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Assisted reproductive technologies in all mammals are critically
dependent on the quality of the oocytes used to produce embryos.
For reasons not fully clear, oocytes matured in vitro tend to be much
less competent to become fertilized, advance to the blastocyst stage,
and give rise to live young than their in vivo-produced counterparts,
particularly if they are derived from immature females. Here we show
that a chemically defined maturation medium supplemented with
three cytokines (FGF2, LIF, and IGF1) in combination, so-called “FLI
medium,” improves nuclear maturation of oocytes in cumulus–oocyte
complexes derived from immature pig ovaries and provides a twofold
increase in the efficiency of blastocyst production after in vitro fertil-
ization. Transfer of such blastocysts to recipient females doubles mean
litter size to about nine piglets per litter. Maturation of oocytes in FLI
medium, therefore, effectively provides a fourfold increase in piglets
born per oocyte collected. As they progress in culture, the FLI-matured
cumulus–oocyte complexes display distinctly different kinetics of
MAPK activation in the cumulus cells, much increased cumulus cell
expansion, and an accelerated severance of cytoplasmic projections
between the cumulus cells outside the zona pellucida and the oocyte
within. These events likely underpin the improvement in oocyte qual-
ity achieved by using the FLI medium.
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In vitro maturation (IVM) of oocytes is a critical step in assisted
reproductive technologies carried out in species, such as cattle

and swine, for generating oocytes capable of being fertilized in
vitro and providing healthy young useful for biomedical and
agricultural purposes (1–3). IVM is also important for human in
vitro fertilization (IVF) under conditions where exposure of the
patient to high levels of superovulating regimens of hormones is
contraindicated (4–6). Oocytes retrieved from small to medium-
sized follicles, if cultured appropriately, can resume meiosis and
mature to a state in which they can be fertilized. However, attaining
full developmental competence in immature oocytes retrieved from
unstimulated ovaries, particularly ones from prepubertal females,
continues to be a challenge (2). In pigs, production of embryos from
IVM oocytes has assumed increasing importance for biomedical
applications, especially for introducing genetic changes into animals
that might mimic human disease states (7). In creating such
models, somatic cell nuclear transfer (SCNT) has allowed gene
alterations previously engineered into cultured somatic cells by
various gene-targeting tools to be relocated to enucleated oocytes
(3), and newer CRISPR-Cas9 technologies can even introduce
genetic changes directly into fertilized oocytes (zygotes) (8, 9). The
reliance on slaughterhouse-derived ovaries from immature gilts as a
source of oocytes markedly reduces the success of such procedures.
In vivo, the mammalian oocyte grows and matures within a so-

matic cell compartment consisting of cumulus cells, and gradually
acquires meiotic and developmental competence at the antral
follicle stage (10, 11). Oocytes and cumulus cells must interact
harmoniously in terms of their metabolic activities for competence
to be attained (12). Oocyte meiotic arrest is maintained by a high
level of cAMP, which is largely produced by the oocytes (13, 14).

Once cumulus–oocyte complexes (COCs) are removed from the
follicular environment and placed into culture, a proportion of the
oocytes usually resume meiosis spontaneously. This promiscuous
progression to metaphase II most probably occurs as the result of a
reduced influx of cGMP from the surrounding cumulus cells into
the oocyte. cGMP maintains high intracellular cAMP concentra-
tions by inhibiting the phosphodiesterase responsible for cAMP
hydrolysis (15–17). An inappropriate drop in the concentrations of
the cyclic nucleotides that control meiotic resumption causes un-
synchronized nuclear and cytoplasmic maturation of the oocytes,
thereby compromising their proper development (18).
The gonadotrophin-triggered activation of signaling networks

during oocyte maturation is normally orchestrated by EGF and
related factors, and the downstreamMAPK1 and MAPK3 (19–21).
The activation of MAPK1/3 in granulosa and cumulus cells plays
a central role in triggering the essential steps of oocyte matura-
tion and COC expansion (22, 23). Cumulus cells in antral folli-
cles lack expression of luteinizing hormone (LH) receptors (24).
Therefore, oocytes collected for IVM often respond poorly to LH
(25), and that may result in dysregulated MAPK activation and
compromised oocyte competence. As a result, medium used for
IVM is usually supplemented with FSH and EGF to stimulate LH
sensitivity and downstream signaling pathways (1, 25–28). How-
ever, even with these supplements, oocytes of many species still
complete maturation quite poorly, suggesting that the necessary
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signal transduction pathways have been either understimulated or
inappropriately stimulated. One explanation is that the follicular
environment contains additional, locally produced factors that are
needed to provide adequate support for the complex process of
follicular growth and oocyte maturation. Accordingly, follicular
fluid is sometimes added to the culture medium to enhance
oocyte IVM, although outcomes have not been universally im-
proved (2, 29). It seems counterintuitive to include follicular
fluid to encourage oocyte maturation, as it contains oocyte
maturation inhibitors, such as hypoxanthine, which arrest oocyte
meiosis (30–32). Nevertheless, the beneficial effects of using
follicular fluid during IVM in many studies (33–36) provided
clues that its content of growth factors could be beneficial for
oocyte maturation. Here, we provide evidence that three cyto-
kines, fibroblast growth factor 2 (FGF2), leukemia inhibitory
factor (LIF), and insulin-like growth factor 1 (IGF1), each
known to be present in follicular fluid (37–40), when used in
combination can provide much improved oocyte competence,
most probably by influencing the timing of MAPK1/3 activation
in the cumulus cells enveloping the oocyte.

Results
Effects of Individual Cytokines on Nuclear Maturation of Oocytes and
Embryo Development to Blastocyst Stage. Initially, the individual
effects of FGF2, LIF, and IGF1 (FLI) on maturation of oocytes

derived from prepubertal gilts after commercial slaughter were
examined after each had been added to an otherwise standard,
chemically defined medium (41, 42). After 42 h, oocytes were in
vitro fertilized and cultured for 6 d (41, 42). Whereas addition of
FGF2 (40–80 ng/mL) (Fig. 1A), LIF (10–40 ng/mL) (Fig. 1B),
and IGF1 (10–80 ng/mL) (Fig. 1C) each individually improved
the efficiency of producing metaphase II oocytes, none of the
cytokines improved oocyte developmental competence, as de-
termined by the ability of the zygotes to form blastocysts after IVF.

Effects of FLI on Improving Oocyte Nuclear Maturation, IVF, and SCNT,
Embryo Development to the Blastocyst Stage, and Litter Size After
Embryo Transfer. FGF2 and LIF at their optimal concentrations
for nuclear maturation (40 ng/mL and 20 ng/mL, respectively)
(Fig. 1 A and B) were added in combination to the IVM me-
dium. This mix of two factors improved nuclear maturation
beyond that achieved with the single factors but, more impor-
tantly, also increased the number of blastocyst-stage embryos
(SI Appendix, Fig. S1). The effects of adding the third cytokine
at its optimal concentration for promoting nuclear maturation
(IGF1, 20 ng/mL) (Fig. 1C) along with the other two was then
examined. This IVM medium, now supplemented with FGF2,
LIF, and IGF1 in combination, increased oocyte nuclear maturation
from 55% in controls to 89% in the experimental group (Fig. 2A).
After IVF, the zygotes from FLI-treated oocytes advanced to the

Fig. 1. Effects of various concentrations of FGF2 (A), LIF (B), and IGF1 (C) in porcine oocyte maturation medium on nuclear maturation and subsequent
developmental competence. Data are reported as means ± SEM. Different superscripts (a and b) denote a significant difference from the control, P < 0.05. The
experiments were replicated four times with a total of 3,554 oocytes.
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blastocyst stage more efficiently than controls (49.7% vs. 38%).
Blastocyst cell number also increased, suggesting that embryo
quality had likely improved, as well (Fig. 2B). Overall, the use of
FLI medium during oocyte maturation, led to over a twofold in-
crease in the number of blastocyst-stage embryos produced from the
same number of retrieved oocytes (Fig. 2A). Oocytes matured in
FLI medium also provided improved production of blastocysts
following SCNT, a procedure that requires removal of nuclear
material from the egg and subsequent fusion of the enucleated
oocyte with a somatic donor cell (Fig. 2C). Finally, when blastocyst-
stage embryos—in this case ones produced after injection of zygotes
with CRISPR-Cas9 and guide RNAs targeted to a number of select
genes, including CD163, CD1D, TMPRSS2, COL6A3, APC, and
PAH—were transferred to surrogates, the number of piglets born
was approximately doubled when the oocytes had first been ma-
tured in FLI medium (Fig. 2 D and E). Although no detailed
measurements were made, there was no noticeable delay in blas-
tocyst development after injection of these editing agents. The
editing efficiency (method described in ref. 8) achieved in piglets
born averaged 77% after oocyte maturation in control medium and
69% in FLI medium. Finally, none of these piglets showed obvious
developmental abnormalities at birth. The combination of the
twofold increase in blastocyst formation (assessed only in embryos
that had not been gene-edited), and the doubling of litter size ob-
served after zygotes had been injected with CRISPR-Cas9/guide

RNA constructs suggests that the efficiency of producing piglets
from oocytes matured in FLI medium can be effectively quadrupled
relative to the more traditional form of oocyte maturation.

FLI-Matured COCs Display Distinctly Different Kinetics of MAPK
Activation. MAPK activation was measured in cumulus cells
over the course of IVM. Cumulus cell samples from both control
and FLI-treated COCs were collected at 0, 2, 6, 22, and 42 h
after introduction of the COCs into the control and FLI IVM
media. The concentrations of phosphorylated MAPK1/3
(pMAPK1/3) and total MAPK1/3 were measured by Western
blotting to allow the fraction of pMAPK1/3 relative to total
MAPK1/3 (pMAPK/MAPK) to be compared in the two groups
at each time point. At 2 h after initiating IVM, the fraction of
pMAPK was significantly reduced in the FLI-treated group
compared with the control. Subsequently, relative pMAPK levels
became elevated in the FLI-treated group, reaching a maximum
at around 22 h. In contrast, the ratio of pMAPK to MAPK
remained almost unchanged in the control over this period.
However, by the end of the maturation period (42 h), the level of
pMAPK in the FLI group had become very low, whereas it had
continued to increase in the controls (Fig. 3 A and B). It is also
important to note that the depletion of pMAPK at 42 h is only
observed in the FLI medium and not when the factors are sup-
plemented individually (Fig. 3C).

Fig. 2. Supplementation of standard IVM medium with FLI improves porcine oocyte meiotic maturation and developmental competence. (A and B) Effects of
FLI on nuclear maturation and subsequent blastocyst development following IVF. The experiments were replicated four times with a total of 796 oocytes.
Different letters denote significant differences, P < 0.05. (C) Supplementation with FLI improves blastocyst development following SCNT. The experiments
were replicated five times with a total of 488 oocytes. An asterisk (*) denotes a significant difference between control and treatment, P < 0.05. Percent fusion
was calculated as fused embryos/enucleated oocytes; percent blastocyst was calculated as blastocysts/fused embryos; overall efficiency was calculated as
blastocysts/enucleated oocytes. Embryo transfers were not performed in these experiments. (D) The in vivo developmental competence of the blastocysts
produced from the FLI treated oocytes in terms of litter size after embryo transfer. Approximately 50 blastocysts that had been injected with CRISPR/
Cas9 constructs at the zygote stage were transferred to surrogates on day 5 or 6. (E) Typical litter of 13 healthy piglets obtained after embryo transfer of
blastocyst stage embryos derived from FLI-matured oocytes.
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Because the MAPK signaling pathway in the cumulus cells
surrounding the oocyte is known to be essential for triggering
oocyte maturation (22, 23), we hypothesized that the tightly
regulated changes of MAPK1/3 activation in cumulus cells when
all three cytokines were present together was the key as to why
FLI promotes such a marked improvement in oocyte compe-
tence. Further evidence for this premise came from experiments
in which oocytes were matured with different kinase inhibitors to
block FGF2 (FGFR inhibitor, PD173074, 10 μM), LIF (JAK
inhibitor I, 6 μM), and IGF1 (IGF1R inhibitor, OSI-906, 10 μM)
signaling pathways individually and compared with data obtained
when MAPK1/3 activity was directly inhibited (PD0325901,
10 μM). As anticipated, the MAPK inhibitor resulted in an al-
most complete block of meiotic maturation. However, more
moderate declines were observed when the signaling pathways
initiated by the individual cytokines were inhibited (Fig. 3D).

The Effect of FLI in IVM Medium on Cumulus Cell Expansion. Cumulus
cell expansion is generally considered to be an essential feature
of oocyte maturation and is tightly regulated by signaling through
the MAPK1/3 pathway (22). We adapted a live-imaging system
(CytoSMART System; Lonza) to track COC expansion during
IVM (Fig. 4 and Movies S1, control and S2, FLI). Surprisingly,
COCs in both groups shrank in size between 3 and 6 h of culture
(P < 0.05), a phenomenon that to our knowledge has never been
previously reported (Fig. 4A). The decline during the initial stage
of maturation, although quite small, was significantly greater in
COCs cultured in FLI medium (Fig. 4A and SI Appendix, Table
S1). After 6 h, this process of shrinkage stopped, and the COCs

from both groups began an expansion phase. The expansion oc-
curred more rapidly for COCs in FLI medium, such that by 22 h
they had trebled in “field-of-view occupied” compared with the
doubling observed in controls. After 22 h, the COCs in FLI medium
continued their expansion and attained an over fivefold increase in
apparent size by the end of IVM at 42 h IVM. In contrast, the
median area by COCs in control medium reached its maximum by
about 22 h and showed no increase thereafter (Fig. 4B).

The Effect of FLI in IVM Medium on Transzonal Projection Retraction.
Because MAPK activation is necessary to terminate gap-
junctional communications between cumulus cells and oocytes
through transzonal projection (TZPs) (43), the changes in MAPK
activity shown in Fig. 3 prompted us to compare the relative
numbers of intact TZPs in COCs matured in FLI vs. control
medium. The COCs cultured in FLI medium possessed signifi-
cantly more intact TZPs at 2 h than the controls (Fig. 5). Although
numbers of TZPs in both groups subsequently declined, there
were significantly more TZPs remaining intact in the control
group at 22 and 42 h than in the FLI-cultured COCs (Fig. 5).
One consistent feature of the FLI-matured oocytes is a larger

perivitelline space than observed in those matured in control
medium. Such a gap between the zona pellucida and the exterior
of the oocyte is nearly always observed in oocytes matured in vivo
(SI Appendix, Fig. S2). We hypothesized that the expanded
perivitelline space might be best explained by the more complete
severance of TZPs in FLI-treated COCs relative to controls, thus
allowing the oocyte to detach more completely from the zona
pellucida, which encloses the oocyte and separates it from the

Fig. 3. FLI regulation of MAPK1/3 activation in cumulus cells during IVM. (A) Representative images of Western blots showing the effects of FLI on MAPK1/3
activity in cumulus cells during IVM. (B) The relative expression of pMAPK/MAPK was quantified, and the ratios of the two forms compared between control
and FLI treatments at the same time points. Each cumulus cell sample was pooled from 50 COCs. This experiment was replicated four times. Asterisks (*)
denote a significant difference between control and treatment, P < 0.05. (C) Effects of FLI and each individual cytokine on MAPK1/3 activation in cumulus cells
at 42 h after IVM as determined by Western blotting. (D) Effects of adding kinase inhibitors in FLI medium on oocyte meiotic maturation. The experiments
were replicated four times with 1,208 oocytes. Different letters denote significant differences, P < 0.05.
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innermost layer of cumulus cells. As shown in Fig. 5, the oocytes
matured in FLI medium displayed slightly more intact TZPs at
the time of maximal oocyte shrinkage than controls. At 6 h, no
differences were observed, but by 22 and 42 h significantly more
TZPs remained intact in the controls oocytes than in those un-
dergoing maturation in FLI medium.

The Effect of FLI in IVM Medium on Cumulus Cell Gene Expression.
Finally, we analyzed whether the abundance of transcripts for
certain genes implicated in oocyte maturation correlated with
the changes in the pMAPK/MAPK ratio in cumulus cells. Genes
for EGF-like factors (AREG, EREG, and BTC), so-called cu-
mulus cell expansion factors (HAS2, TNFAIP6, and PTGS2), and
stress-related genes (CYP11A1, BAD, and TP53) were analyzed
throughout culture. At 2 h, transcripts for BTC, CYP11A1, and
TP53 were down-regulated (P < 0.05) in cumulus cells from
COCs cultured in FLI medium relative to controls. There was
also a tendency for EREG and TNFAIP6 to be down-regulated
(P < 0.1). These data may relate to the greater shrinkage of the
FLI group in the initial phases of culture and that FLI might
have provided improved protection against stress. The greater
abundance of mRNA for AREG, EREG, and HAS2 at 6 h, and of
EREG, BTC, HAS2, and PTGS2 at 22 h (P < 0.05) is consistent
with the more rapid expansion of cumulus cells in FLI than in
control medium (Fig. 6).

Discussion
In this paper, we demonstrated that a combination of three cyto-
kines, FGF2, LIF, and IGF1, enhances porcine oocyte matura-
tion and embryo development to blastocyst stage, while effectively
quadrupling the number of genetically engineered piglets born
after embryo transfer.
The beneficial effects observed in this supplemented medium

(Fig. 2) may be through a number of means. First, there is an
early stage in the process, lasting no more than about 6 h fol-
lowing their introduction into maturation medium, when the
COCs shrink rather than expand. It is unclear whether this phase
in any way mimics occurrences in vivo. Instead, it may be a time
when the COCs are adjusting to the stress of in vitro culture.
Environmental factors can trigger premature MAPK1/3 activa-
tion (44, 45) and disrupt the normal time course of TZP disas-
sembly, resulting in meiotic resumption and unsynchronized
nuclear and cytoplasmic maturation (46–48). FLI may attenuate
stress incurred at the early stage of IVM better than the control

medium, as reflected in the lower level of pMAPK1/3 and the
reduced transcriptional expression of genes encoding stress-
related factors, “expansion factors,” and EGF-like factors in
the cumulus cells of FLI-exposed cumulus cells. Possibly linked
to these biochemical changes were more marked declines in the
sizes of the COCs and a greater number of TZP connections.
The better preservation of the TZPs during early-phase matu-
ration would likely allow more trafficking of the metabolites and
informational molecules essential to promote oocyte cytoplasmic
maturation (49, 50).
The FLI medium provides a strikingly more rapid expansion of

the COC over the subsequent 6–22 h of IVM than the control
medium, and this is paralleled by an increase in transcripts for
“expansion factors” and EGF-like factors. The kinetics of MAPK
activation, specifically the rise in pMAPK1/3 during the 6- to 22-h
period and its decline in the subsequent 20 h, phenomena not
observed with COCs in the control medium, may also explain the
success of FLI. The MAPK activation pattern is quite similar to
that observed with the IVM of mouse COCs (51). The rapid rise
in pMAPK in the cumulus cells during this period in FLI me-
dium may reflect a more active metabolic state than in controls.
This increase of pMAPK precedes a more complete breakdown
of TZP connections after 22 h in the FLI-exposed COCs than in
the controls. This severance of cytoplasmic connections between
the cumulus cells and the oocyte would cut off the influx of in-
hibitory cyclic nucleotides and promote a permissive environ-
ment for meiosis to proceed. The fall in pMAPK during the final
22 h of culture on FLI medium was unexpected and difficult to
explain. It could indicate a return of the cumulus cells to a more
quiescent state as isolation of the oocyte from the enclosing
somatic cells becomes more complete. Why a combination of the
three cytokines is necessary to provide this pattern of MAPK
activation is unclear, but it probably accounts for the dramatic
improvement in oocyte maturation brought about by the FLI
medium than by each factor alone. One difference, possibly
critical, is that pMAPK1/3 in cumulus cells only becomes de-
phosphorylated at 42 h when COCs are cultured with the three
cytokines together (Fig. 3C). We speculate that COCs with
higher concentrations of pMAPK1/3 at the end of IVM are less
competent to be fertilized and to develop successfully than ones
in which pMAPK1/3 remains quiescent. That a high concentra-
tion of pMAPK1/3 at the end of IVM is inhibitory to develop-
ment is supported by the observation that the concentration of
pMAPK1/3 in cumulus cells from bovine COCs after maturation

Fig. 4. Effects of FLI on cumulus cell expansion. (A) Cumulus cell expansion for the first 12 h of IVM. (B) Cumulus cell expansion occurring over the entire 42-h
culture period of IVM. Images were taken every 7.5 min and recorded by the CytoSMART system. Size of COCs was estimated by dividing the total coverage of
COCs provided by the system with the number of COCs within the images. Cumulus cell expansion index represents the relative size of COCs relative the
median size of COCs at 0 h. The experiments were replicated six times for Fig. 3A, and three times for Fig. 3B.
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in vitro is higher than in their fully competent in vivo counter-
parts (52).
As noted above, the beneficial effects of FLI relative to control

medium may be achieved mainly through the timing of MAPK1/3
activation. Surprisingly, FLI medium did not cause an immediate
and rapid increase of pMAPK1/3 in cumulus cells during the
initial 6 h of IVM. Instead, there was an initial decline in relative
pMAPK1/3 concentration, whereas maximal activation occurred
between 6 and 22 h (Fig. 3). The increase during this intermediate
stage of IVM may not, therefore, be so much a direct effect of
FGF2, LIF, and IGF1, but instead be because of LH and its ability
to up-regulate EGF-like growth factors, such as AREG, EREG,
and BTC, which can also stimulate MAPK signaling (19, 53, 54)
(Fig. 6). The decline in pMAPK1/3 observed after 22 h is also
difficult to interpret, but may reflect desensitization following the
earlier hyperstimulation of the pathway.
The effects of each individual cytokine on oocyte IVM have been

relatively widely studied. Various FGFs have been reported to
improve bovine and ovine oocyte IVM, but a functional linkage to
events following fertilization is lacking (55–57). We speculate that
FGF2 attenuates stress-induced cell damage, as observed for other
cell types (58–60). LIF also may improve oocyte IVM in some
species (61–63) through its ability to activate JAK-STAT3 and
MAPK signaling pathways (61, 62). The former pathway is crucial

for maintaining CD9 expression in mouse oocytes (61, 64). CD9 is a
protein required for sperm binding to the oocyte (65, 66). The ef-
fects of IGF1 on IVM have been difficult to interpret because the
media used have often been chemically undefined (e.g., containing
follicular fluid or FBS) (67–70). We speculate that the beneficial
effects we observed by using a chemically defined medium (Fig. 2)
may be through activation of MAPK1/3 and PI3K-AKTsignaling
pathways (71), plus a potential ability to increase expression of
FGFR1, as has been observed in porcine granulosa cells (72).
IGF1 may also cause increased production of the IL6 class of cyto-
kines, such as LIF (73, 74). Therefore, each cytokine may exert
different yet correlated roles in promoting oocyte maturation and
development, but the precise basis of their synergistic action re-
mains to be determined.
The significance of the FLI medium to the practical aspects of

assisted reproductive technologies in swine should not be under-
estimated. FLI medium not only doubles the number of blastocyst-
stage embryos that can be produced, it improves the success of
somatic cell nuclear transfer and doubles the number of piglets
born after genome modification by the CRISPR-Cas9 technology.
Whether the three-cytokine combination will aid assisted re-
productive technologies in species other than swine remains to be
determined but is a topic that is being pursued.

Fig. 5. Effects of FLI on TZP integrity during IVM. (A) Quantification of TZPs during IVM. Number of intact TZPs was compared within each time point. These ex-
periments were replicated three times, with a total of 142 COCs. Asterisks (*) denote a significant difference between control and treatment, P < 0.05. (B) Maximum-
intensity projections of the equatorial cross-section of the oocytes stained for F-actin (rhodamine phalloidin) at different time points during IVM. (Scale bar, 20 μm.)
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Materials and Methods
Animal Care. All experimental use of animals was approved by University of
Missouri Animal Care and Use Committee under Protocol 7868.

Oocyte in Vitro Maturation, Fertilization, and Embryo Culture. Ovaries from
prepubertal gilts were collected from an abattoir (Farmland Foods Inc.). Pre-
pubertal ovaries were confirmed by the absence of developed corpora lutea.
Immature oocytes were aspirated from medium size (3–6 mm) follicles with an
18-gauge needle attached to a 10-mL syringe. Oocytes with several layers of
unexpanded cumulus cells and evenly dark cytoplasm were selected for mat-
uration. Around 50 COCs were placed in individual wells containing 500 μL of
maturation medium (SI Appendix, Table S2) for 42–44 h at 38.5 °C in 5% CO2/
humidified air. At the end of the maturation period, the cumulus cells ad-
hering to the oocyte were removed by vortexing for 3 min in the presence of
0.1% (wt/vol) hyaluronidase. Matured oocytes were identified by the presence of
a polar body and placed in 50-μL droplets of a Tris-buffered medium (75) in
groups of 25–30 and coincubated with frozen-thawed sperm (0.25 × 106 cells/mL)
for 5 h. After fertilization, the embryos were cultured in modified porcine
zygote medium 3 (76), calledMU1 (77), at 38.5 °C and 5% CO2, 5%O2, 90%N2.
On day 6, blastocysts were stained with the nuclear stain Hoechst 33342
(0.01 mg/mL) to determine total cell number.

SCNT and Microinjection of CRISPR/Cas9 System into Zygotes and Embryo
Transfer. The SCNT and zygote microinjection were performed as pre-
viously described (8). Blastocyst-stage embryos generated by zygote injection
were transferred into surrogates on day 5 or 6 after the first standing estrus.
The embryos were surgically transferred into the ampullary–isthmic junction
of the oviduct of the surrogate (8, 78).

Analysis of TZP. Analysis of TZP was performed as previously described with
minor modifications (49). COCs were fixed in 4% (vol/vol) paraformaldehyde
in PBS for 30 min at room temperature. F-actin filaments were stained by
rhodamine phalloidin (Cytoskeleton Inc.) to visualize the TZPs following the
manufacturer’s instructions. COCs were then mounted with VECTASHIELD
mounting medium with DAPI (Vector Laboratories) on coverslips, and im-
ages taken by using a Leica SP8 spectral confocal microscope. (research.
missouri.edu/mcc//Leica%20SP8.html). Maximum-intensity projection of nine
equatorial cross sections with the same depth (3 μm in total) of the COCs (as
shown in Fig. 5B; scale bar, 20 μm) was used to measure the number of TZPs
using ImageJ software.

COC Expansion Assessment. CytoSMART live imaging system (Lonza) was
used to track COC expansion during IVM. The instrument permitted the
numbers of COCs and the overall area they occupied within a fixed field-of-
view to be measured over time. Images were acquired automatically by the
system every 7.5 min during the 42 h of IVM. A time-lapse video (Movies S1
and S2) and the overall coverage over time were obtained. The average
size of the COCs at specific time points was estimated by dividing the
overall coverage by the number of COCs in the field. A cumulus cell ex-
pansion index, representing the relative size of COCs at any time point
relative the size of COCs at 0 h, was used to assess the degree of cumulus
cell expansion.

Statistical Analyses. Data were analyzed by using the software NCSS 2007.
Percentage data were normalized by arcsin transformation. Differences were
determined by either one-way ANOVA followed by Fisher’s least-significant
difference multiple comparison test for experiments with multiple groups,
or a Student t test for experiments with two treatment groups. For qPCR

Fig. 6. Effects of FLI on mRNA abundance of EGF-like factors (AREG, EREG, BTC), cumulus cell expansion factors (HAS2, TNFAIP6, PTGS2), and stress related
genes (CYP11A1, BAD, TP53) during IVM. The relative abundance of mRNA was examined by quantitative PCR and compared between control and FLI cu-
mulus cells at the same time point. The mRNA level for each gene was arbitrarily set to 1 for controls at 0 h. **P < 0.05, significant differences in mRNA
abundance between control and treatment; *P < 0.1, a trend to be different. The experiments were replicated four times for the 0-, 2-, and 6-h time points,
and three times for the 22- and 42-h time points.
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data, expression levels between treatments were determined by using the
comparative threshold cycle (CT) method for each gene. The 2−ΔΔCT values
were analyzed for normality. If not normally distributed, the data were log-
transformed. The resulting values were then analyzed by using the Student
t test. P < 0.05 values were considered significant. Data were reported as
means ± SEM.
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