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Abstract

Single cell RNA sequencing (scRNA-seq) is an exciting new technology allowing the analysis of 

transcriptomes from individual cells, and is ideally suited to address the inherent complexity and 

dynamics of the central nervous system. ScRNA-seq has already been applied to the study of 

molecular taxonomy of the brain. This work has paved the way to expanding our understanding of 

nervous systems and to providing insights into cellular susceptibilities and molecular mechanisms 

in neurological and neurodegenerative diseases. Here, we discuss the recent progress and the 

challenges in applying this technology to advance our understanding of the brain. We favor the 

application of scRNA-seq in the discovery of targets and biomarkers as a new approach in 

developing novel therapeutics for the treatment of neurodegenerative diseases.

Single Cell RNA Sequencing: A Valuable Tool

Neuroscience research has been bolstered by recent technological advances, including high 

resolution imaging approaches [1], optogenetic modulation (see Glossary) [2], genome 

engineering [3], and next generation sequencing (NGS) [4]. These techniques have enabled 

us to interrogate the physiology and pathophysiology of the nervous system with 

unprecedented precision and depth. Emerging advances using single cell RNA sequencing 

(scRNA-seq) in the central nervous system (CNS) have already begun to provide exciting 

molecular insights into the complexity of the brain by identifying novel cellular subtypes 

based on transcriptional profiles as well as possible disease-relevant mechanisms [5–8] (Box 

1). An extension of these studies will be to apply scRNA-seq to compare different cell 

populations and cellular states in the context of neurological disease. Transcriptomic 

analyses at single cell levels using pathological samples from human brains and animal 

models of neurological diseases are likely to provide an remarkable opportunity to 

understanding disease mechanisms.
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Box 1

Pioneering Transcriptomic Studies in Neuroscience

The systematic description of cellular structures in the brain based on their morphological 

characteristics and localization, pioneered by Ramon y Cajal, has been guiding 

neuroscience studies for more than a century [9]. In this regard, translating the 

morphological features of the nervous system into molecular and functional terms and 

understanding their formation during development represent important goals of modern 

neuroscience. Importantly, such studies have identified transcriptional factors involved in 

the determination of cell fates for all cell types in the CNS, underscoring the importance 

of transcriptional regulation in the development and maintenance of the nervous system 

[10–12]. The systematic bulk RNA-seq analyses and in situ mapping of brains by 

researchers at the Allen Brain Institute and the laboratory of Ben Barres have provided 

important molecular definitions of the cell types and structures in the brain and 

highlighted the role of transcriptional regulation in its physiology. On the one hand, the 

Allen Institute for Brain Science systematically characterized the genome-wide gene 

expression patterns in molecularly defined cell types and anatomically defined regions in 

the CNS of both human and animal models [13]. On the other hand, Ben Barres’ 

laboratory conducted RNA sequencing analyses on isolated CNS cell populations, 

including neurons, oligodendrocytes, astrocytes, microglia and endothelial cells [13]. 

This cell-type specific bulk RNA sequencing approach has provided a baseline 

classification system for major cell types and an important foundation for studying the 

cellular landscape in the CNS [14, 15]. These and other studies have demonstrated the 

power of understanding the complexity of the CNS through a transcriptional viewpoint, 

and have also provided an excellent methodology to process large datasets in an 

integrative and user-friendly environment.

In this review, we discuss scRNA-seq studies as a means of assessing the dynamics of 

differential gene expression patterns in different cell types. We review promising research 

directions made possible by the application of this novel technology in the field of 

neurobiology and highlight studies that bear direct relevance to the discovery of 

neurodegeneration mechanisms and which might aid in identifying new drug targets and 

biomarkers. In addition, we discuss potential hurdles that need to be overcome when 

conducting scRNA-seq in the intact brain.

Transcriptomic Studies Unveil Therapeutically Relevant Targets for 

Neurodegeneration

While many early studies focused on understanding transcriptomics in the CNS in the 

context of development, here, we highlight the possibility that differential expression 

patterns can be utilized to understand disease mechanisms in the field of neurodegenerative 

and neurological diseases (Box 2). One important application is the understanding of the 

transcriptional basis of disease vulnerability. For example, two studies explored the 

transcriptional profiles in rat models of transient global ischemia in an attempt to understand 
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why pyramidal neurons of the CA1 are highly vulnerable to ischemic insult and 

degeneration [16, 17]. By contrast, adjacent CA3 pyramidal neurons appear to be largely 

spared after this type of insult [16, 17]. These studies provide insights into disease 

pathogenesis in animal models, by identifying several novel molecules induced after 

ischemia such as SMN1/Smn1, a gene that is dysregulated in spinal muscular atrophy. In 

addition, transcriptional profiling has also been used to explore the mechanism(s) by which a 

lesion in multiple sclerosis (MS) occurs, and how a chronic active and an inactive lesion 

may differ at transcriptomic levels in MS [18, 19]. This work and that of others identified the 

upregulation of immune markers in active lesions in MS. Despite the fact that both of these 

studies were conducted before NGS, they were important attempts to align temporal and 

spatial localization with transcriptional states in order to better define neuronal disease 

pathology. However, these reports were limited by their statistical power. Indeed, many early 

microarray studies were technically limited because of the small number of patients 

amenable to this type of experiment. Multiplexing (i.e. simultaneously sequencing multiple 

patient barcode-labeled samples) by using NGS has enabled the quantitative assessment of 

transcriptional patterns in large cohorts of patients.

Box 2

Transition to scRNA-seq in the Nervous System

While the cells in the nervous system have been traditionally classified according to their 

molecular markers, location, morphology, target specificity, and electrophysiological 

characteristics, scRNA-seq provides an opportunity to explore and understand the 

molecular mechanisms that define their characteristics. The dynamic changes in gene 

expression patterns at the single cell level in response to environmental or disease 

conditions may provide important insights into the ongoing cellular responses and 

mechanisms under relevant physiological and pathological processes. However, one 

should be cautious in interpreting whether a molecular profile corresponds to a cell type 

or a cell state [33, 37, 38]. The former refers to a unique, molecular signature that 

remains stable under different conditions, throughout development and into adulthood, 

while the latter corresponds to a more dynamic set of genes that shift their expression in 

response to different signaling stimuli. It is therefore not difficult to imagine that 

molecular profiling by scRNA-seq will adequately inform us on the properties of a vast 

array of neurons and glia within the nervous system, including electrophysiological 

properties, connectivity patterns or activation states, and under various conditions of 

interest.

Such methodological improvement occurred in parallel with the development of RNA 

sequencing technologies and the ability to gather and interpret large data sets. Indeed, the 

NIH has commenced several large initiatives to understand human diseases through an 

“omics” approach. One successful example has been the effort to understand Alzheimer’s 

Disease (AD) pathology by investigating the transcriptional profiles of brains from large 

cohorts of patients [20]. While the results from these studies are just beginning to emerge, 

two outcomes of this research approach are evident: one is the discovery of novel disease 

related targets and pathways, and the other is the identification of biomarkers for disease. 
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Indeed, a study investigating the transcriptional profile of more than 1500 late-onset AD 

patients identified a pathogen phagocytosis molecular signature, revealing Tyro receptor 

tyrosine kinase binding protein TYROBP as a key regulator of many genes important for 

microglial function [21]. These findings not only point to a novel microglial-specific 

molecular signature in AD, but also suggest potential biomarkers in connection with 

TYROBP that can be further explored. Moreover, the microglial-specific signature was 

identified within the overall RNA profile of AD patient brain samples using a bulk 

sequencing approach, suggesting a robust immune signature in AD samples that can be 

masked by other cell types [21]. This conclusion is consistent with a recent report suggesting 

that bulk-sequencing changes detectable in pathological samples may be primarily driven by 

the changes in the composition and abundance of cell types, rather than that of gene 

transcription per se [22] (Box 3). This interpretation was reached based on the RNA-seq data 

from multiple human neurodegenerative diseases such as amyotrophic laterals sclerosis 

(ALS), frontotemporal dementia (FTD), and AD human post-mortem tissues as well as AD 

mouse models[22]. In this work, increased transcripts were mostly enriched in non-neuronal 

cell types including endothelial cells, astrocytes and microglia, whereas the noted down-

regulated transcripts came from neuronal cells. Such evidence highlights the critical need to 

investigate and understand the transcriptomic changes at single cell level in human 

pathology and animal model studies.

Box 3

Limitations of Bulk Transcriptomic Studies

RNA samples for bulk sequencing are often derived from a diverse population of cells, 

either isolated from whole brain or from a specific region of the CNS, with or without 

fluorescence-activated cell sorting (FACS). Thus, cell-type specific transcriptomic 

changes may often be lost in such studies as the final dataset represents an average of 

many cells from different regions and/or different cell types. Given the high degree of 

heterogeneity and complexity of the CNS, cell types and transcripts of low abundance are 

common. In particular, with bulk RNA-seq, it may be difficult to differentiate if a 

transcript of low abundance is expressed at low levels in a common cell type or highly 

expressed in a rare cell type. Furthermore, with disease, low abundance transcriptional 

changes in a rare cell type close to a lesion may be undetectable, or underestimated, when 

using a bulk RNA-seq approach. Additionally, while FACS sorting allows selection via 

particular biomarker(s), the intrinsic heterogeneity within cell populations might still be 

missed, potentially resulting in a loss of critical pieces of information, which in the 

context of neurodegenerative diseases, may correspond to signaling events triggering 

pathological cascades or, facilitating their amplification. As such, scRNA-seq techniques 

have the potential to overcome these limitations.

Development of scRNA-seq Technologies

Understanding the nervous system at a single cell level has been an exciting area of interest 

in the neuroscience community for some time [23, 24]. Early studies used elegant -- yet low 

throughput -- techniques to identify transcriptional differences among rat hippocampal 
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neurons [23] as well as among cells from the mouse olfactory epithelium [24]. A parallel 

approach utilized laborious cell suctioning after single cell electrophysiological recordings 

(whole cell patch clamp) followed by semi-quantitative PCR, to couple neuronal firing rates 

with the expression of calcium-binding molecules and neuropeptide receptors [25]. While 

these studies identified specific differences in neuronal populations, aligning their functions 

with gene expression patterns, they were not quantitative enough, nor did they provide an 

unbiased assessment of global gene expression patterns. NGS has radically changed our 

ability to understand the transcriptional landscape in any given cellular system by 

quantitatively assessing gene expression patterns, distinguishing splicing events and 

identifying rare transcripts. The power of NGS is so immense that it has rendered 

microarrays obsolete[26]. While microarrays detect robust, homogeneous changes in cell 

populations[27], they are limited in identifying low abundance transcriptional events, and 

rare cell populations. In this regard, the development of the scRNA-seq approach yields the 

promise of overcoming such challenges (Figure 1).

Plate-Based Techniques

Understanding biology at a single cell level has become an exciting area in biomedical 

research [28, 29], with various robust technological platforms developed for this purpose. 

The individual utility of these methods has been reviewed elsewhere [30, 31]; however, it is 

important to note that some scRNA-seq techniques, including Smart-seq2, Cell-seq, MATR-

seq, SCRB-seq etc. rely on capturing or sorting individual cells into tubes or multi-well 

plates. Studies using this type of technology were the first to explore the brain at single cell 

levels in a high throughput format [5, 32]. However, one clear obstacle of these plate-based 

techniques is the limitation in cell numbers collected. An additional caveat is that these 

methodologies require FACS sorting, or require that cells to be separated based on size (i.e. 

Fluidigm/C1)[30, 33]. As a result, maintaining the native heterogeneity of CNS constituents 

is almost impossible. By contrast, lipid droplet/microfluidics-based cell capture techniques 

allow the capture and sequencing of thousands of cells simultaneously from an intact tissue. 

Because of the inherent variability in scRNA-seq data, it is important to ensure -- with 

sufficient confidence -- that sufficient numbers of cells are obtained so as to identify changes 

in any given cell population, on at an individual transcript level for each condition. While the 

exact number of cells required to understand transcriptional changes within a cellular 

population has to be determined experimentally, it’s clear that understanding pathological 

changes in cellular responses requires adequate statistical power. An additional 

consideration, is the depth of sequencing obtained; when sequencing resources are limiting, 

the greater the numbers of cells that are sequenced will reduce the number of reads for each 

individual cell. A critical challenge is to understand for any given experiment, what the 

optimal number of cells to capture is, while maintaining sufficient sequencing depth to 

understand comparative differences between biological groups.

Microfluidics and Lipid Droplet Techniques

A number of scRNA-seq platforms, including Drop-seq and inDrop platforms, have been 

developed to allow efficient multiplex RNA isolation and cDNA preparation after single cell 

separations using microfluidics and lipid droplet technologies [34, 35]. These platforms are 

flexible in the number of cells captured and sequenced. Microfluidics devices have been 
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developed to efficiently mix the principal components, and then separate individual cells for 

RNA processing. Barcoded beads, each attached with a unique sequencing primer, are 

pumped into a chamber within the microfluidics device to mix with the cell suspension. 

Each bead and cell are then encapsulated in a lipid droplet. On the one hand, in the inDrop 

technology, the cell is lysed and the RNAs in this cell are reverse-translated into cDNAs in 

each Droplet, which are then captured by the unique primer on the bead [34]. On the other 

hand, in the Dropseq platform, the cell is lysed and RNAs are captured by the uniquely 

barcoded poly-dT primer on the bead, and cDNA libraries are generated after the lipid 

droplet is broken to produce STAMPS (single-cell transcriptomes attached to microparticles)

[36]. Because each bead contains its own specific barcode that uniquely identifies 

transcriptomes from individual cells, these techniques allow the simultaneous analyses of 

transcriptomes of thousands of cells in a single reaction.

Critical differences between the Drop-seq and inDrop platforms include the number of 

barcodes used, and the physical properties of the beads. The inDrop method has fewer 

barcodes and is thus limited in the number of cells that it can process; yet it has a higher 

capture efficiency of cells (~10%), due to the use of soft large hydrogel beads [34]. 

Comparatively, the Drop-seq technology may allow the capture of a larger number of cells 

from complex tissue samples because a larger number of barcodes are available for 

sequencing, but yet, it exhibits lower capture efficiency (~1%) due to the hard- and smaller- 

sized methacrylic beads [35]. The laboratories that developed this technology have quickly 

and widely shared their experiences and expertise to disseminate this technology, enabling 

the greater scientific community to both validate the method, and to apply it to various fields 

of research. One clear limitation to both Drop-seq, InDrop, as well as other methods 

utilizing a unique sequencing primer, is that the DNA sequencing is carried out only from 

the 3′ end of the DNA. As a consequence, this method cannot detect alternative splice forms 

or examine allele-specific expression using single nucleotide polymorphisms (SNPs). In this 

regard, methods such as Smart-seq2 (a plate-based cellular collection and sequencing 

method) that do not use a unique sequencing primer, are able to sequence full-length 

transcripts [30, 31].

Challenges of Data Analysis in scRNA seq

Data obtained from scRNA-seq are technically identical to those from a traditional bulk 

expression profile analysis; however, they result in complex expression distributions and 

increased variability. These are in part caused by the heterogeneity in cell types as well as 

reduced abundance of transcripts, which poses new challenges demanding new statistical 

and computational methods for analysis. In this section, we discuss the general processes 

and considerations when analyzing data from scRNA-seq (Figure 2). While several 

methodologies exist for scRNA-seq, microfluidics-based platforms enable the capture of a 

large number of diverse cell types, with an ability to process them in a semi-automated way. 

For this main reason, we focus here on this method, as it allows to capture the inherent 

cellular heterogeneity of the CNS.

The data analysis associated with scRNA-seq typically can be grouped into three parts: (1) 

obtaining cell-gene expression tables, (2) identifying cell types, and/or (3) pursuing 
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question-specific answers. The last two steps do not necessarily have to come in that order. 

The first part of the analysis is to generate a table showing the relative expression level of 

each gene per cell. A Microfluidics-based scRNA-seq platform requires paired-end 

sequencing: ‘Read1’ contains a cell-specific barcode and ‘unique molecular identifier’ 

(UMI)[36, 39] which is a random barcode that allows the tracking of unique transcripts, 

while ‘Read2’ contains a cDNA sequence near the poly-A tail of transcripts. Read2s are 

mapped to the genome with standard aligners (e.g, Tophat [40], STAR [41]) and they are 

quantified per gene and per cell by processing UMIs and cell-barcodes provided by Read1. 

Upon quantification, single-cell specific quality control measures are monitored, including 

total reads per cell, total number of genes detected per cell, and fraction of mapped reads. 

Based on these values, real cells are selected from empty droplets or cells of poor-quality, 

e.g., dying/dead cells. This provides a preliminary cell-gene expression table. Confounding 

factors such as batch effect and cell-cycle status should be corrected if necessary or possible, 

and certain cells can be also discarded.

The last procedure for generating a cell-gene expression table is to normalize -- either by 

dividing each UMI count with total UMI counts per cell [34], or by randomly down-

sampling UMI counts in each cell such that all cells will have identical total UMI counts 

[42, 43]. By contrast, for plate-based scRNA-seq methods, external RNA controls 

consortium (ERCC) spike-in controls have been used as a known standard for normalization 

[44, 45]. However, this is not applicable for lipid-droplet/microfludics based methods, 

because the majority of droplets will not contain cells, and when added, ERCC will be 

amplified instead, appearing as a major RNA species at the expense of the relevant 

transcripts from cells. Another normalization method consists of converting the 

measurement of transcripts per kilobase million (TPM) into relative transcript counts, under 

the assumption that detected gene expression levels that are at, or below the peak of TPM 

distribution per cell, correspond to a single transcript [46]. However, researchers recommend 

the use of UMI, if possible; this is in agreement with a recent comparative report of scRNA-

seq methods [31].

It is important to note that annotations of the 3′UTR are often incomplete and truncated 

early, resulting in the underestimation of UMI counts per gene [47]. In this regard, 

alternative sequencing methods, such as SMART-seq which do not rely on UMIs and can 

sequence full length transcripts, provide greater accuracy [31]. Extending annotations of 

3′UTR thus gives more reads per gene [43], but currently there is no systematic research 

reporting optimal 3′UTR length for each gene in model organisms.

One critical limitation of any scRNA-seq platform is that the detected transcript levels 

exhibit high variability, especially for low abundant transcripts. For example, the capture 

rates of transcripts using inDrop and Drop-seq, have been reported as 7.1% [34] and 12.8% 

[35], respectively. Hence, histograms of expression levels of most genes present a large peak 

at 0 counts, termed ‘dropouts’ [31]. There are a variety of statistical methods developed to 

accommodate this problem, reviewed in [48]. This aspect of single cell data is one of the 

biggest hurdles of scRNA-seq; future technological improvement to increase the number of 

gene counts per cell might help to overcome this challenge.
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The second part of the analysis identifies cell types from the cell-gene expression table 

based on similarity in gene expression patterns among cells. The difficulties in this process 

are quite variable and depend on the complexity of the population structure and the aim of 

the study [49]. If the cell types are very different from each other, principal component 

analysis (PCA) and its variants such as independent component analysis (ICA) and t-

distributed stochastic neighbor embedding (tSNE), when combined with conventional k-

means or hierarchical clustering would be sufficient to distinguish the different 

subpopulations [34, 35]. However, if the cell types are similar, or if higher resolution is 

required, more sophisticated methods such as Louvain-Jaccard clustering [50] and Infomap 

[51] can be used [52]. In addition, multiple iterations of simultaneous selection of relevant 

gene subsets and clustering of cell types might be necessary [37]. Thus, validation of 

detected cell types using histological methods is also necessary, especially when novel cell 

types are potentially observed in a given scRNA-seq experiment [53].

The third part of the analysis is specific to the question of interest. Standard statistical 

methods based on t-test, f-test, or Wilcoxon rank sum test can be used for differential 

expression analysis among cell types. Weighted gene co-expression network analysis 

(WGCNA) has also been adopted for network analysis [34, 54]. Moreover, ICA and the 

‘pseudo-timing’ method have been used to reconstruct a temporal order of changes during 

cell differentiation [55]. In addition, Bayesian frameworks have been used to construct cell-

type lineage trees [43]. Note that the former and latter methods are based on different 

premises– the former assumes continuity, while the latter assumes discreteness of cell-states 

during cell-fate transition represented in gene-expression space. In-situ hybridization data 

have also been a useful complement to scRNA-seq, facilitating the construction of a spatial 

expression map, as for example, in a developing embryo [56].

Most scRNA-seq analyses have focused on the characterization of systems of interest, which 

is an important first step. Similar to other high-throughput profiling methods, further 

challenges lie in developing algorithms that can generate experimentally testable predictions 

by inferring causality from the data generated from scRNA-seq, especially when attempting 

to understand disease mechanisms. Additionally, defining how scRNA-seq can be most 

effectively integrated with parallel bulk RNA-sequencing will also enhance our 

understanding of each individual cell within the whole network, and hopefully add to our 

knowledge of pathophysiological disease mechanisms.

Molecular Taxonomy of the Brain at the Single Cell Level

Since the complexity of the CNS is due, at least in part, to the presence of diverse cell types 

and their distinct properties governed by specific gene expression patterns, an accurate 

understanding of transcriptomics at the single cell level should provide the molecular 

taxonomy of distinct cell types in the CNS. Thus, improved resolution when characterizing 

gene expression patterns at the single cell level in the CNS may be translated into a better 

understanding of the brain in both health and disease. The desired, extensive gene expression 

lists are now technologically possible to obtain via single cell transcriptomics, as evidenced 

by recent scRNA-seq studies of the mouse cortex [57, 58].
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While the field of high throughput scRNA-seq is in its infancy, these early forays using this 

technology suggest that it is feasible to define different cell types in the CNS by their 

transcriptomes at the single cell level. The power of scRNA-seq was first demonstrated in 

the analysis of the retina; the study, which pioneered the development of Drop-seq 

technology, analyzed transcriptomes from 44,808 mouse retinal cells and identified 39 

transcriptionally distinct cell populations, creating a molecular atlas of gene expression for 

known retinal cell classes and novel candidate cell subtypes [35]. Similarly, another study 

used scRNA-seq to systematically examine the molecular diversity of retina bipolar cells 

(BCs) and identified 15 types of BCs, including all known subtypes and two novel types 

[52]. In addition, other researchers have used scRNA-seq to construct a cellular taxonomy of 

the mouse primary visual cortex, identifying multiple GABAergic, glutamatergic and non-

neuronal cell subtypes [37]. These transcriptomically distinct cell types displayed specific 

and differential electrophysiological, and axon projection properties, which suggests that the 

single-cell transcriptomic signatures might be associated with specific cellular properties 

[37]. The report identified 49 transcriptomic cell types using ~ 1,600 cells from the mouse 

cortex. Of note, this study utilized a non-lipid-droplet/fluidics based approach and was able 

to obtain a robust dataset.

A recent large-scale scRNA-seq analysis of mouse somatosensory cortex (S1) and 

hippocampal CA1 region identified 47 molecularly distinct subclasses, comprising all 

known major cell types in the cortex, including 7 subclasses of pyramidal neurons 

distributed in different layers, 16 subclasses of interneurons, 2 classes of astrocytes, as well 

as 6 classes of oligodendrocytes, possibly representing different differentiation stages of 

these cells [5]. The functional relevance of such classification is supported by the fact that a 

subtype of interneuron, marked by the expression of Pax6 and Htr3a, showed very specific 

electrophysiological and morphological characteristics of late-spiking neurogliaform cells 

[5]. These results provide insights into the transcriptional regulation of cortical layer 

heterogeneity by providing an important template for future studies of disease. In addition, 

such studies demonstrate the region-specific heterogeneity in the continuous maturation 

process of cells, including neurons and glial cells in the CNS. Accordingly, distinct 

oligodendrocyte populations expressing molecular signatures of the whole lineage spectrum 

– from oligodendrocyte precursor cells to mature oligodendrocytes -- were found in different 

regions of the mouse brain [59]. However, the functional implications of such regional 

specificities of oligodendrocytes transcriptomes at different maturation stages will require 

further investigation.

Finally, while most of single cell transcriptome analyses have used experimental model 

organisms such as the mouse, an scRNA-seq analysis on 466 cells captured from healthy 

adult and fetal human brains (obtained during surgical procedures) was able to capture major 

cell types, including neurons, glia and vascular cells in the adult and fetal human brain [60]. 

A complement to this study was a report showing the ability to culture biopsy tissues from 

adult human patient brains, subjected to scRNA-seq analysis and identifying 5 classes of 

cells including oligodendrocytes, microglia, neurons, endothelial cells, and astrocytes [61]. 

Consequently, we can expect that studies such as these may eventually lead to a 

comprehensive cellular atlas of the human brain at the single cell level [60].
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In conjunction studies defining human brain taxonomy, a recent study demonstrated the 

ability to perform RNA-seq on single nuclei isolated from post-mortem human neurons [8]. 

This work was conducted on 3,227 single neuronal nuclei derived from various regions of 

the cerebral cortex, leading to the identification of 16 neuronal subtypes. The method has 

been validated by others [62] but is thus far only amenable for isolation of nuclear RNA, 

which is clearly different from total cellular RNA. Nonetheless, the ability to detect different 

neuronal cell types in post-mortem tissue is a significant advance that may enable the 

characterization of a transcriptomic basis of neurodegenerative diseases at the single cell 

level. Furthermore, a recent report has described a method to cryopreserve human peripheral 

blood derived mononuclear cells and mouse tissue, successfully subjecting these to scRNA-

seq [63]. This method also corroborates that conducting scRNA-seq in post-mortem brain 

tissue is thus possible.

Exploring the Mechanisms of Neurodegeneration at the Single Cell Level

In addition to being a molecular classification tool, scRNA-seq is being used to ask 

important questions relevant to disease mechanisms, as well as to provide information on 

possible new therapeutic targets and biomarkers. Two different studies using mouse models 

employed scRNA-seq to understand the regulation of serotonergic neurons with relevance to 

anxiety and mood disorders [64, 65]. One report used an elegant combination of genetic fate 

mapping, fluorescent cell sorting and genome-wide RNA-seq, both at population- and at 

single cell- levels, characterizing the diversity of serotonergic (5HT) neurons in mouse 

brains [64]. This study revealed profound differences in the patterns of gene expression both 

between and within anatomical domains and 5-HT neuron sub-lineages. In addition, using 

scRNA-seq on isolated serotonergic nuclei, another study revealed the expression of >500 

G-protein coupled receptors (GPCRs) in the dorsal raphe serotonergic neurons [65]. Since 

GPCRs are excellent drug targets, this study might provide potential new targets for 

modulating DR neurons in multiple mood disorders [65]. Others used scRNA-seq to identify 

multiple subtypes of dopaminergic neurons, demonstrating the differential localization of 

various subtypes in distinct anatomic regions of the mouse brain [66]. Moreover, the authors 

identified a subtype of Aldh1a1+ dopaminergic neurons in the substantia nigra that were 

especially vulnerable in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) toxin-

induced mouse model of Parkinson’s disease (PD).

The striatum is involved in controlling multiple aspects of cognitive function as well as in 

translating cortical activity into adaptive motor actions in the brain. Striatal dysfunction 

contributes to multiple neurodegenerative or psychiatric disorders, including PD, 

Huntington’s disease, schizophrenia and addiction [67]. The GABAergic medium spiny 

neurons (MSNs), the principal neurons of the striatum, are traditionally classified into D1- 

and D2-subtypes based on the expression of the D1-dopamine or the D2-dopamine 

receptors, respectively [68]. A recent study analyzed 1208 cells from the mouse striatum 

using a plate-based scRNA-seq approach (Fluidigm/C1, SMARTseq2) and documented that 

both D1 and D2-MSNs could be subdivided into additional discrete populations [69]. Since 

the function of dopamine as a key neurotransmitter is linked to both neurodegenerative and 

neuropsychiatric disorders, the characterization of distinct populations of dopaminergic 
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neurons may facilitate our understanding of the molecular underpinning and pathogenesis of 

such diseases.

ScRNA-seq has also been used to investigate the regenerative potential of the brain. One 

study isolated 130 cells from the subventricular zone of adult mice and characterized the 

existence of a pool of dormant neural stem cells (NSCs) expressing distinct combinations of 

lineage-specific genes [70]. Furthermore, the study also examined the response of NSCs to 

brain ischemia, identifying the transition of stem cells from dormant, to activated state 

following injury, and when influenced by interferon gamma (IFN) signaling [70]. The report 

was the first to compare NSCs in vivo in a pathological context, identifying signaling 

modules that could be targeted for regeneration [70]. A challenge now will be to extend such 

studies into human systems and translating relevant findings into therapeutic interventions.

An alternative avenue to investigating the mechanisms of CNS diseases may be to use 

peripheral cells as surrogates of pathology [71]. Various research groups have examined 

transcriptional changes in patient derived blood cells, looking for signatures of neurological 

diseases and identifying potential disease mechanisms [71, 72]. These studies are 

particularly relevant because an emerging concept in the field of neurodegeneration includes 

the role of immune dysfunction in driving disease pathology [73] [74]. Thus, understanding 

the transcriptional landscape of peripheral cells such as monocytes may enable the discovery 

of disease biomarkers, but also inform on mechanistic pathways. Patient derived blood cells 

are easily accessible and do not require post-mortem analysis, which is a critical limitation 

in studying human neurodegenerative diseases [75, 76]. These cells are also amenable for 

scRNA-seq analysis[75, 76]. It is intriguing to imagine whether a subtype of peripheral 

blood cells characterized through scRNA-seq could be used as a ‘window’ into the brain. 

ScRNA-seq analysis performed on peripheral blood cells, coupled with RNA-seq data 

obtained directly from the CNS, such as post-mortem tissue from patients, could be 

exploited to potentially elucidate critical mechanisms contributing to human 

neurodegeneration.

The studies described above depict the vast potential of utilizing scRNA-seq in our quest to 

better understand the physiology and pathophysiology of the CNS. Because of the relative 

novelty of this technique and the lack of a standardized protocol in the CNS, it is important 

to compare different methods used to prepare samples for the single cell workflow. Some of 

the earlier scRNA-seq studies utilized cells that were dissociated and then FACS- enriched 

[5]. This methodology has two inherent caveats. First, the dissociation of cells should be 

conducted in a manner that faithfully recapitulates the cellular distribution of all cell types 

present in the CNS and where the transcriptional landscape is maintained throughout this 

process. Second, FACS should be conducted using multiple cell surface marker since FACS 

may alter the transcriptional cellular profile and may also bias the cellular collection [37]. 

Because of the development of new data analysis tools and optimization of dissociation 

protocols, some of the more recent studies have been able to conduct scRNA-seq analyses 

on multiple cell types of whole brain, simultaneously [34, 35]. This important transition 

signifies a shift in our ability to study the brain.
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ScRNA-seq can be applied to understand how a genetic perturbation affects the CNS at high 

resolution. The application of NGS has enabled the identification of novel genetic 

association and risk factors associated with human diseases, such as the involvement of 

OPTN, TBK1, SQSTM1 and C9ORF72 in ALS [77]. The expression pattern of these genes 

suggests an involvement in microglial function in both mouse models and in human 

neurodegenerative disease [74]. Thus, performing scRNA-seq may not only help us identify 

the cell type(s) in which these genes are most highly expressed, but also reveal the specific 

cell type(s) in the CNS which is/are most affected by the perturbation of these genes. 

Additionally, understanding the mechanism of action (MOA) of potential therapeutic 

molecules and current drugs on the market remains a big challenge[78]. ScRNA-seq can be 

utilized both in vitro (e.g. brain slice culture) and in vivo (e.g. injection into a rodent 

species), allowing the assessment of cell type and pathways that may be altered by a 

molecule of interest. One report described the effect of drug treatment on human brain 

tissue, retrospectively examined; human biopsied hippocampal tissue was cultured and 

subject to scRNA-seq and the effects of treatment with Keppra and Dexamethasone 

(compounded together) were significantly associated with the expression levels of GFAP, 
CD14, HTRA3, and PDPN genes in endothelial cells[61]. This represents an example of 

testing the effect(s) of compounds or drugs of interest on animal and human brain tissues 

using scRNA-seq.

Concluding Remarks

ScRNA-seq may be applied to achieve three major goals in neuroscience research. The first 

goal is to provide a molecular atlas of the brain with unparalleled resolution. This atlas 

extends our knowledge on the structural organization of the brain and helps us infer 

connectivity patterns and functional integration. In addition, it may facilitate the design of 

novel tools that can be used to target with notable, spatiotemporal precision, specific 

subpopulations and lineages in the brain. The second goal is to provide detailed molecular 

profiling capability to explore the molecular vulnerability of specific neuronal 

subpopulations in diseases and to identify candidate target molecules for therapeutic 

intervention (see Outstanding Questions and Box 4). Discovering novel drug targets 

localized to particular cells of the CNS using scRNA-seq is an exciting direction in 

therapeutic research. Furthermore, the ability to link a pathology- or lesion-specific 

signatures to cells may paves the way in the identification of putative novel therapeutic 

pathways and biomarkers. An attractive scenario includes the microdissection of a lesion 

within the brain analyzed by scRNA-seq to identify a cell-specific signature. Such 

information could then be used to guide drug discovery in association with specific lesions 

of the CNS (see Box 2). The recent introduction of automated platforms for scRNA-seq may 

thus provide an opportunity not only to fully standardize this method, but also to enable a 

routine workflow of single cell isolation and sequencing of animal and human tissues, that 

may include biopsy or post-mortem brain pathological samples. The third goal is to define 

specific cellular targets at transcriptomic levels with pharmacological manipulations. We 

predict that future applications of scRNA-seq in neuroscience research might provide an 

exciting prospective in understanding physiological structure-function changes in human 
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brains as well as new opportunities in therapeutics approaches to treat neurological 

pathologies.

Box 4

Clinician’s Corner

Single cell RNA sequencing (scRNA-seq) provides valuable insight into the complexity 

of the nervous system by enabling the identification of molecular signatures at 

unprecedented resolution. Thus, the relative representation of different cell types within 

the nervous system can be inferred in health and disease.

The significance of scRNA-seq extends to being able to correlate structural and 

functional properties of cell types with distinct molecular signatures. Such analytical 

power reveals new dimensions of cell identity, and allows a deeper understanding of the 

relationship between disease state and cellular response. For example, the vulnerability of 

specific neuronal cell types in different neurodegenerative diseases might be explained, in 

part, in terms of gene expression. Ultimately, novel molecules and pathways might be 

identified as candidate therapeutic targets.

The identification of cell-type specific signatures at the resolution of a single cell can 

uncover a multitude of relevant biomarkers, which might be used to monitor disease 

progression and assess the efficacy of applied therapeutic strategies.

Future developments of scRNA-seq aim to improve the efficiency of the method by 

increasing coverage of the transcriptome, preserve the physiological context of cells and 

couple the information retrieved from RNA-seq with methods such as cell imaging or 

proteomics. Thus, scRNA-seq provides a platform for a truly holistic understanding of 

cellular physiology in health and disease.

Outstanding Questions Box

What can be done to improve the number of reads per cell in scRNA-seq?

A direct comparison between different single cell methods will enable us to focus on 

method optimization to increase the depth of single cell runs. This will not only include 

optimization of dissociation methods but also provide a better delineation of an ideal 

sequencing protocol followed by data analysis. A critical challenge will also be to 

understand the optimal number of cells to be captured for a given experiment, while 

maintaining sufficient sequencing depth to understand differences between two or more 

biological groups.

What will be the best way to integrate scRNA-seq data into the discovery pipepline?

As the field of scRNA-seq matures, the way in which we use this information will need 

to be standardized. In particular, experimental definition of how bulk RNA sequencing 

approaches in conjunction with single cell data in the brain are utilized needs to occur. 

Additionally, how scRNA-seq is partnered with single cell genomics and proteomics 

technology will need to be established
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What are the differences between single cell preparations in aged and/or diseased 
human tissue as compared to mouse tissue?

While studies have shown the ability to isolate different cells in the CNS in various 

animal models of neurodegenerative disease, it remains to be seen whether single cell 

dissociation protocols can be used to effectively isolate different cell types in the aged 

human brain. These studies will also have to examine whether cryoprotection of human 

tissue is indeed amenable to scRNA-seq.

What are some of the new applications for scRNA-seq in the CNS?

Recent studies have shown that scRNA-seq can be successfully paired with genome-wide 

CRISPR/Cas9 genome editing screens. One intriguing idea may be to utilize this type of 

approach in the intact brain in an animal model of neurodegenerative disease. One can 

envision the use of these experiments as a novel unbiased semi-high throughput discovery 

platform for drug discovery targets in CNS diseases.
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Glossary

optogenetic modulation
genetic stimulation of cells (usually neurons), using light. This technique has been used to 

control the activity of neurons both in vitro and in vivo (i.e. awake free-moving mice).

next generation sequencing (NGS)
high-throughput nucleic acid sequencing performed on multiple commercial platforms. It 

has replaced traditional Sanger sequencing, and utilizes a parallel sequencing process, 

producing many simultaneous sequences.

Bulk RNA sequencing
Uses a ‘bulk’ population of cells as starting material; traditionally referred to as RNA-seq.

In-situ hybridization
method where nucleic acids (RNA, DNA or modified nucleic acids strands) hybridize to 

complementary sequences, identifying the presence and localization of a particular RNA or 

DNA species within a cell or tissue.

transient global ischemia
here, a transient event that affects the entire brain. Certain neurons of the CNS are more 

vulnerable to this type of insult. This includes the main excitatory neurons of the CA1 region 

of the hippocampus, the pyramidal cells. Adjacent CA3 pyramidal neurons of the 

hippocampus are relatively resistant to this type of injury.

Multiple sclerosis
demyelinating disease of the CNS which leads to a disruption of neuronal function.
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Barcodes
Here, Labeled Nucleotides that are added to RNA or DNA, that can be used during 

sequencing to identify a specific sample source.

Paired-end sequencing
refers to the two ends of the same DNA molecule that are both sequenced. Often performed 

to obtain additional information about the origin of the DNA molecule being sequenced (i.e. 

barcode, UMI etc.)

standard aligners
software used to align sequencing data to a genome of reference (e.g human genome or 

mouse genome). This is a critical step in the use and quantification of sequencing data.

batch effect
inherent variation in sequencing data from 2 or more replicate experiments.

Cell-gene expression table
a table whose columns are cells, and rows are genes, with each element representing a 

relative gene expression value.

Unique molecular identifier (UMI)
short sequence of random DNA oligomer attached to cDNA during reverse transcription; it 

allows tracking of unique transcripts.

principal component analysis (PCA)
A linear transformation algorithm that embeds high-dimensional data to low-dimension 

(e.g., 2D), capturing the most varying direction of data points. It is frequently used for RNA-

seq (bulk and single-cell) analysis to determine and visualize key changes between data sets.

Independent component analysis (ICA)
An algorithm to separate mixed signals into independent components, which can be used as 

a dimensionality reduction tool.

t-distributed stochastic neighbor embedding (tSNE)
A non-linear transformation algorithm that embeds high-dimensional data to low-dimension, 

preserving local structure. This method has frequently been used to visualize different cell 

states or different cell types in scRNA-seq.

k-means clustering
clustering algorithm that designates each data point into a cluster with the nearest mean.

hierarchical clustering
clustering algorithm that successively merges data according to their similarities.

Louvain-Jaccard clustering
algorithm that clusters cells by keeping densely connected weighted edges among cells, 

while discarding sparse edges between clusters.
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Infomap
algorithm that decomposes a molecular network into modules by compressing a description 

of the probability flow on a graph.

Network neighborhood analysis
method that finds a set of genes (the neighborhood) that is similar to an initial ‘seed’ set of 

genes. It defines neighborhoods on the basis of a robust interconnectedness measure, e.g. the 

topological overlap measure. It can be used to define multi-node similarity measures.

weighted gene co-expression network analysis (WGCNA)
algorithm that clusters genes whose expressions are correlated by applying high power to the 

correlation coefficients and by using a topological overlap matrix.

GABAergic medium spiny neurons (MSNs)
key neuronal type within the basal ganglia of the striatum; uses GABA as its main 

neurotransmitter, while responding to dopamine. MSNs are critical for movement initiation, 

or motivation and reward, depending on the expression of the dopamine receptor 

(Dopamine-like receptor 1 vs. Dopamine-like receptor 2).

dorsal raphe
anatomical region of the Raphe nucleus located at the midline of the brainstem; responsible 

for various functions including sleep and depression. It has a concentration of serotonergic 

neurons which use serotonin as their main neurotransmitter, impacting sensorimotor 

function.

mouse somatosensory cortex (S1)
distinct region in the mouse neocortex responsible for sensory input, especially tactile input. 

Much of the input comes from the mouse whiskers.

Aldh1a1+ dopaminergic neurons
Aldehyde dehydrogenase 1A1 (Aldh1a1): enzyme facilitating the detoxification of 

catecholamines including dopamine (DA) and norepinephrine; found in a subset of 

dopaminergic neurons and helps dopamine metabolism-associated toxicity in those neurons.

Keppra
anti-epileptic drug (aka levetiracetam).

Dexamethasone
corticosteroid; potent anti-inflammatory drug.
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Trends Box

• In the context of the CNS, scRNA-seq technology lies at the interface of 

neuroscience, computational biology and systems biology, enabling a novel 

and unbiased understanding of the CNS.

• scRNA-seq in the brain can discriminate between different cell types in the 

CNS, facilitating the direct comparison of different cell types between 

samples on a population level.

• The ability to identify individual cells in the CNS opens possibilities of 

finding pathogenic and/or regenerative cells and pathways that can be 

exploited for drug discovery.

• scRNA-seq has been carried out in fresh and frozen human brain tissue. This 

paves the way towards a more precise understanding of neurological and 

neurodegenerative diseases.
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Figure 1. Single Cell Sequencing Technology
A) schematic representation of a microfluidics chip with multiple devices (microfluidics 

chambers that are necessary to perform an individual experiment) on a single chip (i.e. 

usually a single chip can be used for multiple experiments. B) A single device has three 

input ports (oil, barcoded beads in lysis buffer, and cells of interest) and a single output port 

used for collecting bead- cell containing lipid droplets. Then each cell (or RNA in the cell) is 

marked by the unique barcode and processed on the bead for sequencing.
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Figure 2. Single Cell Sequencing Data Analysis Workflow
The Unique molecular identifier (UMI) is extracted from raw data, facilitating efficient 

filtering of duplicate transcripts from the PCR and sequencing steps. Cell-gene expression 

tables are then generated. Cells are clustered based on different gene expression profiles. 

With known cell-type specific gene markers, cell clusters can be identified as individual cell 

populations. Single cell differential gene expression or pathway overdispersion analysis can 

be applied to specific cell populations.
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