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Abstract

The goal of modern Clinical Decision Support (CDS) systems is to provide physicians with 

information relevant to their management of patient care. When faced with a medical case, a 

physician asks questions about the diagnosis, the tests, or treatments that should be administered. 

Recently, the TREC-CDS track has addressed this challenge by evaluating results of retrieving 

relevant scientific articles where the answers of medical questions in support of CDS can be found. 

Although retrieving relevant medical articles instead of identifying the answers was believed to be 

an easier task, state-of-the-art results are not yet sufficiently promising. In this paper, we present a 

novel framework for answering medical questions in the spirit of TREC-CDS by first discovering 

the answer and then selecting and ranking scientific articles that contain the answer. Answer 

discovery is the result of probabilistic inference which operates on a probabilistic knowledge 

graph, automatically generated by processing the medical language of large collections of 

electronic medical records (EMRs). The probabilistic inference of answers combines knowledge 

from medical practice (EMRs) with knowledge from medical research (scientific articles). It also 

takes into account the medical knowledge automatically discerned from the medical case 

description. We show that this novel form of medical question answering (Q/A) produces very 

promising results in (a) identifying accurately the answers and (b) it improves medical article 

ranking by 40%.

Keywords

Question Answering; Medical Information Retrieval; Clinical Decision Support

1. INTRODUCTION

In their everyday practice, physicians make a variety of clinical decisions regarding the care 

of their patients, e.g. deciding the diagnosis, the test(s) or the treatment that they prescribe. 

Clinical Decision Support (CDS) systems have been designed to help physicians address the 

myriad of complex clinical decisions that might arise during a patient’s care [11]. By 

leveraging the fact that patient care is documented in electronic medical records (EMRs), 

one of the goals of modern CDS systems is to anticipate the needs of physicians by linking 
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EMRs with information relevant for patient care. Such relevant information can be retrieved 

from bio-medical literature. Recently, the special track on Clinical Decision Support in the 

Text REtrieval Conference (TREC-CDS) [26], has addressed the challenge of retrieving bio-

medical articles relevant for to a medical case when answering one of three generic medical 

questions: (a) “What is the diagnosis?”; (b) “What test(s) should be ordered?”; and (c) 

“Which treatment(s) should be administered?”. The TREC-CDS track did not rely on a 

collection of EMRs, instead it used an idealized representation of medical records in the 

form of 30 short medical case reports, each describing a challenging medical case. Thus, 

systems developed for the TREC-CDS challenge were provided with a list of topics, 

consisting of (1) a narrative describing the fragments from the patient’s EMRs that were 

pertinent to the case; (2) a summary of the medical case and (3) a generic medical question. 

Systems were expected to use either the medical case description or the summary to answer 

the question by providing a ranked list of articles available from PubMed Central [31] 

containing the answers. As only one of the three generic questions was asked in each topic, 

the expected medical answer type (EMAT) of the question was diagnosis, test or treatment. 

Figure 1 illustrates three examples of topics evaluated in the 2015 TREC CDS, one example 

per EMAT. Figure 1 also illustrates the correct answer of each of the questions.

In the 2015 TREC-CDS track a new task was offered, in which for questions having the 

EMAT ∈ {test, treatment}, the patient’s diagnosis was provided (shown in Figure 1). The 

results for this new task, as reported in [26] were superior to the results for the same topics 

when no diagnoses were provided. This observation let us to believe that when knowing 

even a partial answer to the question, the ability to retrieve relevant bio-medical literature 

was significantly improved. Moreover, we asked ourselves if identifying the answers to the 

medical questions could be performed with acceptable accuracy. More importantly, we 

wondered if we should first try to find the answer and then rank the relevant scientific 

articles for a given question. It was clear to us from the beginning that answer identification 

would be a harder problem, unless we could tap into a new form of knowledge and consider 

answering the questions directly from a knowledge base (KB). Question answering (Q/A) 

from KBs has experienced a recent revival. In the 60’s and 70’s, domain-specific knowledge 

bases were used to support Q/A, e.g. the Lunar Q/A system [34]. With the recent growth of 

KBs such as DBPedia [3] and Freebase [7], new promising methods for Q/A from KBs have 

emerged [9, 35, 5]. These methods map questions into sophisticated meaning-

representations which are used to retrieve the answers from the KB.

In this paper, we present a novel Q/A from KB method used for answering the medical 

questions evaluated in TREC-CDS. First, instead of relying on an existing large KB, we 

automatically generated a very large medical knowledge graph from a publicly available 

collection of EMRs. As reported in [23], the medical case descriptions from the TREC-CDS 

topics were generated by consulting the EMRs from MIMIC-II [17]. Consequently, we used 

all the publicly available EMRs provided by MIMIC-III (a more recent superset of the 

EMRs in MIMIC-II) to automatically generate a very large probabilistic knowledge graph 

designed to encode knowledge acquired from medical practice. Second, instead of retrieving 

answers directly from the KB, the answers were obtained through probabilistic inference 

methods. Third, instead of identifying the answers from relevant PubMed articles, we used 

the answers inferred from the knowledge graph to select and rank the PubMed articles which 
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contain them. In this way, we replaced the architecture of the typical system that was 

evaluated in TREC-CDS, illustrated in Figure 2(a) with a new architecture, illustrated in 

Figure 2(b). The new architecture identifies the ranked list of answers to the questions as 

well as the ranked list of scientific articles that contain them. While current state-of-the-art 

systems that were evaluated in TREC-CDS first processed the topics and then used query 

expansion methods to enhance the relevance of the retrieved scientific articles from PubMed, 

as reported in [23] and illustrated in Figure 2(a), we relied on a knowledge graph encoding 

the clinical picture and therapy of a large population of patients documented in the MIMIC 

III EMR database. The automatic generation of the knowledge graph involved: (1) medical 

language processing to identify medical concepts representing signs/symptoms, diagnoses, 

tests and treatments, as well as their assertions; (2) the cohesive properties of the medical 

narratives from the EMRs; and (3) a factorized Markov network representation of the 

medical knowledge. As illustrated in Figure 2(b), this probabilistic knowledge graph was 

used for inferring the answer of the TREC-CDS topics, which were processed to discern the 

medical concepts and their assertions in the same format as the nodes from the knowledge 

graph. We experimented with three different probabilistic inference methods to identify the 

most likely answers for each of the TREC-CDS topics evaluated in 2015. By participating in 

the challenge, we had access to the correct answers1, thus we could evaluate the correctness 

of the answers identified by our novel Q/A from KB method. Moreover, the inferred answers 

allowed us to produce a ranking of the scientific articles that contained them and thus define 

a novel, answer-informed relevance model. Our main contributions in this paper are:

1. Answering medical questions related to complex medical cases from an 

automatically generated knowledge base derived from a vast, publicly available 

EMR collection;

2. Using probabilistic inference to identify answers from a vast medical knowledge 

graph;

3. Combining medical knowledge derived from an EMR collection with medical 

knowledge derived from relevant scientific articles to enhance the quality of 

probabilistic inference of medical answers – a combination that unifies medical 

knowledge characterizing medical practice (from EMRs) with medical 

knowledge characterizing medical research (from scientific articles); and

4. Using the likelihood of the automatically discovered answers to the question 

associated with a topic to produce a novel ranking of the relevant scientific 

articles containing the answers.

The remainder of the paper is organized as follows. Section 2 details the answer inference in 

the new architecture for Q/A-CDS. Section 3 details the automatic generation of the medical 

knowledge graph while Section 4 presents the three forms of probabilistic inference of 

answers we experimented with. Section 5 discusses the experimental results and Section 6 

summarizes the conclusions.

1All participants in the 2015 TREC-CDS track were provided with the correct answers to the topics a few months after the evaluation.
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2. AN ARCHITECTURE FOR INFERRING MEDICAL ANSWERS

The cornerstone of our medical Q/A method for clinical decision support (CDS) is the 

derivation of the answers to a topic’s question from a vast medical knowledge graph, 

generated automatically from a collection of EMRs. The medical knowledge base contained 

approximately 634 thousand nodes and 14 billion edges, in which each node represents a 

medical concepts and the belief value (or assertion, as described in Section 3.3) associated 

with it. We automatically identified four types of medical concepts: signs/symptoms, tests, 

diagnoses and treatments (as detailed in Section 3.2). However, identifying medical concepts 

is not sufficient to capture all the subtleties of medical language used by physicians when 

expressing medical knowledge. Medical science involves asking hypotheses, experimenting 

with treatments, and formulating beliefs about the diagnoses and tests. Therefore, when 

writing about medical concepts, physicians often use hedging as a linguistic means of 

expressing an opinion rather than a fact. Consequently, clinical writing reflects this modus 
operandi with a rich set of speculative statements. Hence, automatically discovering clinical 

knowledge from EMRs needs to take into account the physician’s degree of belief by 

qualifying the medical concepts with assertions indicating the physician’s belief value (e.g. 

HYPOTHETICAL, PRESENT, ABSENT) as detailed in Section 3.3. It should be noted that 

the same medical language processing techniques were used to process the EMRs, the 

medical topics, and the (relevant) scientific articles from PubMed.

To represent the relations spanning the medical concepts in our knowledge graph, we 

modeled the cohesive properties of the narratives from EMRs (details are provided in 

Section 3.1). In order to use this graph to infer answers to medical questions we cast the 

medical knowledge graph as a factorized Markov network, which is a type probabilistic 

graphical model. We call this graphical model the clinical picture and therapy graph (CPTG) 

because it enables us to compute the probability distribution over all the possible clinical 
pictures and therapies of patients. For a given topic t, the set of medical concepts and their 

assertions discerned from t is interpreted as a sketch of the clinical picture and therapy 

described in the topic, represented as Z(t). Thus, answering the medical question associated 

with t amounts to determining which medical concept in the CPTG (with the same type as 

the expected medical answer type or EMAT) has the highest likelihood given Z(t). In 

addition to the medical sketch Z(t), we believed that answering medical questions with the 

CPTG could benefit from combining the medical sketch of a topic with knowledge acquired 

from individual scientific articles deemed relevant to the topic. This belief is also motivated 

by our observation that the joint distribution represented by the CPTG favors more common 

concepts, whereas the topics evaluated in the TREC-CDS correspond to complex medical 

cases, rather than common cases. Thus, we believe that the combination of Z(t) with all the 

medical concepts (and their assertions) derived from a scientific article l relevant to the topic 

generates a more complete view of a possible clinical picture and therapy for a patient than 

the one discerned only from the topic. Therefore, we consider this extended set of medical 

concepts and assertions for a topic t as its extended sketch, denoted as EZ(t,l). Regardless of 

which sketch z ∈ {Z(t),EZ(t,l)} of a topic is used, we discovered the most likely answer â to 

the medical question associated with t by discovering the medical concept which, when 

combined with the sketch, produces the most likely clinical picture and therapy. Formally:
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(1)

where the set A denotes all the concepts in the CPTG with the same type as the EMAT, and 

P(·) refers to the probability estimate provided by the CPTG.

The architecture of the medical QA system which operated on the medical graph that we 

derived automatically from a collection of EMRs (i.e. the CPTG) is represented in Figure 3. 

When the Z(t) is used in the inference of answers, we have Case 1, as illustrated in Figure 3, 

in which the topic is processed to derive Z(t) by automatically identifying medical concepts 

and assertions from either the description or the summary of the topic. When EZ(t,l) (the 

extended sketch of the topic) is used, in addition to the concepts (and their assertions) 

obtained from processing the topic, new knowledge from a relevant scientific article l needs 

to be derived. It is to be noted that from each relevant article for a topic t we generated a 

distinct extended sketch which combines Z(t) with the medical concepts (and their 

assertions) discovered in the article. In Figure 3, this is represented as Case 2, in which the 

first step is to derive (and expand) a query for the topic.

When processing the topic to generate a query, deciding whether to use individual words or 

concepts is important. In TREC-CDS, there were systems that used all the content words 

from the description to produce the query, while other systems considered only medical 

concepts. Both the Unified Medical Language System (UMLS) [6] and MeSH [18] were 

commonly used as ontological resources for medical concepts. In the architecture 

represented in Figure 3, we opted to use medical concepts rather than words, identifying the 

signs, symptoms, diagnoses, tests and treatments mentioned in the topic. We expanded each 

query with medical concepts from UMLS which share the same concept unique identifier 

(CUI) as any concept detected from the topic, obtaining synonyms, and, in some cases, 

hyponyms, and hypernyms. Some medical concepts (e.g. “crystalloid solution”) or their 

synonyms (e.g. “sodium chloride”) are phrases rather than single words. Consequently, the 

resulting expanded query consists of lists of key-phrases which are processed by a relevance 

model to retrieve and rank articles from an index of PubMed articles. The index was 

generated from the PubMed Central Open Access Subset. We used a snapshot of these 

articles from January 21, 2014 containing a total of 733,138 articles which were provided by 

the TREC-CDS organizers. In TREC-CDS, systems implemented a variety of relevance 

models, as reported in [23]; we experimented with several relevance models, discussed in the 

evaluation section. For each of the first 1,000 relevant articles2, which we denote as L, we 

automatically identified the medical concepts and their assertions. This enabled us to 

generate for each article, lr ∈ L its extended medical sketch of the topic t, denoted as 

EZ(t,lr).

2Although we could have considered every possible PubMed article, we limited our experiments to only the top one-thousand articles 
to improve computational efficiency.
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A close inspection of the contents of the extended medical sketches obtained for many 

scientific articles indicated the inclusion of many medical concepts which presented no 

relevance to the topic. This reflects the fact that many of the scientific articles in PubMed 

Central document unexpected or unusual medical cases – often in non-human subjects. This 

created a serious problem in the usage of the extended medical sketches to infer answers 

from the CPTG. Specifically, because the likelihood estimate of an answer enabled by the 

CPTG is based on the observed clinical pictures and therapies of patients in the MIMIC 

clinical database, non-relevant scientific articles which contained common diagnoses, 

treatments, tests, signs, or symptoms had a disproportionately large impact on the ranking of 

answers. In order to solve this problem, we refined the ranking of answers provided in 

Equation 1 in order to incorporate the relevance of the scientific article used for creating 

each extended medical sketch. Thus, in Case 2 illustrated in Figure 3, we produced the 

answer ranking by using a novel probabilistic metric, namely the Reciprocal-Rank 

Conditional Score (RRCS). RRCS considers for each article in L, (1) the conditional 

probability of the answer given the extended sketch associated with that article, i.e. EZ(t,lr), 
as well as (2) the relevance rank of the article, represented by the rank r of lr in L. Formally, 

the new ranking of answers to a question associated with topic t generated by the RRCS 

metric is defined as:

(2)

The ranking of answers based on the RRCS reflects both the likelihood of the answer 

according to EZ(t,lr) as well as the relevance of each scientific article.

In addition to ranking medical answers, we also use the CPTG to rank scientific articles 

based on the answers they contain. In Case 1, when the medical sketch of a topic Z(t) was 

used for inferring the answer, the ranked list of answers was produced by relying entirely on 

the knowledge from the medical sketch and from the EMR collection. Therefore, the set of 

scientific articles that contain at least one of the answers of the medical question for a topic t 
in Case 1 needs to be retrieved. Hence, a query in disjunctive form of all the inferred 

answers is used. When the relevance model uses the query against the index, it provides a 

list of ranked relevant articles L. We denote by Yi all answers found in a relevant article 

ranked on position i of L. This allows us to define the relevance of scientific articles 

responding to the answer of a topic t as:

(3)

Equation 3 represents a ranking of each scientific article li ∈ L based on the likelihood of the 

answers in the article given the medical sketch derived for the topic.

In contrast, in Case 2 represented in Figure 3, when EZ(t,l) is used for inferring the answers, 

the set of ranked relevant scientific articles L is known, as it was already used to provide the 

new knowledge for each EZ(t,li). Moreover, each answer found in any scientific article from 
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L is necessarily part of its extended medical sketch, thus Yi ⊆ EZ(t,li). Consequently, we 

define the relevance of scientific articles responding to the answer of a topic t as:

(4)

In this way the relevance of an article responding to the question of a topic is computed by 

comparing the likelihood of the extended medical sketch which includes the answers found 

in the article against the likelihood of the extended medical sketch which does not contain 

the answers found in the article. Clearly, the ability to infer the probability of a combination 

of medical concepts (and their assertions), i.e. the capability of determining P(·), enabled us 

to produce the new, answer-informed ranking models for answers as well as scientific 

articles given in Equations 1–4.

3. GENERATING THE CLINICAL PICTURE AND THERAPY GRAPH

As defined in [25] the clinical picture constitutes the clinical findings about a patient (e.g. 

medical problems, signs, symptoms, and tests) that might influence the diagnosis. In 

addition, therapy is defined as the set of all treatments, cures, and preventions included 

within the management plan for a patient. Moreover the clinical picture may vary 

significantly between patients with the same disease and may even vary between different 

points in time for the same patient during the course of his/her disease. Therefore, in order to 

capture the variation in the clinical picture and therapy of a patient population, we created a 

clinical picture and therapy graph (CPTG) in which each node corresponds to a medical 

concept qualified by its assertion. Inspired by the approach reported in [12], we represented 

the CPTG as a 4-partite graph in which partitions of nodes represent all the signs/symptoms 

, all the diagnoses , all the tests  and all the treatments  which were automatically 

recognized in the MIMIC-III3 collection of EMRs. By considering four partitions of medical 

concepts, we need to encode all six possible types of relations between each partition of 

nodes in the CPTG. The relations types are: (1) , between signs/symptoms and 

diagnoses; (2) , between signs/symptoms and tests; (3) , between signs/

symptoms and treatments; (4) , between diagnoses and tests; (5) , between 

tests and treatments; and (6) , between diagnoses and treatments. We take advantage 

of the fact that any k-partite graph can be interpreted as a factorized Markov network [16], 

and encode the strength of these relations using mathematical factors. Figure 4 illustrates the 

factorized Markov network corresponding to the CPTG.

A factorized Markov network is a type of Probabilistic Graphical Model which represents 

knowledge in terms of (1) statistical random variables, and (2) mathematical factors (or 

functions), which assign a real value to each potential assignment of a set of random 

variables (known as the factor’s scope) allowing us to represent the strength of the 

relationships between the random variables in the model. In this representation, each 

possible medical concept (i.e. each node) is interpreted as a binary random variable. This 

3https://mimic.physionet.org/
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allows any possible clinical picture and therapy (CPT) to be encoded by assigning a value of 

1 to the random variable associated with each concept in the CPT which is asserted to be 

PRESENT, CONDUCTED, ORDERED, or PRESCRIBED, and a value of 0 to the random 

variable associated with each medical concept which is asserted to be ABSENT. Every other 

medical concept (i.e. those mentioned with another assertion, or which were not mentioned 

in the CPT) is considered a latent variable whose value is later inferred. This random 

variable representation allows us to encode any possible combination of medical concepts 
(and their assertions), which we represent as , in which 

represents the random variables corresponding to diagnoses,  represents the random 

variables corresponding to signs/symptoms,  represents the random variables 

corresponding to tests, and  represents the random variables corresponding to 

treatments. We can estimate the likelihood of  as:

(5)

Using the maximum likelihood estimate provided by , we have defined four factors 

which represent the (prior) probability of a CPT containing combinations of medical 

concepts with the same type: (1) , the likelihood of a CPT containing 

diagnoses in ; (2) , the likelihood of a CPT containing the signs/

symptoms given by ; (3) , the likelihood of a CPT containing the tests 

in ; and (4) , the likelihood of a CPT containing the treatments in .

The clinical picture and therapy of a patient also involves relationships between medical 

concepts of different types. To model these six types of relations, we considered six 

additional factors: (1) , the correlation between all the diagnoses in 

 and all the signs/symptoms in ; (2) , the correlation between all the 

signs/symptoms in  and all the tests in ; (3) , the correlation between 

all the diagnoses in  and all the tests in ; (4) , the correlation 

between all the diagnoses in  and all the treatments in ; (5) , the 

correlation between all the tests in  and all the treatments in ; and (6) 

, the correlation between all the signs/symptoms in  and all the 

treatments in .

All ten factors enable us to infer the probability of any possible clinical picture and therapy, 

such as the sketch z ∈ {Z(t),EZ(t,l)} of the clinical picture and therapy discussed in Section 

2. By definition, an (extended) sketch is a set of medical concepts and their assertions. Thus, 

we can encode z in terms of the random variables corresponding to the diagnoses , signs/

symptoms , tests , and treatments  the (extended) sketch contains, such that 

 As before, all the remaining random variables (i.e. ) 

are left as latent variables. Using the CPTG (illustrated in Figure 4), we can compute the 

probability of a medical sketch z:
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(6)

Or, the more compact equivalent notation:

(7)

where, for each factor, we ignore all medical concepts which do not have the semantic types 

expected by that factor’s scope (e.g. ). As defined, the probability 

distribution given in Equation 7 is the product of the ten factors defined above. Each of these 

factors depends on the maximum likelihood estimate of how many CPTs in the EMR 

collection contain various combinations of medical concepts. Thus, computing P(z) relies on 

the ability to automatically recognize medical concepts and their assertions in EMRs, as 

described in Sections 3.1 and 3.2.

3.1 Identification of Medical Concepts

Our methodology for automatically recognizing medical concepts in clinical texts benefits 

from the general framework developed by the 2010 shared-task on Challenges in Natural 

Language Processing for Clinical Data [30] provided by the Informatics for Integrating 

Biology at he Bedside (i2b2) and the United States Department of Veteran’s Affairs (VA). In 

this challenge, identification of medical concepts in clinical narratives targeted three 

categories: medical problems, treatments, or tests. In this work, we have extended this 

framework to also distinguish two sub-types of medical problems: (1) signs (observations 

from a physical exam) and symptoms (observations by the patient); and (2) the diagnoses, 

including co-morbid diseases or disorders. Figure 6 illustrates our methodology.

We followed the framework reported by [22] in which medical concept identification was 

cast as a three-stage classification problem, using 72,846 annotations of medical concepts 

and their assertions provided by the i2b2 challenge. In the first stage, a conditional random 

field (CRF) is used to determine the boundaries (starting and ending tokens) of each medical 

concept. In the second stage, a support vector machine (SVM) was used to classify each type 

of medical concept into a medical problem, treatment, or test.

Classification relied primarily on lexical features, as well as concept type information from 

UMLS and Wikipedia and predicate-argument semantics resulting from automatic feature 

selection as described in [22]. The resources used for feature extraction are The Unified 

Medical Language System (UMLS) [6], MetaMap [2], the GENIA project [14], WordNet 

[10], PropBank [15], the SwiRL semantic role labeler [29], and Wikipedia.

Unlike the work of [22], we introduced a third and final stage, in which we project each 

concept onto the UMLS ontology and classify it as a sign or symptom if the UMLS semantic 
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type is SYMPTOM OR SIGN or FINDING, and as a diagnosis otherwise. Finally, synonyms 

for each medical concept are provided by (1) identifying all UMLS atoms that share the 

same concept unique identifier (CUI) and (2) groups of article titles in Wikipedia which 

redirect to the same article. Thus, we can account for synonymous concepts in the CPTG by 

combining all the nodes corresponding to synonymous concepts. Figure 5 illustrates the 

results of medical concept recognition.

3.2 Recognizing the Medical Assertions

We followed the framework reported in [22] in which the belief status (or assertion type) of 

a medical concept is determined by a single SVM classifier. Medical assertions were 

categorized as PRESENT, ABSENT, POSSIBLE, HYPOTHETICAL, CONDITIONAL, or 

ASSOCIATED-WITH-SOMEONE-ELSE which were defined in the 2010 i2b2 challenge 

only for medical problems. Note that we have extended these assertion values to qualify tests 

and treatments as well as previously reported in [13]. We considered and annotated five new 

assertion values to encompass the physicians’ beliefs about tests and treatments: 

PRESCRIBED, ONGOING, and SUGGESTED for treatments as well as ORDERED and 

CONDUCTED for tests. We have produced an additional set of 2,349 new annotations for 

the new assertion values as previously reported in [13].

Our assertion classification methodology relies on the same feature set and external 

resources reported by [22]: UMLS, MetaMap, NegEx [8] and the Harvard General Inquirer 

[28]. These external resources, along with lexical features and statistical information about 

the assertions assigned to previous mentions of the same medical concept in the same 

document were used to train a multi-class SVM by following the framework reported in 

[22].

4. ANSWER INFERENCE

Inferring the answers to the question associated with a topic, as defined in Equations 1–4, 

relies on the ability of the CPTG to model the distribution over all possible CPTs. However, 

evaluating this distribution(defined in Equation 7) can be prohibitively expensive (it requires 

storing  counts). Another problem stems from the significant sparsity in clinical 

data: for a particular combination of medical concepts, we may not find a CPT which 

exactly matches the given combination (i.e.  may be zero). For example, if the 

diagnoses in the CPT are 

, we may not find any patient documented in the EMR collection who is diagnosed with all 

the diagnoses with the same assertions as in . Consequently, we would infer the likelihood 

of this sketch to be zero. Instead, we would prefer to consider patients whose clinical picture 

and therapies are similar to those provided in the sketch, relaxing the maximum likelihood 

estimation requirements. For this purpose, we considered three alternative inference 

techniques: (1) approximate inference based on the notion of Bethe free-energy, (2) pair-

wise variational inference, and (3) inference based on interpolated smoothing.
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4.1 Bethe Free-energy Approximation

We first considered state-of-the-art methods for approximate inference. Unlike other 

approaches for estimating inference, approximate inference techniques guarantee certain 

upper bounds on the error between their approximate probability and the true probability of 

the distribution. In the graphical modeling community, the most commonly used 

approximate inference algorithm is that of Loopy Belief Propagation [20] wherein variables 

and factors repeatedly exchange messages until, at convergence, the full distribution is 

estimated. More recently, approximate inference approaches have considered interpreting the 

distribution of a set of random variables as the information energy present in a physical 

system. In this setting, the distribution of all possible clinical pictures and therapies given in 

Equation 7 is cast as the energy J:

This allows us to then define the “Free Energy” of the system as follows:

(8)

where U(z) is the energy and H(z) is the entropy. As shown in [32] and [36], the minimum 

fixed points of the free energy equation are equivalent to fixed points of the iterative Loopy 

Belief Propagation algorithm. This means that minimizing the free energy in Equation 8 

obtains the same solution as running iterative loopy belief propagation on Equation 7 until 

convergence. Moreover, the Free Energy can be approximated using the Bethe 

approximation which transforms our original potentially infinite message passing problem 

into a simple, convex, linear programming problem based on pair-wise information:

where

and
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Thus, we can approximate P(z) from Equation 7 by minimizing FB over τ:

(9)

where τ must satisfy the following conditions:

(10a)

(10b)

(10c)

By representing the constraints in Equations 10a–10c as Lagrangian multipliers, we 

approximated the joint probability of any clinical picture and therapy from Equation 7 by 

using straight-forward stochastic gradient descent4. In our implementation, we used the 

publicly available Hogwild software for parallel stochastic gradient descent [21].

4.2 Pair-wise Variational Inference

In addition to approximate inference by Bethe-free energy, we wanted to know whether 

simpler approximations would suffice. An obvious and much simpler strategy for relaxing 

the maximum likelihood estimates to better handle sparsity would be to define each factor 

using the association between all pairs of concepts in the factor. In this way, the four same-

typed factors (ϕi) can be assigned to the product of all pair-wise MLE estimates in the 

CPTG:

Likewise, the factors ψ1…ψ6 can be similarly defined:

By using these alternative pair-wise definitions, we were able to estimate the joint 

distribution in Equation 7 by considering a a graph with a much simpler (i.e. pair-wise) 

4Although we have used stochastic gradient descent, any method for convex optimization may be used.
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structure. This approximation smooths the likelihood of a particular sketch by considering 

the likelihood of each pair of concepts in the sketch, rather than the likelihood of the entire 

sketch at once.

4.3 Inference Using Interpolated Smoothing

The pair-wise variational inference method defined in sub-section 4.2 still suffers from 

sparsity problems: if the likelihood for any pair of medical concepts is zero, then the joint 

probability will be zero. Moreover, the pairwise approach does not discriminate between the 

level of similarity between a given CPT (e.g. z) and each CPT used to generated the CPTG. 

We defined the level of similarity between two CPTs as the number of concepts contained in 

both CPTs. Thus, the levels of similarity range from perfectly similar (all |z| concepts in 

common) to perfectly dissimilar (0 concepts in common). In order to account for each of 

these levels of similarity, we interpolated the likelihood of a sketch z (or CPT), with the 

likelihoods of all CPTs formed by subsets of medical concepts in z. Although this would 

typically require enumerating all 2|z| subsets of z and, thus, would be computationally 

intractable, we reduced the complexity to be linear in the size of the EMR collection by 

casting the inference problem as an information retrieval problem.

By first indexing the medical concepts present in each patient’s EMRs, we were able to 

compute the smoothed likelihood of a particular sketch through a series of constant-time 

Boolean retrieval operations. Specifically, by indexing the medical concepts in the EMRs, 

we were able to obtain a binary vector for each medical concept in the sketch indicating 

which EMRs mentioned that concept. The sum of these binary vectors, which we denote as 

m, contains, for each EMR, the number of concepts in common with the CPT of the EMR 

and the sketch. A single iteration over m allowed us to compute the number of EMRs with 

CPTs within each level of similarity denoted as n0…n|z|. The smoothed likelihood of a 

clinical sketch was then calculated by interpolating the number of EMRs at each similarity 

level (ni):

where α ∈ [0,1] is a scaling factor such that when α = 0 no smoothing is performed and 

when α=1, the smoothed likelihood is the sum of vector n, or the total number of EMRs 

whose CPT shares each level of similarity with the medical sketch.

Thus, we have considered three approaches for inferring the distribution of CPTs given by 

Equation 7 which is used by our system not only to rank extracted medical answers, but also 

to rank the documents for each answer.

5. EXPERIMENTAL RESULTS

We evaluated the role of our approach for question answering towards clinical decision 

support in terms of (1) the quality of answers returned for each topic as well as (2) the 

quality of scientific articles retrieved for each topic. In addition to the quality of answers and 
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retrieved scientific articles, we also analyzed (3) the quality of the clinical picture and 

therapy graph. In these evaluations, we used the set of 30 topics (numbered 31–60) used for 

the 2015 TREC-CDS evaluation [26].

5.1 Medical Answer Evaluation

To determine the quality of answers produced by our system, we relied on a list of “potential 

answers” produced by the authors of the 2015 TREC-CDS topics and distributed by the 

TREC CDS organizers after the conclusion of the evaluation. These potential answers were 

not provided to the relevance assessors for judging document retrieval, nor were they 

provided to participating teams until after the evaluations were performed. Although the 

2015 TREC-CDS evaluation focused only the ability to retrieve and rank scientific articles, 

the potential answers provided after the conclusion of the evaluation allowed us to cast the 

TREC-CDS task as a question-answering problem. To our knowledge, we are the first to 

publish any results based on the potential answers to the 30 topics used in the 2015 TREC-

CDS evaluation. The potential answers indicate a single possible answer that the topic 

author had in mind when designing the topic; as such they do not represent the “best” 

answer, nor are they guaranteed to be represented in the document collection. Nevertheless, 

we evaluated the ranked list of answers produced by our system by using the potential 

answers as the gold-standard. We computed the Mean Reciprocal Rank (MRR) used in 

previous TREC Q/A evaluations [33], which is the average of the reciprocal (multiplicative 

inverse) of the rank of the first correct answer retrieved for each topic Table 1 lists the results 

for evaluating the inferred medical answers when considering each answer inference 

technique described in Section 4 for each medical sketch z ∈ {Z(t),EZ(t,l)} described in 

Section 2.

When evaluating the answers inferred from each possible medical sketch z and answer 

inference method, the highest performance was obtained using the Bethe Approximation 

method for answer inference and relying on the extended medical sketch (EZ(t,l)). Note that 

the difference between Bethe Approximation and the Interpolated Smoothing method for 

probabilistic inference was not statistically significant (p<0.001, N =30, Wilcoxon signed-

ranked test), however both methods significantly outperformed the pair-wise variational 

method which strongly suggests that modeling the clinical picture and therapies of patients 

requires more than pair-wise information about medical concepts. Overall, the answers 

obtained using Z(t) were of significantly poorer quality than those obtained using EZ(t,l). 
We observed that the answers produced by Z(t) typically included the most common 

diseases, tests, or treatments indicated in the EMR collection. This confirms our belief that 

incorporating the medical knowledge discerned from relevant scientific articles into the 

sketch yields substantially higher-quality answers. The results of EZ(t,l), from Table 1 show 

that the inferred answers from the clinical picture and therapy graph correspond reasonably-

well to the possible answers generated by the TREC topic creators.

In addition to the Mean Reciprocal Rank shown in Table 1, Figure 7 shows the reciprocal 

rank of the gold-standard answer for each topic used in the 2015 TREC-CDS evaluation 

when using Interpolated Smoothing on the answers produced by EZ(t,l). As shown, for the 

majority of topics, our top-ranked answer was equivalent to the gold-standard answer. We 
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obtained the correct answer for nearly all of the treatment topics (topics 51–60), but for 

some of the diagnosis topics (31–40), and many of the test topics (41–50) we did not rank 

the gold answers on the first position. For example, Table 2 illustrates the ten highest-ranked 

answers produced by our system against the gold answer provided by the TREC topic 

authors, along with the held-out diagnosis for each topic previously shown in Figure 1.

As shown, for Topic 32, we obtain the correct answer at the highest position. This is because 

the gold answer, cytomegalovirus was frequently mentioned in relevant scientific articles 

and had a strong association to the medical case in the CPTG. Topic 44, however, was more 

difficult and produced the answers with the lowest MRR of any topic processed by our 

system. In fact, the gold answer, flow cytometry was ranked as the 20-th most likely answer 

by our system. In analyzing this behavior, we compared the answers produced by our system 

against a literature review of PubMed articles about paroxysmal nocturnal hemoglobinuria, 

the diagnosis for the topic. Many of the answers we proposed represent alternative tests 

recommended by Medline Plus for patients diagnosed with the disease, such as the sugar 
water test, and Hb electrophoresis. In contrast, the high rank of genetic workup highlights an 

area for future improvement: certain highly general tests, such as a genetic workup, are 

likely to have already been considered by the physician. As such, future work may benefit 

by narrowing the resultant answers to favor rarer diseases, tests, or treatments. For Topic 53, 

we obtained the correct answer as the second-highest ranked answer. This highlights the 

ability of our system to discover the gold answer, fluid management, through mentions of 

the synonymous concept fluid replacement. Unfortunately, the top-ranked answer, 

nonsteroidal anti-inflammatory drugs (NSAIDs) produced by our system was actually 

counter-indicated for the diagnosis of Dengue in most articles. That is, although the concept 

was mentioned with a present assertion in the article, the context indicated that the concept 

should not be used to treat patients with Dengue. This indicates that the belief values 

expressed by assertions may not be sufficient for answer inference in all cases.

5.2 Medical Article Retrieval Evaluation

To evaluate the quality of ranked scientific articles, we relied on the relevance judgments 

produced for the 2015 TREC-CDS topics by Oregon Health and Science University 

(OHSU). Physicians provided relevance judgments for each of the participating systems by 

manually reviewing the twenty top-ranked articles as well as a 20% random sample of the 

articles retrieved between ranks 21 and 100 for each topic. A total of 37,807 topic-article 

judgments were produced for the 2015 topics. These judgments indicate whether retrieved 

scientific articles were (1) relevant, (2) partially relevant or (3) non-relevant. In our 

evaluations, as in the official TREC-CDS evaluations, we did not distinguish between 

relevant and partially relevant documents, considering only the binary relevance of each 

article. This allowed us to measure the quality of articles retrieved in terms of four 

information retrieval metrics also used by TREC: (1) the inferred Average Precision (iAP), 

wherein retrieved articles were randomly sampled and the Average Precision was calculated 

as in [37]; (2) the inferred Normalized Discounted Cumulative Gain (iNDCG), wherein 

retrieved articles were randomly sampled and the NDCG was calculated as per [38]; (3) the 

R-Precision, which measures the precision of the highest R-retrieved documents, where R is 
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the total number of relevant documents for the topic; and (4) the Precision of the first ten 

documents retrieved (P@10) [19].

We compared the quality of ranked scientific articles produced by our system when 

considering the medical sketch (Z(t)) or the extended medical sketch (EZ(t,l)), (2) each of 

the three answer inference methods reported in Section 4, and relying on (3) five relevance 

models. BM25 relied on the Okapi-BM25 [24] (k1 =1.2 and b=0.75) relevance model; TF-

IDF used the standard term frequency-inverse document frequency vector retrieval relevance 

model; LMJM and LMDir leveraged language-model ranking functions using Jelinek-

Mercer (λ=0.5) or Dirichlet (μ=2,000) smoothing [40], respectively; and DFR considered 

the Divergence from Randomness framework [1] with an inverse expected document 

frequency model for information content, a Bernoulli-process normalization of information 

gain, and Zipfian term frequency normalization. We also compare our performance against 

the top-performing systems for the 2015 TREC-CDS evaluation for both Task A (in which 

no explicit diagnoses was provided) and Task B (in which an explicit diagnoses was given 

for each topic focusing on a medical test and treatment). It should be noted that our system 

did not incorporate the gold-standard diagnoses given in Task B (i.e. our system was 

designed for Task A). Moreover, our system relies on only basic query expansion (described 

in Section 3.1) and a standard relevance model (BM25) while the top-performing systems 

submitted to the TREC-CDS task relied on significantly more complex methods for query 

expansion and often incorporated additional information retrieval components (e.g. pseudo-

relevance feedback, rank fusion) which were not considered in our architecture [23] As in 

the official evaluation, we distinguish between automatic systems which involved no human 

intervention, and manual systems in which arbitrary human intervention was allowed. Table 

3 illustrates these results. Clearly, the best performance obtained by our system (denoted 

with a ‘⋆’) relies on (1) the extended medical sketch (EZ(t,l)), (2) the interpolated-smoothing 

method for answer inference, and (3) the BM25 ranking function. Note that just as with the 

answer evaluation, there was no statistically significant difference in the performance 

obtained when using the Interpolated Smoothing or the Bethe Approximation methods for 

answer inference. As shown, our Q/A-informed relevance approach yields significantly 

improved performance to top reported systems for each task [26]. In task A, we obtained a 

49% increase in inferred NDCG compared to the best reported automatic system [4] and a 

40% increase to the best reported manual system [4]. In task B, in which participants were 

given the gold-standard diagnosis for every topic (except topics 31–40 in which the purpose 

was to retrieve documents describing possible diagnoses), we obtained a 14% increase in 

inferred NDCG compared to the best reported automatic [27] and manual system [39]. This 

suggests that much of the increased performance obtained by our system in Task A was 

based on our ability to infer the correct diagnosis. Moreover, it suggests that the ability to 

infer multiple related medical concepts (beyond the gold-standard diagnosis) can improve 

the relevance of retrieved scientific articles. This suggests that the relevant articles in the 

TREC-CDS task considered more answers than only those in the gold-standard set. 

Moreover, the high performance of our approach clearly demonstrates the impact of medical 

Q/A for medical clinical decision support.

Goodwin and Harabagiu Page 16

Proc ACM Int Conf Inf Knowl Manag. Author manuscript; available in PMC 2017 July 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



5.3 Medical Knowledge Evaluation

The clinical picture and therapy graph (CPTG) that we have automatically generated 

contained 634 thousand nodes and 13.9 billion edges with 31.2% of all nodes being 

diagnoses, 21.84% being signs or symptoms, 23.62% encoding medical tests, and 23.34% of 

nodes encoding medical treatments. The distribution of assertions that we obtained were: 

13.1% were absent, 0.01% were ASSOCIATED-WITH-SOMEONE-ELSE, 1.13% were 

CONDITIONAL, 33.31% were CONDUCTED, 17.05% were HISTORICAL, 0.72% were 

HYPOTHETICAL, 8.37% were ONGOING, 1.04% were ORDERED, 0.55% were 

POSSIBLE, 1.12% were PRESCRIBED, 22.34% were PRESENT, and 0.89% were 

SUGGESTED. Using the 2010 i2b2/VA shared-task annotations, medical concept detection 

achieved an F1-score of 79.59%, while assertion classification obtained 92.75%. We 

evaluated our new assertion types using 10-fold cross validation against the 2,349 

annotations we created and obtained an accuracy of 75.99%. Evaluating the quality of the 

edges contained in the CPTG was prevented by the fact all nodes in the CPTG are qualified 

by their assertions while no medical ontologies capture relations between concepts with 

these types of beliefs.

6. CONCLUSIONS

In this paper, a novel medical Q/A framework is presented in which answers are 

probabilistically inferred from an automatically derived medical knowledge graph. We 

experimented with three probabilistic inference methods, which enabled the identification of 

answers with surprisingly high MRR scores when evaluating the questions from the 2015 

TREC-CDS task. Although the questions were related to complex medical cases, the results 

that were obtained rivaled the performance of Q/A results obtained for simpler, factoid 

questions. To our knowledge, the medical Q/A framework presented in this paper is the first 

to address the feasibility of identifying the answers to the TREC-CDS questions instead of 

providing a ranked list of articles from PubMed where the answers can be found. We also 

explored the quality of the answers obtained to the medical questions from an automatically 

derived medical knowledge graph in two cases: (1) when considering the medical topic by 

itself and (2) when considering both the medical topic and a relevant scientific article. The 

second case proved to be far more successful than the first one, indicating that successful 

medical Q/A from knowledge bases need to combine three sources of knowledge: (1) 

knowledge of the medical case; (2) knowledge from scientific articles (reflecting knowledge 

developed in medical research); and (3) knowledge from a large EMR collection (reflecting 

knowledge acquired during medical practice). Moreover, when the answers of a medical 

question are known, they inform the ranking of relevant articles from PubMed with 40% 

increased inferred Average Precision to current state-of-the-art systems evaluated in the most 

recent TREC-CDS.
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Figure 1. 
Examples of topics evaluated in the 2015 TREC CDS track.
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Figure 2. 
Architectures of medical question answering systems for clinical decision support
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Figure 3. 
An architecture that implements two different cases for answering medical questions for 

clinical decision support
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Figure 4. 
Factorized Markov network modeling the likelihood of any possible clinical picture and 

therapy.
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Figure 5. 
Example of medical concepts and their assertions discerned from the description and 

summary of medical topic 32 (illustrated in Figure 1) as well as from the relevant PubMed 

article PMC3132335. Medical concepts mentioned in the text are typeset in boldface, while 

synonymous concepts are not.
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Figure 6. 
System for Medical Concept Recognition
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Figure 7. 
Reciprocal Rank for each topic evaluated in TREC-CDS 2015 based on probabilistic ranking 

using Interpolated Smoothing applied to the extended medical sketch EZ(t,l)
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Table 1

The Mean Reciprocal Rank (MRR) obtained when using each of the 3 inference techniques and each medical 

sketch.

Z(t) ⋆EZ(t,l)

⋆Bethe Approximation 0.125 0.694

Pair-wise Variational 0.083 0.502

Interpolated Smoothing 0.124 0.601
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Table 2

Examples of answers discovered for the medical cases illustrated in Figure 1

Topic 32 EMAT: DIAGNOSIS
Answers: cytomegalovirus; leishmania donovani; kala-azar; mycobacterium; columbiense; salmonella; interferon-gamma; 
pneumonitis; lymphocytic alveolitis; pulmonary infection
Gold Answer: cytomegalovirus

Topic 44 EMAT: TEST
Diagnosis: paroxysmal nocturnal hemoglobinuria
Answers: Hb electrophoresis; stability tests; genetic workup; renal biopsy; laboratory evaluation; ham test; sugar water tests; 
phosphatase; cd55; cd59; ultrasonography
Gold Answer: flow cytometry

Topic 53 EMAT: TREATMENT
Diagnosis: Dengue
Answers: nonsteroidal anti-inflammatory drugs; fluid replacement; methylprednisolone; acetaminophen; bed rest; isotonic fluids; 
starch; dextran; albumin; physiotherapy; methotextrate; analgesics
Gold Answers: supportive care, analgesics, fluid management
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