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Abstract

Introduction—Cancer is the leading cause of death worldwide. Current cancer treatments in the 

clinic mainly include chemotherapy, radiotherapy and surgery, with chemotherapy being the most 

common.

Areas covered—Cancer treatments based on the single ‘magic-bullet’ concept are often 

associated with limited therapeutic efficacy, unwanted adverse effects, and drug resistance. The 

combination of multiple drugs is a promising strategy for effective cancer treatment due to the 

synergistic or additive effects. Small interfering RNA (siRNA) has the ability to knock down the 

expression of carcinogenic genes or drug efflux transporter genes, paving the way for cancer 

treatment. Treatment with both a chemotherapeutic agent and siRNA based on nanoparticle (NP)-

mediated co-delivery is a promising approach for combination cancer therapy.

Expert opinion—The combination of chemotherapeutic agents and siRNA for cancer treatment 

offers the potential to enhance therapeutic efficacy, decrease side effects, and overcome drug 

resistance. Co-delivery of chemical drug and siRNA in the same NP would be much more 

effective in cancer therapy than application of chemical agent or siRNA alone. With the 

development of material science, NPs have come to be the most widely used platform for co-

delivery of chemotherapeutic drugs and siRNAs.
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1. Introduction

Cancer is a common malignant disease that is a serious threat to human health and life. A 

recent investigation predicted a surge in new cancer patients worldwide, from 12.7 million in 

2008 to 22.2 million by 2030, posing an enormous challenge in medical care [1]. Current 

strategies for cancer therapy mainly include radiotherapy, surgery and chemotherapy. 

Generally, surgery and radiotherapy are used to treat local and non-metastatic cancers in 

which the tumor tissue is removed but the peripheral part cannot be cleared completely [2–

4]. Seriously, surgery- and radiotherapy-induced acceleration of tumor and metastatic 

growth have been noticed, probably due to inflammatory response during wound healing [5]. 

On the other hand, chemotherapy is essential for killing cancer cells that have metastasized 

to distant organs in the whole body [6,7]. Thus, chemotherapy has become the most 

common strategy in the clinic.

Chemotherapy involves the application of chemotherapeutic drugs to inhibit or control the 

growth of cancer cells [8–10]. Tumors are thought to arise and develop as a result of the 

combined effects of many factors. Thus, cancer treatment strategies based on a single ‘magic 

bullet’ are inevitably suboptimal [11,12]. In contrast, multiple drugs applied in a 

combination therapy regimen could function synergistically to achieve better therapeutic 

efficacy compared with single chemical drug-based chemotherapy [13]. RNA interference 

(RNAi) is a powerful technology for post-transcriptional downregulation of genes that, when 

specifically applied to the expression of carcinogenic gene expression, is an efficient cancer 

therapy strategy. Accordingly, the combination of chemotherapy and RNAi technology holds 

great promise as a new strategy for cancer treatment. However, the chemotherapeutic agents 

and siRNAs present many limitations that hinder their efficacy. In the context of 

chemotherapeutic agents, they are generally hydrophobic in aqueous solutions, non-

specificity, toxic to healthy tissue and limited cancer cell-killing capacity [14, 15]. As to 

siRNAs, they are easily cleared by the renal system, lack of selectivity to the targeting tissue, 

and poor cell uptake [16]. Nanoparticles (NPs) are expected to achieve efficient drug 

encapsulation, easy drug administration, enhanced drug accumulation in tumor tissues, 

maximized therapeutic efficacy and minimized adverse effect [17, 18]. Thus, they have been 

used for the co-delivery of chemotherapeutic agent and siRNA in the recent years.

2. Chemotherapy

Chemotherapy based on a single chemical drug was introduced to treat cancer in the 1940s, 

and has become a mainstay in the oncology field despite accompanying serious side effects. 

The common anticancer drugs have already been reviewed previously [19]. With advances in 

genomics and proteomics, it has become clear that cancer is the result of a combination of 

interconnected disease pathways, and exhibits characteristics of heterogeneity and 

complexity [20]. Therefore, inhibition of a specific target pathway by monotherapy often 

leads to low therapeutic efficacy, serious adverse effects and the emergence of drug 

resistance, largely because of the activation of compensatory pathways in cancer cells [21]. 

Combination chemotherapy, first proposed by Free et al. in the 1960s, has recently become a 

standard regimen for treating cancer in the clinic [22]. Since combination therapeutics 

impact multiple targets or the same target through different pathways simultaneously, it can 
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more effectively exert maximal anticancer effects with acceptable side effect, while reducing 

the likelihood of adaptive drug resistance, reflecting the fact that tumor cells/tissues are less 

able to compensate for the simultaneous action of multiple drugs [23,24].

In one such combination regimen, Kolishetti et al. [25] conjugated a platinum (IV) [Pt(IV)] 

prodrug to a hydroxyl group-appended polylactide (PLA) to obtain the polymer, PLA-

Pt(IV). This polymer was further used to fabricate nanoparticles (NPs) containing the 

poly(lactic-co-glycolic acid)-block-poly(ethylene glycol) copolymer (PLGA-PEG) and the 

anticancer agent docetaxel (Dtxl) using microfluidic channels. In vitro experiments showed 

that Pt(IV)/Dtxl-loaded NPs exhibited superior efficacy compared with single-drug NP 

analogues, suggesting the potential of combination chemotherapy. In addition, Xiao et al. 
recently [26] fabricated a series of camptothecin (CPT)/curcumin (CUR)-loaded polymeric 

NPs with various weight ratios of CPT to CUR. The resultant cationic, spherical CPT/CUR-

NPs had a desirable particle size (193–224 nm) and exhibited a simultaneous, sustained 

release profile for both drugs throughout the study period. Importantly, the combined 

delivery of CPT and CUR in a single NP synergistically enhanced the effects of the 

individual drugs. Among the five cationic CPT/CUR-NPs tested, NPs with a CPT/CUR 

weight ratio of 4:1 showed the highest anticancer activity, resulting in a combination index 

of approximately 0.46.

Although some combination chemotherapy strategies are effective, they are still far from 

perfect. Differences in pharmacokinetics, biodistribution and chemical-physical properties 

among various chemical drugs make optimization of dosing and scheduling extremely 

difficult [27]. These challenges have driven researchers to develop alternative, more suitable 

strategies.

3. RNAi technology

RNAi has become an attractive technology to silence the gene expression in most eukaryotic 

cells, in which small RNAs exert their function in a complementarity-dependent manner 

[28]. There are three main types of small RNA: siRNA, microRNAs and PIWI interacting 

RNAs (piRNAs) [29]. However, since most of the RNAi-related researches are conducted 

with siRNA rather than miRNA and piRNA [30], the focus of this review is mainly on 

siRNA-based therapy. By activating RNAi, siRNA can silence the expression of virtually 

any gene with high efficiency and specificity [31]. Advancements in RNAi technology have 

provided highly specific therapeutic options for silencing target genes related to cancer 

treatment, thus it has come to be utilized as a new potential therapeutic strategy [32, 33]. An 

important application of RNAi-based medicine is targeting proteins that are related to certain 

diseases but cannot be targeted using conventional molecules because of their lack of 

enzymatic function or inaccessibility.

Xu et al. [34] synthesized a block copolymer of PEG with PLGA (PEG-Dlinkm-PLGA) 

linked via a tumor pH-labile bridge, and used it for delivery of siRNA targeting polo-like 

kinase1 (Plk1), a mitotic kinase essential for cell proliferation. The 

resulting dPEGNPPLGA/siPlk1 containing PEG-Dlinkm-PLGA achieved an efficiently 

prolonged circulation time, preferential accumulation in tumor sites, and detachment of the 
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PEG surface layer in the acidic tumor environment. In vivo results demonstrated 

that dPEGNPPLGA/siPlk1 markedly inhibited the growth of MDA-MB-231 tumors after 

intravenous injection. Furthermore, dPEGNPPLGA/siPlk1 inhibited tumor growth at a much 

lower dose of siPlk1 compared with NPPLA/siPlk1 and NPPLGA/siPlk1.

4. Combination therapy based on chemotherapeutic agents and siRNAs

Cancer occurrence is often accompanied by mutations of numerous core proteins involved in 

tumor growth, metastasis, and survival. Thus, in combination with chemical drugs, siRNAs 

can play a secondary role in sensitizing cancer cells or inhibiting multidrug-resistance genes 

[35, 36].

White and coworkers [37] recently combined a high-throughput, cell-based, “one-well/one-

gene” screening platform with a genome-wide synthetic library of siRNA to systematically 

interrogate the molecular underpinnings of NCI-H1155 cancer cell sensitivities. They found 

that downregulation of several genes sensitized these lung cancer cells to a paclitaxel 

concentration 1,000-fold lower than that otherwise required for a significant response. 

Following incubation for an additional 24–48 h, some treatment groups responded to 

paclitaxel concentrations that were even 10,000-fold lower than otherwise required. 

Moreover, these authors also demonstrated that the observed decrease in cell number was 

attributable to cell death rather than to a transient delay in proliferation. This finding implies 

that the combination of chemotherapy and RNAi technology could be a promising strategy 

for substantially improving the therapeutic efficacy of chemotherapy through synergistic 

effects.

Importantly, numerous recent reports indicate that the combination of chemical drug and 

siRNA offers superior anticancer effects compared with chemical drugs or siRNA alone 

[38–41]. Downregulation of the expression of B-cell lymphoma 2 (Bcl-2), an important anti-

apoptotic protein, has been shown to inhibit tumor growth. Zheng et al. [42] found that the 

combination of Dtxl and Bcl-2 siRNA clearly downregulated Bcl-2 and enhanced antitumor 

activity, resulting in significant inhibition of tumor growth in an MCF-7 breast cancer cell 

murine xenograft model compared with individual Dtxl or siRNA treatment.

5. NPs for co-delivery of a chemotherapeutic agent and siRNA

To exert optimal synergistic effects, chemical drugs and siRNAs need to be temporally 

localized in the same tumor cell. NPs are capable of simultaneously encapsulating both 

chemic drug and siRNA through physical or chemical interaction and co-delivering to the 

same cells, and are thus emerging as a promising delivery platform in combination therapy 

[43,44]. Numerous additional advantages of NPs have also been recognized, including 

improvement of the solubility of hydrophobic drugs, prolongation of circulation time, 

delivery of drug to tumors to minimize systemic side effects through passive or active 

targeting, and controlled drug release [25,45,46]. The following section reviews the 

commonly used NPs for the co-delivery of chemical drugs and siRNAs (Table 1). 

Furthermore, the advantages and disadvantages of these NPs have been summarized in Table 

2.
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5.1 Liposomes

Liposomes have attracted huge interest after Doxil® was approved by FDA to deliver 

doxorubicin for cancer treatment [47]. They are artificially fabricated drug carriers in which 

the inner aqueous core is covered by outer lipid bilayers. Thus, they can be used to 

simultaneously encapsulate both hydrophilic and hydrophobic drugs, and protect the loaded 

drugs against degradation [48,49]. Their surface can be further modified to provide a longer 

circulatory lifetime and site-specific delivery to tumor tissues. The size, charge, and other 

parameters of liposomes can be altered according to the drug and the desired site of action 

[45]. Liposomes provide a great opportunity to co-deliver therapeutic agents and siRNAs for 

cancer therapy, and have been widely used for this purpose (Table 1).

Recently, Gao et al. [50] developed an anti-EGFR (epidermal growth factor receptor) Fab’-

functionalized liposome-polycation-DNA (LPD) complex. This LPD complex was used for 

targeted co-delivering of Adriamycin (ADR) and siRNA targeting ribonucleotide reductase 

M2 (RRM2) to achieve combined therapeutic effects in human hepatocellular carcinoma 

(HCC). They found that the resulting ADR-RRM2-TLPD complex specifically and 

efficiently co-delivered Dox and RRM2 siRNA to EGFR-overexpressing HCC cells both in 
vitro and in vivo, resulting in enhanced therapeutic effects (cytotoxicity, apoptosis and 

senescence-inducing activity) compared with single-drug–loaded or non-targeted controls, 

including ADR-NC-TLPD (targeted LPD co-delivering ADR and negative control siRNA), 

RRM2-TLPD (targeted LPD delivering RRM2 siRNA), and ADR-RRM2-NTLPD (non-

targeted LPD co-delivering ADR and RRM2 siRNA).

5.2 Micelles

Polymeric micelles—nanoscopic core/shell structures formed by amphiphilic block 

copolymers—have received growing attention as chemical drug/siRNA co-carriers for tumor 

therapy [51]. Polymeric micelles not only possess good capacities for solubilizing 

hydrophobic drugs and providing sustained release of siRNA, they also exhibit other 

attractive properties, such as a distinctive core/shell structure, passive tumor localization 

through the enhanced permeability and retention (EPR) effect, and increased protection of 

encapsulated drugs from degradation and metabolism [52–54].

Yin et al. [36] synthesized the hyaluronic acid-based, amphiphilic conjugate, HA-ss-(OA-g-

bPEI) (HSOP), and then fabricated a redox-responsive micelle for tumor-targeted co-

delivery of paclitaxel (PTX) and aurora kinase A (AURKA)-specific siRNA (si-AURKA). 

They found that HSOP micelles had excellent PTX and siAURKA loading efficiencies with 

adjustable dosing ratios, as well as desirable redox sensitivity. Moreover, these micelles 

could co-deliver PTX and siRNA into breast cancer cells via HA receptor-mediated 

endocytosis. Importantly, further in vitro and in vivo experiments demonstrated that HSOP 

micelles possessed improved anticancer efficacy compared with redox-sensitive single drug 

controls and non-sensitive co-delivery controls.

5.3 Poly (amido amine) (PAMAM)

Dendrimers are monodispersed, highly branched, three-dimensional synthetic polymeric 

macromolecules synthesized by controlled polymerization reactions that allow a high level 
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of control over their architecture [55,56]. By regulating the chemical synthesis process, it is 

possible to adjust their biocompatibility and pharmacokinetics. The surface of dendrimers 

can be further functionalized to modify their toxicity and allow the simultaneous conjugation 

of multiple molecules, such as chemotherapeutic agents, targeting moieties and PEG, to 

increase water solubility and prolong the lifetime of the drugs in the bloodstream [57]. 

PAMAM dendrimers, a promising NP, can be used to co-deliver a chemotherapeutic agent 

and siRNA [58]. Low-molecular weight hydrophobic drugs mainly interact with the 

PAMAM dendrimer, while negatively charged nucleic acids interact through electrostatic 

force with cavities in PAMAM dendrimers provided by the large number of surface primary 

amine groups [45]. Therefore, PAMAM dendrimers are readily applicable as drug-delivery 

carriers for the co-delivery of hydrophobic drugs and siRNAs (Table 1).

Biswas et al. [59] synthesized the triblock copolymer, PAMAM (generation 4)-PEG- 1,2-

dioleoyl-sn-glycero-3-phosphoethanolamine (G(4)-D-PEG-DOPE), and then complexed it 

with siRNA. Subsequently, they evaluated its siRNA-delivery profile and further engineered 

a mixed micellar system consisting of G(4)-D-PEG-DOPE and PEG-DOPE (1:1) for co-

delivery of a chemical drug and siRNA. The combination of dendrimer and polymeric 

micelles in a single NP resulted in a truly multifunctional nanomedicine that could 

potentially address the challenges of co-delivery of chemical drugs and siRNAs for 

therapeutic purposes.

5.4 Polyester NPs

Polymeric NPs have been used as delivery systems for individual chemotherapeutic agent or 

nucleotide [60]. They also have been used for the co-delivery of chemotherapeutic agents 

and siRNAs owing to their biocompatibility, stability, narrow size distribution, controllable 

drug-release profile, and highly efficient cellular uptake [27]. In addition, polymeric NPs 

have the ability to stabilize drugs in the systemic circulation and provide sustained release of 

drugs at the site of action, while minimizing side effects [61]. Polyester and FDA-approved 

biodegradable copolymers such as PLGA and PLA can efficiently encapsulate hydrophobic 

and hydrophilic drugs to form NPs, and thus have been widely used for drug delivery 

[62,63]. The drug release from polyester NPs is based on the combination of degradation 

and erosion of polymers, and the detailed mechanisms have been extensively reviewed 

elsewhere [64, 65].

Patil et al. [66] fabricated biotin-functionalized NPs loaded with PTX and siRNA targeting 

MDR1 (multidrug resistance gene 1), also known as P-glycoprotein 1 (P-gp), and further 

investigated their antitumor efficacy. In vitro results indicated that these dual-agent–loaded 

NPs were significantly more cytotoxic than PTX-loaded NPs, suggesting that silencing the 

expression of MDR1 increased the accumulation of PTX in drug-resistant tumor cells. 

Further in vivo experiments demonstrated that biotin-functionalized PTX/P-gp siRNA-

loaded NPs inhibited tumor growth to a significantly greater extent than biotin-

functionalized NPs loaded with the same amount of PTX only.

Polyester has also been fabricated into polymersomes for co-delivery of a chemical drug and 

siRNA. Kim et al. [67] encapsulated doxorubicin (DOX) and Bcl-xL siRNA into PEG-b-

PLA-based polymersomes. The in vitro results indicated that polymersomes co-loaded with 
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DOX/Bcl-xL siRNA exerted much stronger anticancer efficacy than those loaded with only 

drug or siRNA, indicating that polymersomes are efficient NPs for combined cancer therapy.

5.5 Chitosan-based NPs

Chitosan, a linear, cationic copolymer of glucosamine and N-acetyl-gluocosamine, is a 

deacetylated derivative of chitin—the second-most abundant natural polysaccharide. 

Chitosan has to be widely investigated as a drug carrier owing to its biocompatibility, 

biodegradability and gene-binding ability, as well as its ease of chemical modification [68, 

69]. Co-delivery of chemotherapeutic drugs and siRNA using chitosan derivatives has 

recently been evaluated.

Wei et al. [70] prepared uniform-sized N-([2-hydroxy-3-trimethylammonium] propyl) 

chitosan chloride (HTCC) NPs using a Shirasu porous glass membrane emulsification 

technique for oral delivery of PTX and telomerase reverse transcriptase siRNA (siTERT) to 

tumors. HTCC not only protected drugs from degradation in the gastrointestinal (GI) tract 

but also improved drug permeability into the circulatory system from the GI tract. Further in 
vitro and in vivo experiments indicated that the resulting NPs could simultaneously deliver 

PTX and siTERT to cancer cells and increase local drug concentrations. Moreover, they 

were much more effective in suppressing tumor growth than conventional cocktail therapy, 

suggesting that HTCC NPs are powerful carriers for co-delivery of chemical drugs and 

siRNAs.

5.6 Mesoporous silica NPs

Mesoporous silica NPs (MSNPs) have been used for co-delivery of chemotherapeutic agents 

and siRNAs because of their enormous specific surface area, large pore volume, regular pore 

channels, adjustable pore size, easy modifiability of interior and exterior surfaces to 

encapsulate higher amounts of drugs, and improved stability associated with their inorganic 

oxide framework.

Meng et al. [71] fabricated MSNPs co-loaded with DOX and P-gp siRNA as a strategy for 

overcoming DOX resistance in a multidrug-resistant human breast cancer xenograft. The 

resulting NPs were further functionalized with a polyethyleneimine-PEG (PEI-PEG) 

copolymer, providing protected delivery of stably bound DOX and P-gp siRNA to tumor 

sites. In vivo studies showed that this co-delivery system achieved significantly improved 

inhibition of tumor growth compared with free DOX or NPs loaded with either DOX or 

siRNA alone.

6. Conclusion

In practice, chemotherapy has become a standard regimen for treating cancer patients. 

However, it currently represents a bottleneck in the path toward improved cancer therapies. 

RNAi has the ability to influence cellular pathways by silencing or inhibiting certain 

proteins, thereby sensitizing cancer cells or enhancing the accumulation of anticancer drugs 

at the tumor site. The co-delivery of chemotherapeutic agent and siRNA using NPs is 

significantly superior in cancer therapy compared with NPs loaded with either drug or 

siRNA alone. Various NPs have been developed to co-deliver drug and siRNA, including 
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liposomes, dendrimers, micelles, and inorganic NPs. The ideal NP system should share some 

unique beneficial features, including: (1) good biocompatibility for the carrier materials; (2) 

easy scale-up with good quality control; (3) excellent drug loading and encapsulation 

efficiency; (4) high therapeutic efficacy; (5) reduced unwanted side effect.

7. Expert opinion

Combination therapies based on chemotherapy and RNAi technology greatly improve the 

therapeutic efficacy of cancer therapy. The combined application of multiple drugs (e.g., 
chemotherapeutic drug, siRNA) targeting different cellular signal pathways can raise the 

genetic barriers for cancer cell mutations [72–74]. Thus, this strategy can delay the cancer 

adaptation process, and increase the therapeutic efficacy [75]. One of the prerequisites for 

the combination of chemotherapy and RNAi technology is to select a proper gene target. 

Generally, the candidate genes should have the following features: (1) be important for the 

drug resistance of tumor (e.g., gene encoding P-gp) [76]; (2) be critical in the tumor survival 

pathways (e.g., gene encoding Bcl-2) [77]; (3) be preferentially expressed in the tumor 

tissues (e.g., gene encoding vascular endothelial growth factor (VEGF)) [35]. There is also a 

concern for siRNA as a drug. siRNA, a type of exogenous oligonucleotide, can trigger the 

innate immune system, and it is not as safe as originally expected. Fortunately, the chemical 

modifications or optimized sequence design of siRNA can reduce the immunogenicity [78]. 

To achieve synergistic effects of such combination, chemical drugs and siRNAs need to be 

delivered to the same tumor cells (Figure 1) [16]. NP-based nanotherapeutics have emerged 

as one of the most promising strategies for drug delivery in recent years. Chemical drugs are 

generally encapsulated into NPs through the “like dissolves like” principle, covalent binding, 

or physical restriction, whereas siRNA are often loaded into NPs based on the interaction 

between positive-charged polymer and negative-charged siRNA, or physical restriction. 

Various types of NPs have dual-capacity to encapsulate both chemical drug and siRNA, thus 

they have been used for the co-delivery of anticancer drug and siRNA so as to 

synergistically enhance their individual anticancer effects.

Ideal NPs for co-delivery of drugs should have the advantages of high capacity to load 

multiple drugs, long stability in the circulation, and targeted drug delivery without an initial 

burst release. In order to achieve the maximal effect of the combination of chemotherapeutic 

drug and siRNA, the ideal carrier will also be multifunctional, possessing the ability to 

release its contents in a controlled ratio and at an accurate dose. Therefore, further studies 

should pay more attention to the interaction of chemical drugs and siRNA, as well as the 

interaction between therapeutic agents and carriers. Another remaining challenge for 

combination cancer therapy is minimizing systemic side effects. Several strategies can be 

applied, such as optimization of size and surface physicochemical property, as well as 

careful selection of the surface composition materials [18]. Surface functionalization of NPs 

with the targeting ligands (e.g., antibodies, peptides or small molecules) can promote drug 

accumulation in the tumor cells via receptor-mediated endocytosis and decrease the systemic 

distribution [79], which offers a promising approach to reduce the adverse effect and 

enhance the treatment efficacy. Additionally, the stimuli-responsive DDS may represent 

another promising alternative for tumor-targeted and further organelle-targeted drug 

delivery. This DDS may be sensitive to specific endogenous stimuli, such as a lowered 
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interstitial pH, a higher glutathione concentration or an increased concentration of certain 

enzymes in the tumor tissue (e.g., matrix metalloproteinase) [80].

The application of RNAi to chemotherapy will require evaluation of therapeutic efficacy and 

safety from the lab to the clinic through preclinical trials. In coming years, more and more 

RNAi-based combination therapeutics are expected to enter into clinical trials, with some 

products successfully transitioning to commercial markets. Since the field of nanomedicine 

is relatively young, the long-term health effects of NPs are largely unknown. Combination 

therapies based on chemotherapy and RNAi are still evolving, and novel co-delivery 

approaches that bring combination therapy to the clinic will ultimately be found.
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Article highlights box

• The combination of multiple ‘magic-bullets’ is a promising approach for 

cancer therapy.

• Combination therapy based on chemotherapy and RNAi technology can 

modulate different cellular pathways in tumor cells, thus maximizing the 

therapeutic efficacy and minimizing the unwanted adverse effect.

• Nanoparticle-mediated co-delivery of chemotherapeutic agent and siRNA is 

more effective in treating cancer than the application of drugs or siRNA 

alone.
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Figure 1. 
Schematic illustration of co-delivery process of chemical drug and siRNA by NPs to cancer 

cell.
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Table 2

Comparison of the advantages and disadvantages of different NPs for co-delivering chemical drug/siRNA in 

cancer therapy.

NPs Advantages Disadvantages

Liposome Readily self-assembled in one step Versatility in fluidity, size, 
zeta-potential High entrapment efficiency Narrow size distribution 
Drug controlled release

Lack of storage stability Toxicity of some 
liposomal contents High cost of liposome 
production

Micelle Multifunctional design Excellent blood stability Passive targeting 
to tumor Drug controlled release

Lack of storage stability Concerns over 
nanotoxicity Chemical reaction required

PAMAM Homogenous structure Easy surface modification for active 
targeting, drug attachment or Pegylation Host–guest entrapment 
property

Chemical reaction with many steps required 
Concerns over nanotoxicity

Polyester NPs Well-established techniques for fabrication Good reproducibility 
FDA-approved carrier materials Easy to be scale-up

High-energy input Surfactant needed Lack of 
controlled release

Chitosan-based NPs Biocompatibility and low toxicity Biodegradable Easy chemical 
modification Excellent cellular uptake profile

High-energy input Lack of storage stability

Mesoporous silica NPs Low toxicity Biodegradable Easy surface functionalization High 
pore volume Uniform and tunable pore size

Chemical reaction with many steps required 
Residual organic solvent Potential hemolysis
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