prevailing hypothesis of a loss of the Pdx1 gene in gerbils.
However, a synteny comparison between P. obesus and other
mammals delineated a contiguous block of 88 genes (SI Appendix,
Fig. S2) missing from the assembly including several genes essential
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to basic cellular functions, such as Brca2 and Cdk8, in addition to
Pdx1. This finding led us to suspect that standard short read se-
quencing may have given an incomplete genome assembly, even at
high coverage. To resolve whether the gene absence reflected a
large-scale deletion or an unusual genomic region, we sequenced
the transcriptomes of P. obesus liver, pancreatic islets, and duode-
num, which contained transcripts for many of the missed genes (SI
Appendix, Tables S4–S6). Furthermore, these transcripts show un-
usually high GC content in most cases, indicating that a large
contiguous stretch of elevated GC had either been underrepre-
sented in initial sequencing data or had failed to assemble correctly,
most likely due to nucleotide compositional bias. We term such
cryptic or hidden sequence “dark DNA.” We therefore isolated
GC-rich P. obesus genomic DNA by cesium chloride gradient
centrifugation, sequenced this fraction after limited amplification by
using Illumina MiSeq overlapping paired-end reads, and reas-
sembled the genome incorporating this longer-read sequence data

(SI Appendix, SI Materials and Methods, section 1.5). This approach
gave a refined assembly with a total size of 2.38 Gb and a scaffold
N50 of 10.4 Mb (Table 1 and SI Appendix, SI Materials and Meth-
ods, sections 1, 3, 4, and 6), including much of the dark DNA region
in several scaffolds, and containing genes syntenic to a region of
chromosome 12 in rat and a region of chromosome 5 and the
subtelomeric region of chromosome 8 in mouse. Analysis indicates
that the region was initially omitted by standard genome assembly
methods because of lower read coverage of GC regions coupled
with short sequence read lengths. Comparison of GC content be-
tween species demonstrates that sand rat genes are elevated in GC
content across this chromosomal region, syntenic to 12 Mb of the
rat genome (Fig. 1C and SI Appendix, SI Materials and Methods,
section 9). This large region encompasses a 250-kb repeat-rich
scaffold containing the sand rat ParaHox cluster and its well-
characterized genomic neighbors. We inferred a high W (weak,
A/T) to S (strong, G/C) allelic mutation rate in this region of the
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D

Fig. 1. The sand rat and its genomic hotspot of mutation. (A) Juvenile sand rat P. obesus. (B) Cladogram of representative murid rodents indicating the
phylogenetic position of sand rat. (C) GC content of genes around the ParaHox cluster of sand rat and other rodents (Mus musculus, Rattus norvegicus,
Chinchilla lanigera) revealing a chromosomal hotspot of GC skew in sand rat (shaded in gray). Genes shown in inferred ancestral gene order; parentheses
around Rfc3 indicate this gene has been transposed to a different genomic location in sand rat. Sand rat GC values based on transcriptome and genome
sequences; when partial only alignable sequence is compared. (D) Unrooted phylogenetic trees inferred from synonymous changes (dS) only from concat-
enated alignments of 26 genes in the mutational hotspot (Upper) and 100 random genes (Lower).
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P. obesus genome compared with randomly selected genomic re-
gions or homologous regions in other species of rodent (Fig. 1D and
SI Appendix, SI Materials and Methods, section 12 and Tables
S11 and S12). The existence of a localized GC-biased stretch of the
P. obesus genome is striking and of far-reaching importance, and
implies the existence of elevated and biased mutational pressure,
acting in one region of a mammalian genome. Gene conversion,
caused by the nonreciprocal exchange of information during mei-
osis, is the best characterized process known to cause GC-biased
mutation (21).
The full coding sequence of the P. obesus Pdx1 gene was de-

duced from the refined genome and transcriptome assemblies,
and the gene was found to be expressed in sand rat pancreatic
islets and duodenum (SI Appendix, SI Materials and Methods,
section 7). The 60-aa homeodomain of Pdx1 shows 100% con-
servation across other mammals for which data are available;
however, in P. obesus, there are remarkable 15-aa differences in
the homeodomain, making it the most divergent Pdx1 gene dis-
covered in the Bilateria (Fig. 2A). All but one of the amino acid
changes are caused by A/T to G/C mutation. The N-terminal and
C-terminal regions are also divergent with numerous deletions,
although the hexapeptide motif used in heterodimer formation
with TALE proteins is conserved (Fig. 2B). Additional RNA
sequencing of Mongolian jird (Meriones unguiculatus) duodenum
reveals that extensive sequence divergence due to GC-biased
mutation in Pdx1 is not unique to sand rat (Fig. 2A). Analysis
of synonymous and nonsynonymous mutations in Pdx1 across
vertebrates reveals a dN/dS ratio of 2.6 (dN = 39; dS = 15) in the
lineage leading to P. obesus and M. unguiculatus (SI Appendix,
Fig. S10). High dN/dS ratios are often taken as evidence for
positive selection, but can be skewed by mutational processes
such as GC-biased gene conversion (22). Despite its radical di-
vergence, Pdx1 is the closest homeodomain by BLASTP, and
phylogenetic analysis places it as a rodent Pdx1 on a long branch
(Fig. 2B); extensive synteny with the ParaHox region of mouse and
rat confirms it is the true and single Pdx1 ortholog (SI Appendix,
Table S9). Evidence that the locus is functional includes expres-
sion in pancreas and duodenum, and the fact that extensive
polymorphism is found in the 3′ untranslated region but is limited
in the coding sequence (SI Appendix, Fig. S11), indicating that the
coding region is under functional constraint despite extensive
mutation. Extreme deviation from the expected sequence explains
why antibodies and PCR failed to detect Pdx1 in sand rat, Mon-
golian jird, and, potentially, other gerbil species (14–16).
These findings indicate that GC-biased mutation has driven

radical changes in an otherwise highly conserved homeobox

gene; these changes could be maladaptive and constrain the
physiological capability of the sand rat, or adaptive enhancing
ability to live in arid regions. To test whether the extent of se-
quence divergence is unusual for sand rat proteins, we calculated
a “protein deviation index” (PDI) (SI Appendix, SI Materials and
Methods, section 5) for all 1:1 mammalian orthologs by dividing
mouse-human protein sequence identity by mouse-sand rat se-
quence identity (Fig. 2C). This analysis is distinct from identi-
fying the fastest evolving proteins and specifically identifies
proteins that have undergone uncharacteristic divergence in sand
rat. We find the majority of sand rat proteins are highly similar
to mouse or human (mode PDI = 1.0); in contrast, Pdx1 is un-
usually divergent (mouse-sand rat 54.82%, mouse-human 91.37%;
PDI = 1.67). To test whether other genes implicated in glucose
metabolism or pancreatic function are also divergent, we com-
piled a list of 45 candidates from human studies including all
genes implicated in monogenic diabetes (23) and genes for which
coding sequence variants have been strongly associated with
type 2 diabetes (24). Of the 33 genes with clear 1:1:1 orthologs
between human, mouse, and sand rat, 32 lie between position
225 and 10,195 in our PDI ranking, indicating that they are not
unusually divergent in sand rat. Pdx1 is ranked first and is the
most unusually divergent protein identified in the sand rat
predicted proteome (SI Appendix, Materials and Methods,
section 8 and Tables S8 and S10). Strikingly, 7 of the top
10 highest PDI results correspond to genes located within the
mutational hotspot (SI Appendix, Table S8), indicating that
GC-biased mutation is contributing to coding sequence diver-
gence across this region.
The mutations fixed in sand rat Pdx1 gene do not cause

frameshifts or truncations in known domains, and molecular
modeling reveals that the sand rat Pdx1 homeodomain has the
ability to form all three helices required for DNA binding
(Fig. 3A). To examine whether these mutations have resulted in
subtle effects on the stability of DNA binding, we deployed
molecular dynamics simulations with atomistic representation of
Pdx1 homeodomains, DNA target, and solvent. From the post-
processing of the molecular dynamics simulations, we estimated
the enthalpy of binding between sand rat and mouse (or
other mammal) Pdx1 and monomer DNA binding sites by using
the Molecular Mechanics Poisson Boltzmann Surface Area
(MM-PBSA) method (SI Appendix, Materials and Methods, sec-
tion 10). Target DNA sequences used were core Pdx1-binding
sites of the mouse insulin A1 promoter and its sand rat ortholog.
From 200-ns molecular dynamics simulations, the enthalpy of
binding for protein–DNA interaction was calculated to be lower
for sand rat than for mouse Pdx1 (mean −140 kcal/mol vs.
mean −122 kcal/mol), indicative of sand rat Pdx1 binding DNA
more “tightly” than is normal for the mammalian Pdx1 protein
(Fig. 3B). One amino acid change was responsible for much
of the difference: a Leu-to-Arg substitution in alpha helix 1
(homeodomain position 13), leading to the positive side chain of
Arg making a new indirect contact with the phosphate backbone
of DNA. A second substitution, Val to Arg in alpha helix 2
(homeodomain position 36), makes a smaller contribution (Fig.
3C). We also detect modifications to specific base interactions,
with sand rat residues Met54 and Arg58 making new contacts to
A and T bases within the TAAT core. Hence, stronger DNA
binding is most likely driven by increased contacts with the
backbone of DNA, coupled with decreased sequence specificity
of DNA interaction. These results suggest that sand rat Pdx1 is
divergent in DNA-binding affinity and specificity. Conserved
Pdx1-binding sites in well-characterized promoters of three
downstream target genes encoding pancreatic hormones (insulin,
somatostatin, and glucokinase) show negligible divergence in sand
rat compared with mouse, rat, and human (SI Appendix, Materials
and Methods, section 11), indicating that Pdx1 divergence alone is

Table 1. Metrics of sand rat raw genomic sequencing data and
final genome assembly

Genome sequencing and assembly Value

Total no. of paired-end reads 724,377,486
Total no. of mate-pair reads 1,780,436,140
Total bases sequenced 394,396,928,120
Estimated sequencing coverage, x 87.6
No. of scaffolds >2 kb 1,737
Total length of assembly, bp 2,381,209,849
Longest scaffold, bp 54,616,910
Mean scaffold length, bp 15,794
Scaffold N50, bp 10,461,538
Scaffold L50 63
Contig N50, bp 83,904
Percentage of assembly in scaffolds, % 98.6

Coverage was calculated by using an estimated genome size of 2.51 Gb
based on a k-mer analysis (SI Appendix, SI Materials and Methods, section
1.3) and is based on paired-end sequencing data only.
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likely to be responsible for altered DNA binding affinity and
specificity.

Discussion
We show that an unusual genomic region of biased mutation
arose in the evolutionary lineage of the sand rat. One conse-
quence of this hotspot of mutation was the generation of GC-bias
in the Pdx1 gene of P. obesus; this process forced modification of
the Pdx1 protein sequence, likely affecting its ability to regulate
transcription of insulin and other pancreatic genes. The sand rat
Pdx1 hexapeptide, which mediates cofactor interactions (25), is
intact, which may explain why pancreatic development pro-
ceeds permitting viable sand rat embryogenesis. We suggest
mutation-driven changes have played a role in constraining or
adapting the sand rat, and possibly other gerbil species, to
arid environments and low caloric intake. Biased gene con-
version is a known mechanism that causes GC-biased mutation
(21, 26); hence, we suggest this mechanism, driven by elevated
localized recombination, is generating a hotspot of skewed base
composition. The genomic region we describe here was not de-
tected by standard short-read sequencing approaches, known to
be sensitive to nucleotide composition (27). These issues may be

circumvented through the use of third generation sequencing
technologies offering substantially longer read lengths and re-
duced nucleotide bias. The possibility remains that other such
dark DNA regions could be widespread features of animal ge-
nomes, thus far largely overlooked in comparative animal geno-
mics. Indeed, GC-rich genes are also missing from the chicken
genome assembly (28, 29). Hotspots of mutation could drive
rapid evolutionary change at the molecular level, and it will
be important to decipher to what extent such hotspots have
constrained and influenced evolutionary adaptation across the
animal kingdom.

Materials and Methods
Sand Rat Genome Sequencing. All animal procedures were carried out in
accordance with the regulations specified under Protection of Animals Act
by the authority in Denmark, European Union, and Novo Nordisk A/S, or
the Animals (Scientific Procedures) Act 1986, U.K., and Bangor University
Animal Welfare and Ethical Review Board. Sand rat genome sequencing
libraries were constructed from a male P. obesus obtained from Hadassah
Medical School, Israel. We prepared and sequenced multiple short- and
long-insert DNA libraries and sequenced them on an Illumina HiSeq 2000.
We also isolated sand rat DNA enriched for GC content through cesium
chloride gradient centrifugation, prepared GC-rich DNA libraries, and
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Fig. 2. Molecular divergence of sand rat Pdx1. (A) Alignment of Pdx1 hexapeptide domain and homeodomain sequences across vertebrates. (B) Maximum
likelihood tree of ParaHox proteins showing divergent P. obesus Pdx1; species included are sand rat, mouse, zebra finch, spotted gar, amphioxus (full tree in SI
Appendix, Fig. S6). (C) Histogram of PDI values for 1:1:1 mammalian orthologs of the sand rat predicted proteins: Pdx1 is marked by an arrow, other genes
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sequenced using an Illumina MiSeq. In total, we generated ∼398 Gbp of
sequencing data, which was assembled by using SOAPdenovo2 (30).
Further details are provided in SI Appendix.

Transcriptome Sequencing and Analysis. Total RNA was extracted and purified
by using either Qiagen RNeasy column-based methods (pancreatic islets and
liver) or TRIreagent (duodenum). All RNA-seq libraries were prepared by
using Illumina chemistry. Pancreatic islet libraries were sequenced in-
dividually and as pools on the Illumina GAII. RNA-seq libraries for liver and
duodenum were sequenced on the HiSeq 2000 (liver) or the HiSeq 4000
(duodenum). The pancreatic islets transcriptome was assembled by using
Trans-ABySS (31) using multiple k-mer sizes (41 up to 79, in increments of 2),
and the liver and duodenum transcriptomes were assembled by using Trinity
(32) (SI Appendix).

Gene Prediction and Annotation.We used multiple methods to predict genes
in the sand rat genome. Repetitive elements were first masked by using
RepeatMasker followed by ab initio gene prediction with AUGUSTUS (33).
Homologous proteins from mouse and human were subsequently
mapped to the sand rat genome assembly by using TBLASTN, with the
aligned sequence being filtered and passed to GeneWise (34) to identify
accurate spliced alignments. GLEAN (35) was then used to generate a
consensus gene set. These gene models were then further refined by
predicting ORFs using genome-guided transcriptome assemblies assem-
bled using TopHat (36) and Cufflinks (37).

Evolutionary Analyses. Using the gene predictions from our sand rat genome
assembly and the assembled tissue transcriptome data, we carried out
analyses of coding sequence GC content and GC-biased mutation within
coding and intronic regions compared with other rodents.We also conducted
an analysis to determine the extent of protein divergence within the sand rat
predicted proteome compared with mouse and human. Details of these
analyses are described in SI Appendix.

Molecular Modeling.We used molecular dynamics simulations to calculate the
enthalpy of binding of protein–DNA complexes, namely between the sand
rat or mouse Pdx1 homeodomain and the sand rat or mouse A1 region of
the insulin promoter, using MM-PBSA analyses (SI Appendix).
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