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Although habitat fragmentation is often assumed to be a primary
driver of extinction, global patterns of fragmentation and its re-
lationship to extinction risk have not been consistently quantified for
any major animal taxon. We developed high-resolution habitat
fragmentation models and used phylogenetic comparative methods
to quantify the effects of habitat fragmentation on the world’s ter-
restrial mammals, including 4,018 species across 26 taxonomic Or-
ders. Results demonstrate that species with more fragmentation
are at greater risk of extinction, even after accounting for the effects
of key macroecological predictors, such as body size and geographic
range size. Species with higher fragmentation had smaller ranges
and a lower proportion of high-suitability habitat within their range,
andmost high-suitability habitat occurred outside of protected areas,
further elevating extinction risk. Our models provide a quantitative
evaluation of extinction risk assessments for species, allow for iden-
tification of emerging threats in species not classified as threatened,
and provide maps of global hotspots of fragmentation for the
world’s terrestrial mammals. Quantification of habitat fragmentation
will help guide threat assessment and strategic priorities for global
mammal conservation.
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The diversity of life on earth is jeopardized by human activities
(1) and the world’s mammals are at great risk; 27% of mam-

malian species globally are threatened with extinction and the loss
and degradation of habitat has been implicated as a primary threat
(2). An important form of habitat degradation is fragmentation, the
reduction of continuous habitat into smaller, spatially distinct
patches immersed within a dissimilar matrix (3, 4). Fragmented
habitat can result from abiotic and biotic factors that generate
natural patchiness in landscapes, as well as anthropogenic distur-
bances that have rapidly accelerated and intensified habitat frag-
mentation globally (3). Fragmentation can create detrimental edge
effects along the boundaries of habitat patches, precipitate pop-
ulation decline, restrict animal movement and gene flow, and sever
landscape connectivity (5). Habitat fragmentation also interacts
with and intensifies the effects of other agents of global environ-
mental change, including facilitating species invasions and limiting
the ability of organisms to shift distributions in response to climate
change (6, 7). Despite this potential threat, the effects of habitat
fragmentation on global biodiversity and its importance relative to
other anthropogenic stressors has been the subject of considerable
debate (4, 8). The degree of habitat fragmentation for the world’s
mammals, however, and its relation to extinction risk, have not
been quantified globally. Furthermore, no study has specifically
identified the location of global hotspots of fragmentation for ter-
restrial mammals, or indeed any major animal taxon. Consequently,
although fragmentation is commonly assumed to be a driver of
global extinction risk, it has not been consistently incorporated into
extinction risk assessments (9).
Here, we quantify and map global patterns of habitat fragmen-

tation for the world’s terrestrial mammals. We used high-resolution

habitat-suitability models developed for mammals (10), including
4,018 species across 26 taxonomic Orders. For each species we
quantified the degree of fragmentation of high-suitability habitat
(i.e., preferred habitat where the species can persist) by calculating
the average Euclidean distance into “core” habitat from the nearest
patch edge (11, 12). We then conducted phylogenetic comparative
analyses to examine the relationship between habitat fragmentation
and various species characteristics, including International Union
for Conservation of Nature (IUCN) Red List status, geographic
range size (hereafter “range size”), body mass, and the proportion
of high-suitability habitat within the range. We then mapped hot-
spots of fragmentation for terrestrial mammals globally.

Results and Discussion
Our analyses reveal that terrestrial mammal species with higher
degrees of habitat fragmentation within their ranges are at greater
risk of extinction (Fig. 1). Species classified as threatened in the
IUCN Red List had higher levels of fragmentation compared with
species classified as Least Concern and Near Threatened (phylo-
genetic generalized linear model β ± SE = −0.16 ± 0.05, z = −2.94,
P = 0.003) (Table S1, Upper, model 1). Importantly, degree of
fragmentation improved prediction of extinction risk even after ac-
counting for the effects of key macroecological extinction risk pre-
dictors such as body size (β ± SE = 0.42 ± 0.03, z = 12.22, P < 0.001)
and range size (β ± SE = −0.66 ± 0.03, z = −19.23, P < 0.001)
(Table S1, Upper, model 1). Mammals with more fragmented
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habitat, smaller ranges, and larger body sizes face the highest risk of
extinction. The model including fragmentation along with body size
and range size had the strongest empirical support from the data,
with a model probability of 88% (Table S1, Upper, model 1). This
top model was 7.4 times more likely than the next ranked model
(Table S1, Upper, model 2), which excluded fragmentation [model
probability = 12%; ΔAIC (Akaike’s Information Criterion) = 4].
Furthermore, when assuming Near Threatened species face some
extinction risk, a conservative and precautionary approach (13), the
second-ranked model without fragmentation had very little empir-
ical support (Table S1, Lower, model 2) (model probability < 0.001;
ΔAIC = 15) and was 1,808 times less likely compared with the top
model including fragmentation (Table S1, Lower, model 1) (model
probability = 1.00).
Range size was the most important predictor of extinction risk,

occurring in all top models (Table S1), consistent with prior find-
ings identifying range size as a key extinction risk correlate (12, 14–
16). Data from range size alone, however, can provide misleading
information on conservation status, potentially misclassifying nat-
urally narrow-ranging species as threatened and wide-ranging
species as nonthreatened (17) and incorrectly assuming species to
be homogenously distributed throughout their range (10, 18). Our
analyses indicated that fragmentation, consistently in the most
supported models, had explanatory power beyond that provided by
range size alone. Indeed, our models implicate habitat fragmen-
tation as a potential mechanism underlying the well-known re-
lationship between range size and extinction risk, empirically
demonstrating that greater fragmentation in small-ranged species
(r = 0.43, phylogenetic generalized least-squares β ± SE = 0.17 ±
0.01, t4,018 = 34.44, P < 0.001) (Table S2, model 1) contributes to
elevated extinction risk (Fig. 2 and Fig. S1). Large-ranged species
tend to be habitat generalists (19), whereas range-restricted species
often have more narrow environmental niches and specialized
habitat preferences, characteristics that increase extinction risk
(20–22). Specifically, range-restricted specialists are particularly
vulnerable to habitat fragmentation given discontinuous distribu-
tions, reduced local abundance, and sensitivities to anthropogenic
disturbances (23, 24). Habitat fragmentation was not associated
with body mass (r = −0.02, phylogenetic generalized least-squares
β ± SE = −0.01 ± 0.03, t4,018 = −0.40, P = 0.687) (Table S2,
model 4).

Predictably, species with more fragmented habitat had a lower
proportion of high-suitability habitat within their range (r = 0.77,
phylogenetic generalized least-squares β ± SE = 2.10 ± 0.03,
t4,018 = 77.07, P < 0.001) and a lower proportion of high-suitability
habitat within protected areas (r = 0.16, β ± SE = 1.46 ± 0.20,
t4,018 = 7.48, P < 0.001), further elevating extinction risk. As sole
predictors of extinction risk, the model with fragmentation (β ±
SE = −0.89 ± 0.06, z = −15.0, P < 0.001; model probability = 1.00)
had considerably more explanatory power (ΔAIC = 387)
compared with the model with proportion of high-quality
habitat (β ± SE = −0.69 ± 0.12, z = −5.57, P < 0.001; model
probability <0.001). These findings emphasize the utility of
measuring not only the proportion of suitable habitat remaining
within the range (reflecting habitat loss per se), but also eval-
uating how such remaining habitat is distributed within large,
intact patches of core habitat, as assessed by our fragmentation
metric.
Notably, the relationship between fragmentation and extinction risk

remained evident (β ± SE = −0.59 ± 0.08, z = −7.04, P < 0.001) even
after excluding threatened species that met IUCN Red List criterion
B, used to list species that have restricted geographic ranges (13).
Species listed under criterion B have severely fragmented ranges or
exist in few locations (subcriteria B1a/B2a), or are undergoing con-
tinuing decline (B1b/B2b) or extreme fluctuations in population size or
distribution (B1c/B2c) (13). Exclusion of criterion B species avoids
potential circularity between our extinction risk modeling and the
IUCN criteria adopted to classify extinction risk, thus providing
stronger inference regarding the relationship between fragmentation
and extinction risk (25–27). Even when excluding criterion B species,
the most-supported models still included fragmentation and had the
greatest weight of evidence from the data (Table S3,Upper andLower,
model 1), with the remaining models having little to no support.
Our quantitative measures of fragmentation also allowed eval-

uation of extinction risk assessments by IUCN experts to evaluate
if a taxon belongs in a threatened category, in particular those
assessed using subcriteria (B1a/B2a) relating to habitat fragmen-
tation. As expected, threatened species classified under subcriteria
B1a/B2a had significantly more fragmentation than threatened
species that did not meet the B1a/B2a subcriteria (phylogenetic

Fig. 1. Degree of habitat fragmentation predicts extinction risk for the
world’s terrestrial mammals. The fragmentation metric, measuring the
amount of core (i.e., interior) habitat distributed within intact high-suitability
patches, was ln-transformed and then inverse-coded so high values represent
high degrees of fragmentation. Bars represent means and SE (n = 4,018 spe-
cies). Extinction risk assessed by IUCN Red List threat status. Vulnerable, En-
dangered, and Critically Endangered species had higher levels of habitat
fragmentation compared with Least Concern and Near Threatened species.
Similarly, Near Threatened and Data Deficient species had higher levels of
fragmentation than Least Concern species (see main text).

Fig. 2. Terrestrial mammals with higher degrees of habitat fragmentation
and smaller geographic range sizes have a greater risk of extinction. Each black
point represents an individual species, with the number of red line segments
corresponding to extinction risk according to IUCN Red List threat status: Least
Concern, Near Threatened, Vulnerable, Endangered, and Critically Endangered
(see legend within figure). Visually, across the scatter plot of all points, more
red represents higher extinction risk. Fragmentation and geographic range
size (km2) ln-transformed, and the fragmentation metric then inverse-coded so
high values represent high degrees of fragmentation. Vertical and horizontal
lines represent means (see also Fig. S1).
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generalized linear model β ± SE = −1.00 ± 0.13, z = −7.78, P <
0.001). IUCN Red List assessments are based on expert opinion,
which can rely on qualitative knowledge, especially for poorly
known species. Consequently, assessments of habitat fragmenta-
tion for different species can suffer from limited consistency (9).
Furthermore, subcriteria B1a/B2a do not distinguish between
the two conditions of fragmentation and restricted number of
locations. By quantifying fragmentation specifically, our models
thus can improve threat assessment. For example, because of a
lack of information regarding fragmentation, a recent attempt
to use satellite imagery to consistently assess extinction risk of
>11,000 forest-dependent species necessarily assumed that all
species with small ranges and declining habitat were also sub-
ject to significant levels of fragmentation (9). Our fragmenta-
tion models can fill this important methodological gap, allowing
more accurate satellite-derived classification of fragmentation
and hence extinction risk using Red List criterion B.
Our models also reveal evidence for increased fragmentation in

species not classified as threatened by the IUCN (Fig. 1). Specifi-
cally, species classified as Near Threatened (phylogenetic general-
ized linear model β ± SE = −0.46 ± 0.08, z = −5.86, P < 0.001) and
Data Deficient (β ± SE = −0.76 ± 0.07, z = −10.67, P < 0.001) had
more fragmented habitat than Least Concern species (Fig. 1). Al-
though Data Deficient species have inadequate information to for-
mally assess extinction risk (13), they tend to have smaller body and
range sizes (17, 28), are nocturnal and thus difficult to study (28),
and many are likely to be threatened (17). It is possible that the
range size of many of these poorly known species is underestimated,
and the degree of ecological specialization overestimated, because
of limited available information (17), potentially inflating our mea-
sure of habitat fragmentation. More information regarding the dis-
tribution, life history, and ecology of Data Deficient species,
including their habitat affinities and responses to human distur-
bances, will help refine our models. Nonetheless, available evidence
suggests that both Near Threatened and Data Deficient species have
increased fragmentation within their known ranges, indicating that
the threat of fragmentation exists at the earliest and least-understood
stages of endangerment. Our models quantifying fragmentation
allow us to better identify such emerging threats.
Summing the fragmentation metric across all species reveals global

patterns of core habitat and fragmentation for the world’s terrestrial
mammals (Fig. 3A). Primary areas of intact high-quality core habitat
include northern Africa and much of the Amazon Basin in South
America, and portions of western and central North America, sub-
Saharan Africa, Australia, and northern, southwestern, and south-
eastern Asia. Of these areas, the Amazon Basin supports the greatest
richness of terrestrial mammals, followed by sub-Saharan Africa and
portions of western and central North America and southeastern
Asia (Fig. S2A). Standardizing the fragmentation models by species
richness more strongly highlights species-poor locales (most notably
desert regions of northern Africa and southwestern Asia) with ex-
tensive core habitat for the relatively few species that occur there
(Fig. S2B). Terrestrial mammalian diversity, however, is sufficiently
low in these regions that they are de-emphasized as core habitat in
our global fragmentation models (Fig. 3).
Conversely, fragmentation hotspots are regions with relatively low

interior distances within high-suitability habitat, summed across all
species present in an area (Fig. 3A). Such regions include much of
South America outside the Amazon Basin, as well as portions of
south-central Asia, eastern North America, and Europe. In-
terestingly, our models identify notable fragmentation for high-
latitude (e.g., arctic) and high-elevation (e.g., Himalayan) species
(Fig. 3A). For the arctic, the models are primarily identifying natural
fragmentation of suitable habitat because of ice, water bodies,
coastlines, and islands at the edge of species ranges. Similarly, for
high-elevations, the models are identifying patterns of natural frag-
mentation above the altitudinal limits of species. Weighting the
global fragmentation map with a recently developed high-resolution,

global human modification layer (29) highlights regions that have
been fragmented by human development specifically and de-
emphasizes regions with natural fragmentation, such as high-
latitude and high-elevation areas (Fig. 3B and Fig. S3). We
emphasize, however, that arctic and montane species, including
high-altitude endemics, are particularly vulnerable to climate change
(30, 31) and thus still impacted by natural fragmentation that might
prevent distributional shifts in response to altered climate regimes.
On average, across the 4,018 species of terrestrial mammals in-

cluded in our analyses, only 48.6% (range: <0.001–100%; SE =
0.004) of the current geographic range of a species was comprised of
high-suitability habitat (10). Moreover, only 3.6% (range: 0–100%;
SE = 0.001) of the average range was comprised of high-suitability
habitat located within known protected areas, well below the ap-
proximately 15% of terrestrial areas that are currently protected
globally (32), further emphasizing the inadequacy of the global
network of protected areas (33). Of additional concern is that

Fig. 3. Degree of habitat fragmentation for the world’s terrestrial mammals.
(A) Degree of habitat fragmentation as indexed by the fragmentation metric,
measuring the amount of core (i.e., interior) habitat, and (B) degree of an-
thropogenic habitat fragmentation, calculated by weighting data in A by a
recently developed global HM model (Fig. S3). The resulting map identifies
regions that have been fragmented by human development specifically, and
de-emphasizes regions that are naturally fragmented such as high-elevation
areas and landscapes with water bodies interspersed. The color gradient in the
legends are the original (A) and weighted (B) fragmentation values binned
into deciles. Blue denotes regions with low fragmentation, where mammal
species occur in large patches of intact high-suitability core habitat. Red de-
notes regions with high fragmentation, where mammal species have little core
habitat. Fragmentation metrics are spatially quantified by summing the metric
at each 300 × 300-m cell for all terrestrial mammal species worldwide.
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habitat degradation is especially prevalent in many of the global
hotspots of mammal habitat identified in our models, particularly
tropical regions in the Americas, Africa, and Asia that experience
high deforestation (2). For example, much of the tropical forest in
the Amazon Basin, a critical global hotspot of core mammalian
habitat, had experienced rapid deforestation from human develop-
ment (34, 35), although it appears that such habitat destruction has
slowed recently as a result of policy-driven government action (36).
Our models can inform the management and conservation of

mammals globally. First, unlike most comparative extinction-risk
analyses, we focus on an urgent yet manageable anthropogenic
threat (i.e., habitat fragmentation) rather than solely on intrinsic
biological traits (e.g., body mass), which addresses ongoing con-
cerns about the utility of comparative analyses for applied con-
servation (15, 37). Second, our habitat models narrow the focus of
mammal distribution to include only regions of high-suitability
habitat; this is critical, because species are not homogeneously
distributed throughout their ranges (18) and less than half of the
range of terrestrial mammals is on average comprised of high-
suitability habitat (10). Third, our fragmentation models not
only evaluate global patterns of species richness based on suitable
habitat (10), they also quantify the degree to which suitable habitat
exists within core habitat patches. This is essential, given that
hotspots of species richness and extinction threat may not overlap
(38, 39), and our analyses demonstrate that the degree of frag-
mentation of patches influences extinction risk. Finally, the 300-m
resolution of the global-habitat models facilitates more detailed
analyses of fragmentation patterns at the local scale, which ap-
proaches the scale of conservation action (40). For example, our
models can be used to identify the degree to which reserve net-
works designed for umbrella species, such as jaguars, maintain
high-quality core habitat for sympatric mammals (41). Such real-
world application of our fragmentation models demonstrates their
utility for conservation practitioners, particularly in comparison
with simple boundaries of the geographic range, which provide no
information about the expected occurrence of species within their
broad distributional extents.
Additional efforts to apply these models to local scales, and

validating them with empirical data on fine-scale distribution and
habitat use, such as that derived from GPS telemetry or remote
camera surveys, will help to more thoroughly assess their utility for
real-world conservation application. In addition, exploration of
alternative fragmentation and connectivity metrics, including
metrics that assess patch isolation and configuration (5, 12), would
also yield further insight into how habitat fragmentation and
landscape connectivity are related to extinction risk. More com-
plex patch and landscape metrics might be particularly valuable at
finer scales or for smaller subsets of species. Development of a
comprehensive database estimating dispersal distances for mam-
mal species, and incorporation of such data to assess how vari-
ability in species-specific dispersal ability influences scaling of
patch sizes and responses to fragmentation effects, would repre-
sent another important advancement. Finally, given that anthro-
pogenic fragmentation increases contact and potential conflict
between humans and wildlife, human tolerance of and behavior
toward wildlife are fundamental determinants of their ability to
persist within fragmented landscapes; consequently, social science
research will be critical to mitigate fragmentation effects in
human-dominated systems (42–44).
Ultimately, habitat fragmentation has severe effects on the

composition, structure, and function of ecosystems (3, 5, 8), and
our results demonstrate that fragmentation degrades suitable
habitat and increases the extinction risk of mammals globally. Such
impacts warrant intensified efforts to protect remnant habitat and
restore broad-scale landscape connectivity to ameliorate the effects
of fragmentation (5, 12). Quantification of fragmentation will help
prioritize such global conservation efforts and develop more ef-
fective strategies for conserving the world’s mammals.

Methods
Habitat-Suitability Models. As the basis of our fragmentation models, we used
habitat-suitability models developed by Rondinini et al. (10) for the world’s
extant terrestrial mammals (n = 5,027 species). The completion of the Global
Mammal Assessment by the IUCN Species Survival Commission (IUCN/SSC) (2)
provided an unprecedented opportunity to develop global-habitat models for
all terrestrial mammals. The Global Mammal Assessment dataset, based on the
taxonomy published by Wilson and Reeder (45), received the input of thou-
sands of mammal experts belonging to more than 30 Specialist Groups of the
IUCN/SSC. The dataset, which contains the known geographic range (i.e., ex-
tent of occurrence as defined by IUCN), species-specific qualitative textual de-
scriptions of habitat preferences, and conservation status of each mammal
species, is available through the IUCN Red List of Threatened Species (1).

From this database, the habitat-suitabilitymodelswere developed at a 300-m
resolution and limited to occur within the geographic range of the species (10).
Three environmental variables formed the basis of the habitat models: eleva-
tion, type of land cover, and hydrological features. Elevational range where a
species is found, when known and recorded in the IUCN Red List, was in-
corporated into the habitat models. Expert information on other habitat af-
finities, including preferred types of land cover, tolerance to human impact,
and relationship to water bodies, were extracted from textual description
within the IUCN database and input as quantitative data into the habitat
models. Habitat models ranked areas with a three-level gradient of habitat
suitability: (i) high, corresponding to primary habitat (i.e., preferred habi-
tat where the species can persist); (ii) medium, corresponding to habitat where
a species can occur, but not persist without nearby primary (i.e., high-suitability)
habitat; and (iii) unsuitable, where a species is expected to seldom or never be
found (10). A subset of models and their associated habitat-suitability ranks were
validated against available points of known species occurrences. Habitat was
further classified as to if it occurred within protected areas, using IUCN cate-
gories I–IV from the World Database of Protected Areas (46, 47). Full
details regarding the development of these habitat models are available else-
where (10), and data are available upon request from the model developers
(https://globalmammal.org/activities/research/distribution-modelling/).

FragmentationModels.Wemeasured fragmentation of high-suitability habitat,
because such habitat is defined as essential for species persistence. When
delineating high-suitability patches in the geographic range, we eliminated
small patches (<four adjacent cells at 300-m resolution) potentially created by
artifacts contained in underlying land-use and cover maps. This approach re-
duced the influence of spurious, isolated patches and improved computational
efficiency of our fragmentation analyses. We then defined high-suitability
habitat patches to be formed as clusters of suitable cells that were adjacent
in any of the eight-neighborhood cells.

For each species we quantified the degree of fragmentation of high-suitability
habitat by calculating the average Euclidean distance of all cells within high-
suitability habitat from the nearest edge [that is, “GISfrag” (11, 12)]; edges de-
marcated the boundary between high-suitability and medium-suitability or
unsuitable habitat, distributed either in the matrix external to habitat patches
or as internal perforations within a patch. Low values of the average Euclidean
distance into habitat for each species represent more highly fragmented
habitat, whereas high values represent more core habitat and less-fragmented
habitat. We considered a variety of other landscape metrics (including
FRAGSTATS) and selected the GISfrag metric because it does not require an
arbitrary distance threshold of what constitutes an “edge,” accounts for dif-
ferent shapes of patches and landscapes patterns and arrangements, is a ro-
bust measure that accounts for the distribution of patch area (48), is
comparable across landscapes of different extents, and provides stable, readily
interpretable information (12). Furthermore, Euclidean distance-to-edge was
found to be singularly valuable in quantifying global forest fragmentation (8).
We did not calculate distance between patches through the intervening
landscape “matrix,” so our metric does not report on patch isolation or
landscape configuration. For graphical display (Figs. 1 and 2 and Fig. S1), we
inverse-coded the GISfrag metric to facilitate a more intuitive interpretation,
where high GISfrag values represented high degrees of fragmentation.

Our analysis of fragmented habitat is also robust to any specific scaling as-
sumption. Although information on dispersal ability can help inform the scale of
fragmentation effects (49, 50), a comprehensive database of dispersal distance
for all mammal species does not exist. Prior studies have attempted to ap-
proximate dispersal using allometric relationships based on body mass alone
(51, 52). However, dispersal distances are highly heterogeneous even within the
same species and are influenced by a variety of life-history traits and ecological
factors, such as diet, sociality, and home-range area; thus, body size can be an
inaccurate predictor of dispersal (50). Additionally, our inclusion of body mass
as a predictor of extinction risk (see next section) further accounts for the
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potential latent influence of scale-dependent effects on species-specific re-
sponses to fragmentation, and inclusion of dispersal estimates would poten-
tially lead to circularity and redundancy with our body size covariate. Rather
than speculate about the effects of spatial scale on dispersal distance or other
species-specific responses to fragmentation, our primary assumption is that
further distance into the interior of a habitat patch is beneficial, given that it
signifies larger patches and fewer edge and fragmentation effects [see also
Haddad et al. (8) for a similar assumption to assess global forest fragmentation].

Phylogenetic Comparative Methods.Weused phylogenetic comparativemethods
to examine the relationship between the fragmentationmetric and various species
characteristics, including IUCN Red List status, range size, body mass, and the
proportion of high-suitability habitat within the geographic range. We first used
Pagel’s λ (53) to determine the strength of the phylogenetic signal in these vari-
ables. We found that the phylogenetic signal in the fragmentation metric was
moderate (λ = 0.60) and similar to the values we obtained for range size (λ = 0.56),
the proportion of high-suitability habitat within the range (λ = 0.45), and IUCN Red
List status (λ = 0.67). Pagel’s λ value, however, was much higher for body size (λ =
0.99), a variable for which a strong phylogenetic signal was expected given that it
is an evolved trait intrinsic to organisms. We therefore corrected for phylogenetic
signal in our analyses. Because of nonnormal distributions, we ln-transformed the
fragmentation metric, range size, and body mass, and arcsine square-root–trans-
formed the proportion of high-suitability habitat in all statistical analyses.

Mammal Phylogeny and Life-History.Weused the extantmammalian supertree
phylogeny developed by Bininda-Emonds et al. (54, 55) that used the best
estimates of divergence times (n = 4,510). To link this phylogeny to the tax-
onomy used by Rondinini et al. (10), we edited the two datasets to reconcile
synonym species using Wilson and Reeder (45), and deleted species that were
not common to both datasets. We did not incorporate new species into either
dataset, and pruned all nonterrestrial mammals (cetaceans, seals, and sire-
nians) and Homo sapiens from the phylogeny, leaving a total of 4,018 species
from 26 taxonomic orders. All phylogenetic analyses were conducted in the R
statistical package (v3.1.3, R Development Core Team, 2015) using the ape
(56), Geiger (57), and phylolm (58) packages.

Data on body mass were extracted from the PanTHERIA database (59). Where
no body mass was listed, we first checked if it was present in the MOM database
(60). If it was not, we followed the samemethods as in Crooks et al. (12) and used
the midpoint of the body mass range presented in Nowak (61) for that species. If
not listed in Nowak (61), we used data from the closest member of the same
species group, sister species of the same genus, or closest relative as indicated by
Wilson and Reeder (45). If no other data were available, an average of all species
in the genus was used. In other cases where PanTHERIA data were missing, in-
formation was copied and pasted from a synonym or sister species.

Fragmentation as a Predictor of Extinction Risk. We used a phylogenetic gen-
eralized linear model (58) to evaluate the relative capacity of our fragmentation
metric and two widely used macroecological variables, body mass and range
size, to explain extinction risk, as indexed by IUCN status categories (13). Data
Deficient species (n = 388) were initially excluded from these analyses given
they have inadequate information to assess extinction risk (13), so we evaluated
five status categories, including Least Concern (n = 2,633 for phylogenetic
analyses), Near Threatened (n = 266), Vulnerable (n = 345), Endangered (n =
315), and Critically Endangered (n = 71). A species is classified by the IUCN as
Least Concern when it is widespread and abundant and does not qualify for
listing in other categories, and as Near Threatened when it does not qualify for
a threatened category now but is close to qualifying for a threatened category
in the near future (13). A species is classified as Vulnerable, Endangered, or
Critically Endangered when the best available evidence indicates it faces a high,
very high, or extremely high risk of extinction in the wild, respectively. Given
these criteria, we reclassified the IUCN categories into a binary threat using two
classification schemes. In the first analysis, we assumed species classified by the
IUCN as Least Concern and Near Threatened faced no immediate extinction risk,
whereas species classified as “threatened” (i.e., Vulnerable, Endangered, and
Critically Endangered) faced some degree of extinction risk. This is a standard
binary classification scheme in prior extinction-risk studies (16). We then con-
ducted a second analysis, again categorizing Least Concern species as having no
immediate extinction risk, but assuming Near Threatened species face some
extinction risk, given that the IUCN identifies such species as close to being
threatened; we thus view this comparison as a conservative and precautionary
approach regarding extinction risk of Near Threatened species (13). We used
AIC (62, 63) to compare models with all combinations of fragmentation, body
mass, and range size as predictors of extinction risk; AIC analyses included
calculations of model probabilities (the likelihood of the model given the data
and model set) and evidence ratios (the weight of evidence of each model

relative to the best model). Finally, to further explore patterns of fragmenta-
tion in species classified as nonthreatened by the IUCN, we also used phylo-
genetic generalized linear models to compare species listed as Least Concern to
those listed as Near Threatened or Data Deficient.

The IUCN Red List process is expert-driven, and the IUCN uses five criteria to
assign species to categories of extinction risk (13). One of those criteria is criterion
B, used to list species that have restricted geographic ranges, with subcriteria for
species that are severely fragmented or exist in few locations (subcriteria B1a/
B2a), or are undergoing continuing decline (B1b/B2b) or extreme fluctuations in
population size or distribution (B1c/B2c). To evaluate the reliability of criteria
used by the IUCN to assess if a taxon belongs in the threatened category, in
particular those subcriteria (B1a/B2a) relating to habitat fragmentation, we used
a phylogenetic generalized linear model to compare fragmentation levels for
threatened species classified under subcriteria B1a/B2a to fragmentation levels
for threatened species that did not meet the B1a/B2a subcriteria. As expected,
threatened species classified under subcriteria B1a/B2a had significantly higher
degrees of fragmentation (Results and Discussion).

These results, however, might imply that our use of habitat fragmentation as a
predictor of extinction risk may lead to potential circularity with the IUCN Red List
criteria. To explore this issue, we followed prior approaches (25–27) and conducted
additional analyses after first excluding threatened species listed under relevant
listing criteria. Red List assessment guidelines stipulate that assessors should eval-
uate each species against all listing criteria, and all relevant criteria should be ap-
plied (13). Furthermore, the Red List guidelines encourage assessors to adopt a
precautionary attitude to uncertainty when applying the criteria, so if range re-
striction or fragmentation was deemed a plausible threat by assessors, criterion B
should be applied, even in the presence of uncertainty. Because of the relationship
between range size and fragmentation (Results and Discussion, Fig. 2, and Fig. S1),
we decided to adopt a conservative approach to account for potential circularity
and exclude all species categorized because of range restriction (i.e., under any
combination of subcriteria of criterion B, representing 46.8% of threatened spe-
cies). We then used phylogenetic generalized linear models and AIC to compare
models with all combinations of fragmentation, body mass, and range size as
predictors of binary extinction risk. As above, we used two classification schemes to
model extinction risk, assuming Near Threatened species (i) face no immediate
extinction risk or (ii) face some extinction risk. For each model, we compared Least
Concern/Near Threatened species to those threatened species not listed under
criterion B.

We also evaluated how our fragmentation metric related to body mass and
range size. We first conducted simple correlation analyses, corrected for phy-
logeny, relating fragmentation to body mass and also to range size. We then
evaluated these relationships further with a phylogenetic generalized least-
squares regression (64) that assessed the relative influence of body mass and
range size on the fragmentation metric; we used AIC to compare models with all
combinations of body mass, range size, and their interaction as predictors of
habitat fragmentation. For our generalized least-squares regressions, we as-
sumed that the continuous covariates evolved randomly after a speciation event
(65), so we used a Brownian-motion model to define the structure of the cor-
relation among species.

In addition to the macroecological variables, we also conducted two addi-
tional phylogenetic generalized least-squares regressions relating fragmenta-
tion to proportion of high-suitability habitat within the range and to proportion
of protected high-suitability habitat within the range. Prior work has demon-
strated that prevalence of remaining suitable habitat within the geographic
range, or conversely the proportion of unsuitable human-affected land cover, is
predictive of threat status in mammals (10, 14, 16) and other taxa (66, 67). We
also conducted separate phylogenetic generalized linear models to evaluate
the relative importance of fragmentation versus proportion of suitable habitat
as sole predictors of extinction risk. These tests thus helped distinguish between
the effects of habitat loss per se (as assessed by proportion of suitable habitat
remaining in the range) from how remaining suitable habitat was distributed
into intact, core habitat patches (as assessed by our fragmentation metric).

Mapping Fragmentation Hotspots.Wegenerated globalmaps of fragmentation
by summing the fragmentation metric at each 300 × 300-m cell for all terrestrial
mammal species worldwide. Because we summed metrics for all species within
a given area (Fig. 3), degree of fragmentation in part reflects global patterns of
species distribution and richness. Thus, we also generated global maps dis-
playing an average fragmentation index that was corrected for species richness
(for details, see Supporting Information).

Our fragmentation analyses are based on the extent and geometry of high-
suitability habitat and do not distinguish as towhether fragmentation is caused
by natural factors (e.g., elevational or hydrological barriers) or anthropogenic
disturbances (e.g., human development). To further identify the sources of
fragmentation, we generated another map that highlighted anthropogenic
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fragmentation specifically by weighting the global fragmentation map with a
recently constructed human modification (HM) model, which combines the
effects of multiple stressors (e.g., urban and agricultural land cover, energy
production, nighttime lights, and roads) into an overall score of HM globally
[approach and technical details in Theobald (29) and Supporting Information].
When weighting our original fragmentation map with the HM model, the
resulting map identifies regions that have been fragmented by human
development specifically, and de-emphasizes regions that are naturally

fragmented such as high-elevation areas and landscapes with water bodies
interspersed (e.g., relictual glaciated areas).
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