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ABSTRACT: Near-infrared surface plasmon resonance
imaging (SPRI) microscopy is used to detect and character-
ize the adsorption of single polymeric and protein
nanoparticles (PPNPs) onto chemically modified gold
thin films in real time. The single-nanoparticle SPRI
responses, Δ%RNP, from several hundred adsorbed nano-
particles are collected in a single SPRI adsorption
measurement. Analysis of Δ%RNP frequency distribution
histograms is used to provide information on the size,
material content, and interparticle interactions of the
PPNPs. Examples include the measurement of log-normal
Δ%RNP distributions for mixtures of polystyrene nanoparticles, the quantitation of bioaffinity uptake into and aggregation
of porous NIPAm-based (N-isopropylacrylamide) hydrogel nanoparticles specifically engineered to bind peptides and
proteins, and the characterization of the negative single-nanoparticle SPRI response and log-normal Δ%RNP distributions
obtained for three different types of genetically encoded gas-filled protein nanostructures derived from bacteria.
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The rational design, synthesis, and characterization of
both polymeric and protein nanoparticles (PPNPs) for
applications in materials, catalysis, and biotechnology

have become a significant component of the current nano-
science revolution. PPNPs have been constructed from a wide
variety of polymeric materials including single-chain or cross-
linked polymers, dendrimers, synthetic polypeptides, proteins,
and polysaccharides.1−6 PPNPS can be designed to form
compact structures, porous hydrogels, or other three-dimen-
sional structures that can exhibit a wide variety of rheological
properties, display a large number of interfacial chemical
moieties with specific affinities or reactivities on the outside of
the nanoparticle, or incorporate internal chemical binding sites
that can be used to capture and release chemicals or smaller
nanoparticles.7−10 Examples include elastin-like polypeptide
nanoparticles that are biodegradable and thermally respon-
sive,11,12 polysaccharide-based nanoparticles for medical diag-
nostics and therapies,13 and cross-linked N-isopropylacrylamide
(NIPAm) hydrogel nanoparticles that incorporate a mixture of
chemical functional groups to create specific binding sites for
bioaffinity uptake.14−16 Genetically coded protein nanostruc-
tures with acoustic properties, such as gas vesicles (GVs), have
been identified for use as ultrasound and magnetic resonance
imaging contrast agents.17−20

The characterization of PPNPs at the single-nanoparticle
level is challenging. Unlike metallic or semiconductor particles,
which often exhibit a strong size-dependent optical re-
sponse,21−23 PPNPs typically do not possess any convenient
spectroscopic markers. Additionally, PPNPs often contain a
significant amount of solvent, and their size and composition
may vary with external pH, temperature, or pressure. A
particularly important but difficult measurement is the
quantification of bioaffinity adsorption and uptake into single
PPNPs that have been designed for drug delivery or toxin
neutralization applications. PPNPs are typically characterized
with a combination of bulk dynamic light scattering (DLS) and
multiangle light scattering (MALS) measurements,24−26 cryo-
TEM,27,28 and, if the PPNPs are sufficiently rigid, scanning
probe measurements.29,30 In some studies, the incorporation of
fluorophores into the nanoparticle has been employed to
facilitate single-nanoparticle detection and to provide some
limited characterization information.31,32

The optical technique of single-nanoparticle surface plasmon
resonance imaging (SPRI) microscopy has recently emerged as
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an excellent in situ refractive-index based method for the
detection and characterization of single PPNPs. As first
identified in 2010 by Zybin and Tao,33−35 an adsorbed
nanoparticle can interact with traveling surface plasmon
polariton waves created on a gold thin film surface to create
a point diffraction pattern in the differential SPRI image. Single
metallic nanoparticles, polymer nanoparticles, liposomes, cells,
and viruses have been detected with SPRI microscopy.36−46

The intensity of the diffraction pattern depends on the
integrated refractive index of the nanoparticle and, thus, varies
with nanoparticle size and material content. Real-time SPRI
measurements have been used previously for the digital
biosensing of single-nanoparticle bioaffinity adsorption events
at chemically modified gold thin films.41,47 In addition to
nanoparticle-counting measurements, changes in the intensity
of the average single-nanoparticle SPRI response (⟨Δ%RNP⟩)
have been used to quantitate the bioaffinity uptake of
polypeptides and proteins by hydrogel nanoparticles.42,43

Determining the distribution of Δ%RNP values obtained
during a single-nanoparticle SPRI adsorption measurement in
addition to the average response can provide much more
detailed information about a population of PPNPs. Since the
Δ%RNP response depends on the integrated refractive index of
the nanoparticle, Δ%RNP frequency distributions will reflect
variations in both nanoparticle size and composition. An
example of the latter would be changes in a Δ%RNP distribution
created by variations in molecular uptake into a population of
PPNPs designed for drug delivery. While ensemble measure-
ments such as DLS can provide limited information on the
moments of a PPNP nanoparticle distribution, single-nano-
particle SPRI measurements can directly measure the detailed
frequency distribution histogram of a PPNP population.
In this paper, we provide three different examples of how to

obtain and use single PPNP Δ%RNP distributions from real-
time SPRI adsorption measurements. As a first case, we
demonstrate that Δ%RNP distributions can be used to measure
nanoparticle size distributions for mixtures of solid polystyrene
(PS) nanoparticles. In a second set of experiments, we
demonstrate how Δ%RNP distributions obtained from porous
NIPAm-based hydrogel nanoparticles (HNPs) can be used to
monitor changes in PPNP structure and aggregation due to the
bioaffinity uptake of peptides and proteins. In the final example,
we show that the adsorption of gas-filled protein nanostructures
produces an unusual negative single-nanoparticle SPRI
response with a Δ%RNP distribution that depends on the
shape and size of the particle. The three examples presented in
this paper have been chosen to demonstrate that the single-
nanoparticle SPRI measurements can be applied to three very
different classes of PPNPs: solid polymer nanoparticles, highly
porous, solvent-swollen polymer nanoparticles, and protein
nanostructures that enclose a gas volume.

RESULTS AND DISCUSSION
Single-Nanoparticle SPRI Adsorption Measurements.

The detection and characterization of single polymer and
protein nanoparticles was achieved by using real-time SPRI
microscopy measurements to detect the irreversible adsorption
of individual nanoparticles onto a chemically modified gold thin
film surface. The optical setup of the near-infrared single-
nanoparticle SPRI microscope used in these experiments is
shown in Figure 1a and has been described in detail in a
previous publication.41 Briefly, an 814 nm laser was expanded,
collimated, and then polarized before being directed off-axis

through the back of a high numerical aperture microscope
objective and onto the back of a gold-coated microscope
coverslip. The reflected image (56.5 μm × 56.5 μm) was
captured with a CMOS camera (see the Methods section for
more details). For each SPRI adsorption measurement, a 10 μL
solution of nanoparticles was exposed to the chemically
modified gold surface, and then a series of three-second SPRI
reflectivity images (Rn, where n is the image number) were
collected for 10 min as nanoparticles adsorbed to the surface.
Using these images, a series of 200 frame-to-frame SPRI
differential reflectivity images (ΔRn) were obtained by
sequentially subtracting each image from the previous image
(i.e., ΔRn = Rn − Rn−1).
The adsorption of a single nanoparticle onto the chemically

modified gold thin film appears in the differential reflectivity
images as a point diffraction pattern. An example of a single-
nanoparticle point diffraction pattern from a 170 nm diameter
PS nanoparticle is shown in Figure 1b. These diffraction
patterns have been observed previously in SPRI differential
reflectivity images from the adsorption of metal, polymer, and
lipid nanoparticles. The diffraction patterns have been modeled
using a 2D Helmholtz equation, where the integrated refractive
index of the adsorbed nanoparticle acts as a diffraction point for
the planar surface plasmon polariton waves traveling on the
gold thin film.48 Since we are using differential reflectivity
images, only nanoparticles that have adsorbed within the three-
second time frame of image ΔRn are observed.

Figure 1. (a) Schematic diagram of the SPRI microscope. A gold-
coated knife-edge mirror was used to direct collimated p-polarized
light off-axis through the microscope objective and onto the back of
the gold-coated glass coverslip. The reflected image was captured
with a CMOS camera. A nanoparticle solution was exposed to the
top of the gold-coated glass coverslip immediately preceding the
image acquisition process. (b) A point diffraction pattern is
observed in the SPRI differential reflectivity image when a 170 nm
polystyrene (PS) nanoparticle adsorbs to the chemically modified
gold surface. (c) Quantitative map displaying the Δ%R pixel
intensities for the single-nanoparticle point diffraction pattern in
(b). A sharp spike in Δ%R intensity is observed at the center of the
diffraction pattern (the intersection of the two white dotted lines).
We define Δ%RNP as the average of the Δ%R values for the nine
pixels at and surrounding the pixel with the maximum Δ%R
intensity. (d) Δ%RNP frequency distribution histogram obtained
from the SPRI adsorption measurement of 170 nm PS nano-
particles. The average Δ%RNP value for this experiment was 2.19 ±
0.05% and is plotted in the figure as a black dotted line. The Δ%
RNP distribution is also fit to a probability density function (PDF)
with location (μ) and scale (σ) parameters of 0.76 and 0.21,
respectively.
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The center of each nanoparticle diffraction pattern has a
sharp Δ%R (change in percent reflectivity) maximum that can
be used to quantitate the intensity of the single-nanoparticle
SPRI response. Figure 1c shows a quantitative map of the Δ%R
pixel intensities for a typical single-nanoparticle SPRI diffraction
pattern. As described previously,42 the average of the nine Δ%R
pixel intensities (a 3 × 3 array) at and surrounding the
maximum Δ%R is used to calculate the single-nanoparticle
SPRI reflectivity response that we denote as Δ%RNP. The
single-nanoparticle SPRI diffraction pattern has been described
previously by several researchers as the sum of a traveling plane
wave and a spherical wave.48 Using the average values of the 3
× 3 array of nine pixels around the maximum is a simple, yet
reliable method of calculating a reproducible Δ%RNP value for
this diffraction pattern; using larger pixel arrays was also
reliable, but gave lower Δ%RNP values. Fitting the entire
diffraction pattern to the Helmholtz equation solution has been
successfully used to determine Δ%RNP

44 and has also been
recently employed as a method to improve the spatial
resolution of the nanoparticle location on the surface.45 For
each set of differential reflectivity images associated with a 10
min SPRI adsorption measurement, several hundred point
diffraction patterns are observed and analyzed to calculate both
an average Δ%RNP value, denoted ⟨Δ%RNP⟩, and a frequency
distribution histogram of Δ%RNP values.
An example of a Δ%RNP frequency distribution histogram

obtained from an in situ real-time SPRI adsorption measure-
ment of 170 nm PS nanoparticles onto a chemically modified
gold thin film is shown in Figure 1d (details of this experiment
are given in the next section). The ⟨Δ%RNP⟩ for this
measurement is also plotted in Figure 1d as a black dotted
line. It is evident from the distribution that the Δ%RNP values
are not symmetrically distributed about ⟨Δ%RNP⟩. Therefore, in
order to more precisely quantify this distribution, in addition to
a standard deviation (s), we calculate a skewness (g) from the
set of Δ%RNP values, where the skewness is proportional to the
third central moment m3:
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The skewness can be either positive or negative, depending on
which side of ⟨Δ%RNP⟩ the distribution is skewed; for the data
in Figure 1d, g = 0.68.
The Δ%RNP distribution of 170 nm PS nanoparticles is also

fitted to a log-normal probability density function (PDF),
described as50
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where μ and σ are the location and scale parameters,
respectively. This log-normal fit is plotted in Figure 1d as a
black solid line, and it is apparent that a log-normal probability
density function gives an accurate fit of the data. Previous size
measurements on PS nanoparticles have also followed a log-
normal distribution.51 The values for ⟨Δ%RNP⟩, s, 95%
confidence interval (95% CI), g, μ, and σ for this experiment
on 170 nm PS nanoparticles are reported in Table 1.

Mixtures of Polystyrene Nanoparticles. As a first
demonstration that single-nanoparticle SPRI measurements
can provide useful information on polydisperse polymer
nanoparticle samples, a series of single-nanoparticle SPRI
adsorption measurements were performed on three solutions of
carboxyl-terminated PS nanoparticles: 85 nm diameter PS
nanoparticles, 170 nm diameter PS nanoparticles, and a one-to-
one mixture of 85 and 170 nm PS nanoparticles. For each SPRI
adsorption measurement, PS nanoparticle solutions were
exposed to a gold surface modified with an amine-terminated
(11-mercaptoundecamine, MUAM) self-assembled monolayer.
SPRI reflectivity images were collected as the negatively
charged carboxyl-terminated PS nanoparticles electrostatically
and irreversibly adsorbed to the MUAM surface. An example
SPRI differential reflectivity image from the sample of mixed
size PS nanoparticles is shown in Figure 2a. As seen in the
image, two PS nanoparticles irreversibly adsorbed onto the
MUAM surface within the three-second time frame. The larger,
more intense point diffraction pattern near the top of the image
is attributed to the adsorption of a 170 nm PS nanoparticle,
whereas the smaller, less intense point diffraction pattern near
the bottom of the image is attributed to the adsorption of an 85
nm PS nanoparticle. The intensity of each nanoparticle point
diffraction pattern is quantitated by calculating a Δ%RNP value
as described in the previous section. For the two PS

Table 1. Hydrodynamic Size Measurements from DLS for Polystyrene and Hydrogel Nanoparticles and Statistics from Single-
Nanoparticle SPRI Measurements for Polystyrene and Hydrogel Nanoparticles and Gas Vesicles

nanoparticle
diameter
(nm)

standard deviation
(nm)

⟨Δ%
RNP⟩

standard deviation
(s)

95%
CI

skewness
(g) μa σb

no. of
NPs

PS (A) 85 25 0.34 0.10 0.01 0.59 −1.13 0.31 354
PS (B) 170 40 2.19 0.48 0.05 0.68 0.76 0.21 365

HNP 271 55 1.67 0.43 0.05 0.60 0.48 0.27 324
HNP + 2 μM melittin 272 65 2.79 0.52 0.08 0.02 1.01 0.20 172
HNP 272 50 0.90 0.27 0.03 0.55 −0.15 0.31 289
HNP + 500 nM ConA 357 75 3.6 1.3 0.2 0.79 1.22 0.37 307
HNP + 500 nM ConA + 1 mM
Man

338 65 2.04 0.60 0.07 0.05 0.66 0.36 270

HNP + 500 nM ConA + 10 mM
Man

320 55 1.74 0.41 0.05 0.30 0.53 0.24 241

Mega GV −c − −0.49 0.26 0.03 −1.28 −0.84 0.52 274
Ana GV − − −1.07 0.44 0.04 −1.53 −0.0083 0.38 395
Halo GV − − −3.0 1.5 0.2 −0.74 0.95 0.58 345
aLog-normal PDF location parameter. bLog-normal PDF scale parameter. cSize measurements for GVs are reported in Table 2.
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nanoparticles in this image, Δ%RNP was calculated to be 3.1%
for the 170 nm PS nanoparticle and 0.47% for the 85 nm PS
nanoparticle.
All the Δ%RNP values calculated from the series of differential

reflectivity images obtained during the SPRI adsorption
measurement of the mixed size PS nanoparticles are plotted
in Figure 2b as a function of adsorption time. Each blue circle
in Figure 2b represents a single Δ%RNP value obtained for the
adsorption of a single PS nanoparticle; over 700 PS
nanoparticle point diffraction patterns were quantitated over
the 10 min measurement. The two Δ%RNP values calculated for
the two PS nanoparticles in the differential reflectivity image
shown in Figure 2a are identified in the time-dependent
distribution as two red circles. The data in Figure 2b clearly
indicate there are two distinct ranges of Δ%RNP values, which
can be attributed to the two sizes of PS nanoparticles.
In addition to the time-dependent distribution of Δ%RNP

values, we also generate a frequency distribution histogram of
Δ%RNP values from the SPRI adsorption measurements. The
Δ%RNP frequency distribution histograms from SPRI adsorp-
tion measurements for the three different PS nanoparticle
solutions are also plotted in Figure 2: 85 nm PS nanoparticles
(Figure 2c), 170 nm PS nanoparticles (Figure 2d), and a one-
to-one mixture of 85 and 170 nm PS nanoparticles (Figure 2e).
The black dotted lines in Figure 2c and d are the ⟨Δ%RNP⟩
values obtained for each SPRI adsorption measurement; ⟨Δ%

RNP⟩ = 0.34 ± 0.01% for 85 nm PS nanoparticles and ⟨Δ%RNP⟩
= 2.19 ± 0.05% for 170 nm PS nanoparticles. Because the Δ%
RNP values for PS nanoparticles are log-normally distributed, we
plot the distribution histograms in logarithmically spaced bins
in Figure 2 for ease of comparison. Reported in Table 1 are
⟨Δ%RNP⟩, s, 95% CI, g, μ, and σ for both the 85 and 170 nm PS
nanoparticles. Even though the average ⟨Δ%RNP⟩ is more than
6 times larger for the 170 nm PS nanoparticles as compared to
the 85 nm PS nanoparticles, the skewness and scale parameters
are relatively similar for the two distributions.
It is apparent from the histogram in Figure 2e that the

distribution obtained from the mixed size PS nanoparticle
sample is simply the sum of the two single-size PS nanoparticle
distributions. The ⟨Δ%RNP⟩ values obtained for each size of PS
nanoparticle are plotted in Figure 2e and are the same values as
those obtained from the experiments in Figure 2c and d. These
results unequivocally demonstrate that the single-nanoparticle
SPRI measurements can be used to study polydisperse mixtures
of nanoparticles. Using the data presented in Figure 2, we
estimate that we can differentiate two populations of PS
nanoparticles that have a difference in diameter greater than 40
nm.

Molecular Uptake into Hydrogel Nanoparticles and
Aggregation of Hydrogel Nanoparticles. In a second set of
experiments, we demonstrate that Δ%RNP frequency distribu-
tion histograms from single-nanoparticle SPRI measurements
can be used to characterize the bioaffinity uptake of molecules
into porous PPNPs, such as NIPAm-based HNPs. HNPs are
solvent-swollen nanoparticles (up to ∼65% solvent by volume
as estimated from MALS measurements42) that can be
engineered to incorporate chemical moieties with specific
affinity for various biomolecules. We have previously shown
that ⟨Δ%RNP⟩ values from single-nanoparticle SPRI measure-
ments can be used to study the uptake of the peptide melittin
and the lectin concanavalin A (ConA) into specifically designed
HNPs.42,43 In this paper, we demonstrate that the analysis of
Δ%RNP frequency distribution histograms can be used to
provide additional information on the uptake of these
molecules into HNPs.
An example of a Δ%RNP frequency distribution histogram

measurement of peptide uptake by HNPs is shown in Figure 3.
As depicted in Figure 3a, NIPAm-based HNPs (272 nm in
diameter as measured by DLS) were synthesized with specific
affinity for melittin, a small peptide composed of 26 amino acid
residues.52 Single-nanoparticle SPRI measurements on these
HNPs, in both the absence and presence of melittin, were used
to quantitate the Δ%RNP response. Plotted in Figure 3b are two
Δ%RNP frequency distribution histograms: the Δ%RNP
distribution for HNPs alone (transparent blue bars) and the
Δ%RNP distribution for HNPs in the presence of 2 μM melittin
(solid red bars). The two distributions in Figure 3b show that
there is an overall increase in the average single-nanoparticle
Δ%RNP response due to the uptake of melittin into the HNPs,
which is an increase in the total integrated refractive index of
the HNPs. Reported in Table 1 are the values for ⟨Δ%RNP⟩, s,
95% CI, g, μ, and σ obtained from the measurements. However,
although there is an increase in ⟨Δ%RNP⟩, there are no
significant increases observed in the size or skewness of the Δ%
RNP distributions of HNPs in the presence of melittin.
Specifically, the value for σ decreases from 0.27 to 0.20 for
HNPs in the presence of melittin, and the relative standard
deviation (s/⟨Δ%RNP⟩) also decreases (see Table 1). These
results suggest that melittin uptake does not affect the structure

Figure 2. (a) Example SPRI differential reflectivity image of a
mixed sample of PS nanoparticles. The larger, more intense point
diffraction pattern represents a 170 nm PS nanoparticle, and the
smaller, less intense point diffraction pattern represents an 85 nm
PS nanoparticle. The total image area is 58.5 μm × 58.5 μm. (b)
Time-dependent distribution of Δ%RNP values for the mixture of 85
and 170 nm PS nanoparticles. Each blue circle represents the Δ%
RNP for a single PS nanoparticle irreversibly adsorbing to the
chemically modified surface. The two red circles represent the Δ%
RNP values for the point diffraction patterns in the differential
reflectivity image (a) that adsorbed to the surface at the 225 s mark
of the experiment (black dotted line). Δ%RNP frequency
distribution histograms obtained from three different SPRI
adsorption measurements of (c) 85 nm PS nanoparticles, (d) 170
nm PS nanoparticles, and (e) a one-to-one mixture of 85 and 170
nm PS nanoparticles. Average Δ%RNP values for each size of PS
nanoparticle are plotted as a black dotted line. The average Δ%RNP
values for 85 and 170 nm PS nanoparticles are 0.34 ± 0.01% and
2.19 ± 0.05%, respectively.
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of the HNPs, a conclusion that is corroborated with DLS
measurements that show no change in the average hydro-
dynamic diameter for the hydrogels in the presence of 2 μM
melittin (data also reported in Table 1).
In comparison, large changes in the Δ%RNP frequency

distribution histograms were observed upon the uptake of the
lectin ConA into HNPs modified with mannose. ConA is a
large protein (MW = 104 kDa) with four subunits and a high
binding specificity for mannose.53 Single-nanoparticle SPRI
measurements were used to study the binding of ConA to
mannose-modified HNPs as shown schematically in Figure 4a.
Plotted in Figure 4b are two Δ%RNP frequency distribution
histograms: mannose-modified HNPs only (transparent blue
bars) and mannose-modified HNPs in the presence of 500 nM
ConA (solid red bars). The ⟨Δ%RNP⟩, s, 95% CI, g, μ, and σ
values for these two distributions are reported in Table 1. As
evident from the data, not only is there an increase in ⟨Δ%RNP⟩
in the presence of ConA, but there is also a significant increase
in the width of the Δ%RNP distribution. Specifically, there is 5-
fold increase in the standard deviation of the Δ%RNP
distribution for mannose-modified HNPs in the presence of
ConA. Additionally, we observe an increase in the skewness and
scale parameter. Because ConA has the capability to bind to
multiple mannoses, ConA can induce aggregation of the
mannose-modified HNPs by cross-linking. We attribute the
changes in the Δ%RNP distributions to the aggregation of the
mannose-modified HNPs induced by interparticle interactions
of ConA that is bound to the outer regions of the HNPs. These
results are also confirmed with DLS, which shows an increase in
average hydrodynamic diameter of the mannose-modified
HNPs from 272 to 357 nm.
To further study ConA binding to mannose-modified HNPs,

additional single-nanoparticle SPRI measurements were made
on the mixtures of mannose-modified HNPs and 500 nM
ConA in the presence of free mannose in solution. By
introducing free mannose into solution, we can induce
competition between ConA binding to free mannose and
mannose-modified HNPs and subsequently decrease the ConA-
induced aggregation of mannose-modified HNPs. The Δ%RNP
frequency distribution histograms for single-nanoparticle SPRI

measurements of mannose-modified HNPs and 500 nM ConA
with the addition of 1 mM mannose (solid green bars) and 10
mM mannose (solid orange bars) are shown in Figure 4c and d,
respectively. The ⟨Δ%RNP⟩, s, 95% CI, g, μ, and σ values for
these distributions are also reported in Table 1. As in Figure 4b,
the Δ%RNP frequency distribution for mannose-modified HNPs
without ConA is also plotted in Figure 4c and d for comparison
(transparent blue bars). The distributions plotted in Figure 4c
and d clearly show increases in the both ⟨Δ%RNP⟩ and the
width of the distributions, compared to measurements of
mannose-modified HNPs without ConA; however, these
increases in ⟨Δ%RNP⟩ and the width of the distributions are
less compared to measurements of mannose-modified HNPs
and 500 nM ConA but without free mannose in solution
(Figure 4b). This observation can also be seen quantitatively
from the values listed in Table 1. For example, the standard
deviation for mannose-modified HNPs increases by 480%,
220%, and 150% in the presence of 500 nM ConA and 0, 1, and
10 mM mannose, respectively. The Kd for ConA binding to

Figure 3. (a) Hydrogel nanoparticles (HNPs) were composed of N-
isopropylacrylamide (NIPAm, 53 mol %), N-tert-butylacrylamide
(TBAm, 40 mol %), acrylic acid (AAc, 5 mol %), and N,N′-
methylenebis(acrylamide) (BIS, 2 mol %) and designed to uptake
the peptide melittin by hydrophobic and electrostatic interactions.
(b) Δ%RNP frequency distribution histograms obtained from the
SPRI adsorption measurements of HNPs alone (transparent blue
bars) and HNPs in the presence of 2 μM melittin (solid red bars).

Figure 4. (a) Mannose-modified HNPs were composed of NIPAm
(63.5 mol %), TBAm (28 mol %), AAc (5 mol %), BIS (2 mol %),
and p-acrylamidophenyl-α-D-mannopyranoside (Man, 1.5 mol %).
The lectin concanavalin A (ConA, purple) binds specifically to Man
sugar units (green) in the mannose-modified HNPs. (b) Δ%RNP
frequency distribution histograms obtained from the SPRI
adsorption measurements of mannose-modified HNPs alone
(transparent blue bars) and mannose-modified HNPs in the
presence of 500 nM ConA (solid red bars). Δ%RNP frequency
distribution histograms are also plotted for additional SPRI
adsorption measurements of mixtures of mannose-modified
HNPs and 500 nM ConA in the presence of (c) 1 mM mannose
(solid green bars) and (d) 10 mM mannose (solid orange bars).
The Δ%RNP frequency distribution histogram for mannose-
modified HNPs alone is replotted in (c) and (d) for comparison.
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monovalent mannose is on the order of 10−4−10−3 M.54 The
observation that 10 mM monovalent mannose did not
eliminate ConA interactions with the mannose-modified
HNPs implies that there is a strong binding affinity between
ConA and mannose-modified HNPs. It is well reported that the
strength of interactions between sugars and lectins can be
enhanced via multivalent binding,55 and various two- and three-
dimensional sugar−polymer networks enhance the potency of
the sugar−lectin interactions.56 It has been previously
demonstrated that mannose-modified HNPs have Kd values
in the micromolar to nanomolar range.57

Gas Vesicle Protein Nanostructures. As a final example
of the utility of single-nanoparticle SPRI measurements of
PPNPs, we demonstrate the use of single-nanoparticle SPRI
measurements to characterize gas vesicle protein nanostruc-
tures. GVs are hollow gas-filled bacterial protein nanostructures
composed of a ∼2 nm protein shell that excludes water but
allows gas to diffuse in and out of the particle.58,59 In this work,
we characterized three genotypes of GVs encoded by the
bacteria Bacillus megaterium (Mega GVs), Anabaena f los-aquae
(Ana GVs), and Halobacterium salinarum (Halo GVs). TEM
images of the three varieties of GVs are displayed in Figure 5a,
and a schematic illustration of an Ana GV is shown in Figure
5b. The preparation of these GVs has been reported
previously.17,19,20,60 Ana GVs and Mega GVs are cone-tipped
cylindrical nanostructures with lengths of 519 ± 160 nm and
249 ± 99 nm, respectively, and diameters of 136 ± 21 nm and
73 ± 14 nm, respectively; Halo GVs are spindle-shaped
nanostructures with lengths of 400 ± 113 nm and diameters of
251 ± 51 nm. TEM measurements of GV lengths and
diameters are reported in Table 2, along with an estimate of the
total volume, the molecular weight, and the gas-to-protein
volume ratios for the three types of GVs.60

Single-nanoparticle SPRI adsorption measurements were
obtained for the irreversible electrostatic adsorption of
negatively charged GVs onto a gold surface modified with a
positively charged amino-terminated monolayer. Figure 5c
shows an example point diffraction pattern from a differential
reflectivity image that was obtained for the adsorption of a
single Ana GV. This diffraction pattern is similar to the
diffraction pattern observed for the adsorption of a PS
nanoparticle, but the signal is inverted. This can be seen

most dramatically in Figure 5d, which quantifies a sharp
negative spike in Δ%R that is observed at the center of the
point diffraction pattern (intersection of the two black dotted
lines). Calculation of Δ%RNP for an individual GV results in a
negative value. Because the volumes of GVs are primarily
composed of air, the displacement of water (nwater = 1.33, where
n is the refractive index) with the GV (nair = 1.0) causes a
decrease in the local refractive index at the location of the GV
adsorption and consequently yields a negative Δ%RNP value.
We have previously observed both positive and negative

diffraction patterns for PS, hydrogel, and other nanoparticles
due to the transient adsorption and subsequent desorption of
nanoparticles for the case where nanoparticles are not
irreversibly adsorbed onto the chemically modified gold thin
film.41 The observed negative diffraction pattern due to
desorption always occurred after and at the same location as
the previous positive diffraction pattern. For the positively
charged MUAM-modified gold thin film, the GVs are
irreversibly adsorbed, and the adsorption event always created
a negative diffraction pattern. Occasionally, we did observe

Figure 5. (a) TEM images of the three genotypes of gas vesicle (GV) nanostructures: Halo GVs (left), Ana GVs (middle), and Mega GVs
(right). (b) GVs are composed of a ∼2 nm protein shell that excludes water but allows gas to flow in and out of the particle. (c) A negative
point diffraction pattern is observed in the SPRI differential reflectivity images when a GV electrostatically adsorbs to the chemically modified
gold surface. (d) Quantitative map displaying the Δ%R pixel intensities for the single-GV point diffraction pattern. A sharp, negative spike in
Δ%R intensity is observed at the center of the diffraction pattern (the intersection of the two black dotted lines). We observe negative point
diffractions for GV adsorption events due to the decrease in interfacial refractive index from water to air (GV).

Table 2. Size Measurements from TEM and Volume,
Molecular Weight, and Gas-to-Protein Ratio Calculations for
Gas Vesicles

nanostructure Mega GV Ana GV Halo GV

length (nm) 249 519 400
sL (nm) 99 160 113
95% CI (nm) 25 31 20

diameter (nm) 73 136 251
sD (nm) 14 21 51
95% CI (nm) 4 4 9

volume (nm3) 7.4 × 105 6.4 × 106 6.6 × 106

sV (nm3) 0.8 × 105 0.4 × 106 0.4 × 106

95% CI (nm3) 2 × 104 8 × 104 7 × 104

# of GVs 61 107 125
estimated GV molecular weight
(MDa)

72 320 282

estimated gas-to-protein volume
ratio

8 16 19
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positive diffraction patterns, which we attribute to the
desorption of GVs, but this occurred less than 5% of the time.
The Δ%RNP frequency distribution histograms for single-

nanoparticle SPRI adsorption measurements of all three types
of GVs are displayed in Figure 6: Mega GVs (Figure 6a), Ana

GVs (Figure 6b), and Halo GVs (Figure 6c). Similar to the PS
nanoparticles, the absolute Δ%RNP values for all three types of
GVs follow log-normal distributions. The values of ⟨Δ%RNP⟩, s,
95% CI, g, μ, and σ for the GVs are all reported in Table 1. All
of the GVs have larger relative standard deviations (s/⟨Δ%
RNP⟩), skew factors (g), and log-normal scale factors (σ) as
compared to PS nanoparticles (Table 1). We attribute these
larger log-normal distributions to the heterogeneous nature of
the GV biosynthesis. As expected, ⟨Δ%RNP⟩ values for the three
types of GVs increase as the total volume of the GV increases
(in the order Halo GV > Ana GV > Mega GV). However, a
quantitative relationship of ⟨Δ%RNP⟩ to GV volume is complex;
the protein component of the GV makes a positive contribution
to Δ%RNP, while the gas volume makes a negative contribution.
As seen in Table 2, the gas volume dominates over the protein
volume in all the GVs, which is why we observe negative Δ%
RNP values for all GVs. Moreover, the Ana and Mega GVs have
a high length-to-width aspect ratio, which could alter the single-
nanoparticle SPRI response. Because the GVs adsorbed to the
surface from a quiescent 10 μL solution, we do not expect that
there are any preferential orientations of the anisotropic GVs
relative to the direction of the surface plasmon polaritons. The
future incorporation of a microfluidic flow system for
nanoparticle delivery to the gold surface could potentially be

used to create oriented adsorbed GV populations. Since near-
infrared surface plasmon polaritons have a decay length of
approximately 200−300 nm perpendicular to the gold sur-
face,61 Ana and Mega GVs that adsorb with their length
perpendicular to the surface may fall outside the range of the
surface plasmon polaritons and produce a smaller than
expected Δ%RNP.

CONCLUSIONS

In summary, the experiments presented in this paper have
demonstrated that both the average single-nanoparticle
response (⟨Δ%RNP⟩) and Δ%RNP frequency distribution
measurements obtained from single-nanoparticle SPRI adsorp-
tion measurements can provide detailed characterization
information for a variety of solid, porous, and gas-filled
PPNPs. The Δ%RNP frequency distribution measurements of
PS nanoparticles showed that Δ%RNP depends on nanoparticle
volume for solid nanoparticles. The changes of ⟨Δ%RNP⟩
observed upon uptake of melittin into porous HNPs
demonstrate that the single-nanoparticle SPRI measurements
can also measure changes in the total material content of a
nanoparticle. The ConA binding to mannose-modified HNPs
indicates that both bioaffinity uptake and nanoparticle
aggregation can be studied through the Δ%RNP frequency
distribution histograms. Finally, the most striking evidence that
single-nanoparticle SPRI experiments measure changes in
interfacial refractive index due to nanoparticle adsorption is
the negative point diffraction patterns and Δ%RNP values
observed for the adsorption of gas vesicles, a type of gas-filled
protein nanostructure.
An important parameter to ascertain for these single-

nanoparticle SPRI measurements on PPNPs is how narrow of
a Δ%RNP frequency distribution can be measured. Since every
PPNP Δ%RNP distribution determined in this paper could be fit
with a log-normal distribution, we can use the scale parameter σ
to define the normal distribution. The lowest scale parameter
observed in these experiments is ∼0.2, and thus this number is
our current experimental lower limit for what we can measure
for Δ%RNP log-normal distributions. With additional theoretical
modeling of the single-nanoparticle SPRI response and the
development of more accurate methods of determining Δ%
RNP, we expect that this lower limit can be improved in the
future.

METHODS
Hydrogel Nanoparticle Synthesis. N-Isopropylacrylamide

(NIPAm), acrylic acid (AAc), sodium dodecyl sulfate (SDS), V-501,
and ammonium persulfate (APS) were obtained from Sigma-Aldrich,
Inc. (St. Louis, MO, USA). N,N′-Methylenebis(acrylamide) (BIS) was
obtained from Fluka (St. Louis, MO, USA). N-tert-Butylacrylamide
(TBAm) was obtained from Acros Organics (Geel, Belgium). NIPAm
was recrystallized from hexane before use. All other chemicals were
used as received.

HNPs for melittin uptake experiments were synthesized following
the procedure detailed in Cho et al.42 The monomers NIPAm (53 mol
%), TBAm (40 mol %), AAc (5 mol %), and BIS (2 mol %) were
dissolved in 50 mL of nanopure water in a round-bottom flask for a
total monomer concentration of 65 mM. TBAm was dissolved in 1 mL
of ethanol before addition to the monomer solution. The surfactant
SDS (1.7 mg) was also added to the monomer solution to control
nanoparticle size. Nitrogen gas was bubbled through the solution for
30 min. Following the addition of a 500 μL aqueous solution
containing 30 mg of APS, the polymerization was carried out in an oil
bath preset to 60 °C for 3 h under a nitrogen atmosphere. The

Figure 6. Δ%RNP frequency distribution histograms obtained from
the SPRI adsorption measurements of (a) Mega GVs, (b) Ana GVs,
and (c) Halo GVs. The average Δ%RNP value for each experiment is
plotted as a black dotted line in each histogram. Average Δ%RNP
values for Mega, Ana, and Halo GVs were respectively −0.49 ±
0.03%, −1.07 ± 0.04%, and −3.0 ± 0.2%.
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polymerized solutions were purified by dialysis using 12−14 kDa
molecular weight cut-off dialysis membrane against an excess amount
of nanopure water (changed more than three times a day) for 4 days.
Mannose-modified HNPs for ConA uptake experiments were

synthesized following the procedure detailed in Maley et al. and using
a similar procedure to that described for HNP synthesis.43 The sugar
unit p-acrylamidophenyl-α-D-mannopyranoside (Man) was synthe-
sized using methods reported previously.62,63 The monomer ratio for
mannose-modified HNPs was NIPAm (63.5 mol %), TBAm (28 mol
%), AAc (5 mol %), BIS (2 mol %), and Man (1.5 mol %) for a total
monomer concentration of 65 mM. SDS (2.5 mg) was used as a
surfactant, and V-501 (131.3 μmol/0.5 mL of DMSO) was used as the
radical initiator. The polymerization was carried out in an oil bath
preset to 70 °C for 3 h under a nitrogen atmosphere. The polymerized
solutions were purified by dialysis using 12−14 kDa molecular weight
cut-off dialysis membrane against an excess amount of nanopure water
(changed more than three times a day) for 4 days.
Gas Vesicles. Ana and Halo GVs were expressed and purified from

their respective host bacteria, and Mega GVs were expressed and
purified from E. coli, as described previously.60 Briefly, cells were
cultured to confluency (and, in the case of E. coli, induced to express
GVs) and lysed using hypertonic, hypotonic, or detergent lysis. GVs
were isolated using centrifugally assisted buoyancy purification, and
their concentration was measured using optical density at 500 nm.
Mega GVs, which are natively clustered after purification from bacteria,
were unclustered with a solution of 6 M urea and 20 mM Tris-HCl
(pH = 8.0), followed by two rounds of centrifugally assisted buoyancy
purification and overnight dialysis in 1× phosphate-buffered saline
(PBS) (11.9 mM phosphates, 137 mM sodium chloride, 2.7 mM
potassium chloride, pH 7.4, Fisher), before optical density
quantification and use in SPRI experiments. Transmission electron
microscopy was performed on a Philips Tecnai T12 LaB6 120 kV after
GVs in HEPES buffer were deposited on carbon/Formvar grids
stained with 2% uranyl acetate.60

Optical Setup. The detailed description of the construction of the
near-infrared single-nanoparticle SPRI microscope is described in a
previous publication.41 The microscope was built into the frame of an
IX51 inverted microscope (Olympus, Tokyo, Japan). A 1 mW, 814 nm
diode laser (Melles Griot, Carlsbad, CA, USA) was expanded and
collimated using a spatial filter (Newport, Corp., Newport Beach, CA,
USA). The beam was then polarized and focused with a lens ( f = 200
mm) onto the back focal plane of a 100× 1.49 numerical aperture oil
microscope objective (Olympus). The beam was directed upward near
the edge of the objective by a gold-coated knife-edge mirror (Thorlabs,
Newton, NJ, USA) that was mounted on an X−Y micrometer, in order
to adjust the incident angle on the sample. The reflected image was
allowed to pass out the other side of the objective and acquired by an
Andor Neo sCMOS camera (South Windsor, CT, USA) by
accumulating 30 11-bit, 0.1 s exposures.
Substrate Preparation. Substrates for all SPRI experiments were

borosilicate No. 1.5 coverslips (Fisherbrand, Pittsburgh, PA, USA)
coated with a 1 nm Cr adhesion layer and 45 nm Au. For PS
nanoparticles and GV measurements, Au surfaces were immobilized
with a positively charged alkanethiol monolayer (11-mercaptoundec-
amine, Dojindo Molecular Technologies, Inc., Gaithersburg, MD,
USA) by immersing the Au substrate in a 1 mM ethanolic MUAM
solution for 12 h. For HNP measurements, Au surfaces were
immobilized with a hydrophobic 1-undecanethiol monolayer (C11,
Sigma-Aldrich) by immersing the Au substrate in a 1 mM ethanolic
C11 solution for 12 h. All Au surfaces were partitioned using adhesive
silicone isolation wells (Electron Microscopy Sciences, Hatfield, PA,
USA).
Polystyrene Particle SPRI Measurements. Carboxylate poly-

styrene spheres with mean diameters of 85 and 170 nm were
purchased from Polysciences, Inc. (Warrington, PA, USA). Au slides
chemically modified with MUAM were prepared and isolation wells
were filled with 10 μL of nanopure water to protect the MUAM layer.
Solutions of PS nanoparticles were diluted in nanopure water to
concentrations of ∼109 particles/mL for all measurements. For all

SPRI experiments, 10 μL of nanoparticle solution was pipetted into
the isolation well immediately preceding the image acquisition process.

Hydrogel SPRI Measurements. Au slides for all hydrogel
nanoparticle SPRI measurements were chemically modified with
C11, and isolation wells were filled with 10 μL of 1× PBS to protect
the C11 layer. For melittin uptake measurements, melittin (Sigma-
Aldrich) was dissolved in 1× PBS and diluted to a concentration of 18
μM. HNPs were diluted in 1× PBS to a final concentration of 20 μg/
mL, and 18 μM melittin was added with a final concentration of 2 μM.
The HNP and melittin mixture was allowed to incubate at room
temperature for 30 min before SPRI experiments. For ConA uptake
measurements, mannose-modified HNPs were diluted in 1× PBS to a
final concentration of 20 μg/mL after mixing with ConA (Sigma-
Aldrich) at a final concentration of 500 nM. For mannose-modified
HNP experiments with free mannose, D-(+)-mannose (Sigma-Aldrich)
was also added to the solution at the specified concentration from a
more concentrated solution in 1× PBS. The mannose-modified HNP
and ConA mixtures were allowed to incubate at room temperature for
a minimum of 30 min before SPRI experiments.

Gas Vesicle SPRI Measurements. Au slides for GV measure-
ments were chemically modified with MUAM, and isolation wells were
filled with 10 μL of 1× PBS to protect the MUAM layer. The optical
density at 500 nm was measured using a NanoDrop 2000 (Thermo
Scientific). All GVs were diluted in 1× PBS to the concentrations
specified for SPRI experiments: Mega GVs diluted to 1 nM, Ana GVs
diluted to 10 pM, and Halo GVs diluted to 5 pM.

Dynamic Light Scattering Measurements. The hydrodynamic
diameters of PS nanoparticles were measured in aqueous solutions at
25 °C, and the hydrodynamic diameters of hydrogel nanoparticles
were measured in 1× PBS at 25 °C by a DLS instrument equipped
with Zetasizer software (Zetasizer Nano ZS, Malvern Instruments Ltd.,
Worcestershire, U.K.).
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NOTE ADDED AFTER ASAP PUBLICATION
The version of this paper that was published ASAP July 12,
2017, contained an error in eq 1. The corrected version was
reposted July 13, 2017.
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