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Abstract

Childhood dystonia is a movement disorder characterized by muscle overflow and variability.

This is the first study that investigates upper limb muscle synergies in childhood dystonia with the 

twofold aim of deepening the understanding of neuromotor dysfunctions and paving the way to 

possible synergy-based myocontrol interfaces suitable for this neurological population. 

Nonnegative matrix factorization was applied to the activity of upper-limb muscles recorded 

during the execution of writing tasks in children with dystonia and age-matched controls.

Despite children with dystonia presented compromised kinematics of the writing outcome, a 

strikingly similarity emerged in the number and structure of the synergy vectors extracted from 

children in the two groups. The analysis also revealed that the timing of activation of the synergy 

coefficients did not significantly differ, while the amplitude of the peaks presented a slight 

reduction.

These results suggest that the synergy analysis has the ability of capturing the uncorrupted part of 

the electromyographic signal in dystonia. Such an ability supports a possible future use of muscle 

synergies in the design of myocontrol interfaces for children with dystonia.
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INTRODUCTION

In the context of motor neuroscience, muscle synergies reflect a general principle adopted by 

the healthy central nervous system (CNS) to cope with the high redundancy of the 

musculoskeletal system3 by adopting a modular organization in which movement is 

achieved by the combination of multiple muscle synergies4,11. Each synergy represents a 

coordinated activation of a group of muscles with specific activation balances, defining a set 

of muscles working as a single functional unit. By combining an adequate number of motor 

subtasks, the CNS achieves movement translating high-level and low-dimensional neural 

commands into low-level and high-dimensional patterns of muscle activity. Over the past 

decades, intensive research has investigated such modular organization by applying 

factorization algorithms on the electromyographic (EMG) data recorded during a wide range 

of movements and tasks10,29. Notwithstanding a significant evidence supporting this 

hypothesis in many different behavioral conditions, recent studies15,30 are arguing against 

this theory. Although the modular organization of the CNS is still debated, muscle synergy 

analysis (signal processing methods to extract motor modules from EMGs during motor 

behaviors) represents an advantageous way for analyzing motor patterns as a whole, 

allowing to easily deal with the redundancy and variability of muscle recordings.

The ability of noninvasively revealing the underlying coordination patterns makes muscle 

synergies a successful approach used in several different rehabilitation-oriented applications. 

Among them, an emerging trend is the use of muscle synergies for myoelectric control of 

prostheses or external rehabilitation devices19. Another powerful application is represented 

by their use as a diagnostic tool to facilitate the understanding of the mechanisms underlying 

motor dysfunction in neurological patients25. The comparison of muscle synergy between 

neurological patients and healthy subjects can provide important clinical information. 

Safavynia and colleagues25 hypothesized that a change in the number of motor modules 

reflects a reduced number of independently accessible motor subtasks for the neurological 

group. A change in the structure of synergies reveals instead different muscle coordination 

patterns. Finally, dysfunction may result from the inappropriate selection and recruitment of 

the intact motor modules. Some groups have been studying muscle synergies in patients with 

CNS disorders. A few studies reported abnormal structure for the muscle synergies of Spinal 

Cord Injury (SCI) patients. Such change was ascribed to a reorganization of the 

interneuronal networks connections due to plasticity induced by the lesion13,14. Studies on 

post-stroke patients revealed a reduced number of motor modules on the paretic limb, 

resulting from a merging of regular synergies, possibly due to a reduction in the 

independence of the corticospinal drive to the spinal cord8,9. When applied to Parkinson’s 

Disease (PD) patients, muscle synergy analysis did not show a significant and severe 

impairment of the structure or the recruitment of motor modules22,23. Authors justified this 

lack of significant abnormalities to the fact that PD symptoms are due to dysfunction of the 

basal ganglia, while cortical and spinal structures are not primarily affected by the disease.

Another neuromotor disease typically associated with, but not restricted to basal ganglia 

dysfunction is childhood dystonia. Compared to healthy subjects, muscle activity in dystonia 

typically exhibits overflow into task-unrelated muscles and greater variability within task-

related muscles17,20,26. The use of muscle synergy analysis as a tool to deepen our 
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understanding of the CNS dysfunction in dystonia has not been leveraged yet. Safavynia and 

colleagues25 speculated that, since patients with dystonia can produce complex postures, 

they should have access to an intact set of synergies with normal structure and that the 

aberrant muscle activity may result from abnormal recruitment of intact motor modules.

Here, for the first time, we applied synergy analysis on upper limb muscles of children with 

dystonia and age-matched healthy controls during the performance of different writing tasks. 

The aim of the current study is twofold. First, to validate the potential of synergy analysis as 

a tool to investigate motor dysfunction in childhood dystonia. Second, a systematic and 

detailed analysis of upper limb muscle synergies in childhood dystonia is a necessary first 

step leading up to future clinical applications of synergy-based myocontrol for patients with 

dystonia.

Experimental Procedures

Participants

Inclusion criteria for this study were: I) primary or secondary dystonia of the upper limb(s); 

II) pediatric age (8–21 years); III) upper limb control impairment that does not prevent task 

execution; IV) no cognitive impairment that prevents understanding of instructions. Nine 

children with primary and secondary dystonia and nine age-matched healthy children were 

recruited and details are reported in Table 1. The University of Southern California 

Institutional Review Board approved the study protocol. All parents gave informed written 

consent for participation, and all children gave written assent. The study was performed in 

accordance with the Declaration of Helsinki.

Apparatus

The acquisition system synchronized EMG (DataLOG MWX8, Biometrics Ltd; 1000 Hz 

sample frequency; 20–460 Hz bandwidth) and 2D coordinates of the pen tip on a tablet 

(iPad®, Apple®; 60 Hz sample frequency).

For each subject, bipolar surface electrodes (SX230 from Biometrics Ltd; inter-electrode 

distance of 20 mm) were placed on Flexor Carpi Ulnaris (FCU), Extensor Carpi Radialis 

(ECR), Biceps Brachii (BIC), Triceps Brachii (TRIC), Anterior Deltoid (AD), Lateral 

Deltoid (LD), Posterior Deltoid (PD), and Supraspinatus (SS). 2D coordinates of the pen tip 

on the tablet were recorded. Subjects were seated on a chair and the height of the table and 

the distance were adjusted for each subject in order to reproduce the same posture for all of 

them. Subjects’ trunk was fastened to the seatback to prevent bending the trunk towards the 

table.

Experimental Protocols

The study included a discrete, the Back and Forth, and a continuous, the Figure 8, writing 

task.

For the Back and Forth task, the tablet displayed two targets (10 cm apart) and the subjects 

were asked to trace lines between targets using a rubber pen, moving as fast as possible and 
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pausing 2 seconds on each target. Each subject performed 3 sequences of 10 back and forth 

movements in the mediolateral direction, and 3 in the anteroposterior direction.

For the Figure 8 task, the tablet displayed a thin trace of a figure-eight (15.7 cm x 7.8 cm) 

and the subjects were asked to follow the trace with a rubber pen at their natural speed, 

trying to be as accurate as possible. Starting from the upper point of the figure-eight, 

subjects were requested to move in the mediolateral direction opposite to the arm used to 

perform the task. Each subject drew 3 sequences of 10 figure-eight movements in a row.

Data Analysis

Data analysis was executed with Matlab® R2013a software (Mathworks®, Natick, MA 

USA). Statistical analysis was performed using RStudio® Version 0.98.981 (RStudio Inc.©, 

Boston, MA, USA).

Kinematic Analysis—For the Back and Forth task, the smoothness of the writing 

outcome was computed through a dimensionless measure of Jerk27. Intra-subject Spatial 
Variability was estimated as the coefficient of variation of the trajectories (computed 

separately for the mediolateral and anteroposterior directions). For the Figure 8 task, the 

ratio between accuracy error and speed (Err/Speed) of the writing outcome was computed. 

Intra-subject Spatial Variability was estimated as the average standard deviation of the 

trajectories after time alignment5.

EMG Preprocessing—EMG signals were high-pass (5th order Butterworth filter; 5 Hz), 

and stop-band filtered (5th order Butterworth filter; 60 Hz). Signals were then rectified and 

low-pass filtered (5th order Butterworth filter; 15 Hz) to extract EMG envelopes (ENV). A 

15 Hz cut-off frequency was chosen based on the data characteristics to obtain a smooth 

envelope without losing important information. For each subject, ENV were normalized to 

the maximal amplitude across all trials9,22,23.

Synergy Extraction—For each task, for each subject, the EMGs recorded during all 

movements were pooled together and randomly divided into training (two thirds) and testing 

(one third) sets.

Muscle synergies were extracted from the training dataset of each subject, for each task 

separately, using Nonnegative Matrix Factorization (NMF). Among the possible 

factorization algorithms, NMF was chosen because of its ability to provide reliable results 

without being computationally heavy28 and because of its wide use in muscle synergy 

applications for neurological groups9,19. NMF was implemented using the multiplicative 

update rules16 and the algorithm stopped when the reconstruction error (R2) was not 

increased more than 10−4 for 10 consecutive iterations, or when a maximum number of 105 

iterations was reached10. Synergy extraction was repeated with the number of synergies (N) 

ranging from 1 to 8 (Figure 1).

Estimating the number of synergies—Traditional methods to select the correct 

number of synergy vectors usually aim at choosing the number of modules that captures 

mainly structural variation and discards random fluctuations in the dataset. Although several 
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different criteria have been proposed1, there is still no consensus. Here, the selection of the 

proper number (N*) of muscle synergies was based on multiple considerations. The first 

method (MSE method)6 estimated the number of modules by looking for the point at which 

the data variation curve approached a straight line. Each of the 8 sets of synergy vectors was 

fitted to the testing subset, for each subject and each task, and the variance accounted for 

(VAF)24 was computed as:

(1)

(SSE: sum of the squared residuals; SST: sum of the squared EMG data). The VAF was then 

plotted against N and the portions of the VAF curve were fitted to straight lines using least-

square linear regression. As the points fitted move toward the right side of the curve, the 

mean squared error (MSE) of the fit is expected to decrease because the VAF curve 

approaches a straight line as the number of modules extracted increases6. For this reason, 

regression lines were computed using from the nth to the 8th VAF value, with n ranging from 

1 to 7. MSE was computed for all these portions and plotted against n and the appropriate 

number of synergies was selected as the point at which the MSE curve plateaued (the slope 

of the MSE curve at N* dropped below 40% of the slope of the MSE curve at N*−1), which 

also represents the first point at which the VAF curve plateaus to a straight line. The second 

method (VAFchance method)7 compared the slope of the data variation curve with respect to 

the slope of the baseline variation expected from chance (VAFchance), which was computed 

for each number of synergies, for each subject and for each task, by repeating the same 

synergy extraction and cross-validation fitting described above but using training and testing 

subsets obtained by independently and randomly shuffling 5-sample intervals for each 

muscle in the original datasets. VAF and VAFchance were plotted against N and while VAF 

curve presented a “knee” after which it tended to plateau, VAFchance curve increased with an 

almost constant slope. The “knee” was set as the point for which the slope of the VAF curve 

dropped below 90% of the slope of the VAFchance curve. For each N, the slope was 

computed as the angular coefficient of the regression line estimated using the Nth point and 

its two neighboring points.

Between-group differences in the number of synergies were investigated for both methods. 

In case of disagreement between the two methods, N* was selected as the minimum value 

identified by the two methods.

Group- and Task-specific Synergies—For each task separately, all the synergy vectors 

of each subject of the same group were clustered into N* classes and the synergy vectors 

belonging to the same class were averaged to obtain a set of N* average synergy vectors for 

each task and group (Back and Forth: Dystonia: WD
B&F, Control: WC

B&F; Figure 8: 

Dystonia: WD
F8, Control: WC

F8). For each task, the synergy sets composed by N* modules 

from all the subjects of the same group, for Dystonia and Control separately, were pooled 

together and normalized. For each group, a N*-neuron unsupervised neural network was 

created (Matlab®’s function competlayer). Each neural net was trained on the 9 x N* 
synergy vectors of each group, which were then assigned to the N* classes. Synergies within 
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each cluster were averaged and normalized, obtaining one set of N* average synergy vectors 

for each group and for each task.

Synergy Similarity—Similarity between synergy sets was quantified using two methods. 

For the first method each synergy in one set was matched with the most similar synergy 

(maximum scalar product) in the other set. Vector similarity (VS) was computed as the 

average scalar product across pairs of best-matching synergies (VS = 1 for identical 

synergies). The second method quantifies the similarity in terms of overlapping of the 

subspaces spanned by the synergy sets. To evaluate subspace overlap (SO), the cosines of 

the principal angles12 between the subspaces defined by the two sets of synergy vectors were 

computed. We computed baseline similarity, with both measures, in order to evaluate the 

significance of the similarity values between the actual sets of synergy vectors. Given the 

EMG dataset of each subject for each task separately, twenty unstructured testing and 

training subsets using the randomization procedure described above were created. For each 

pair of randomized testing and training subset, N* synergy vectors were extracted by 

applying the same Synergy Extraction procedure. For each of the repetitions, the synergy 

vectors from all subjects were grouped together, for each group and task separately, and 

group- and task-specific synergies were extracted by training competitive-layer neural 

networks, as described above, thus obtaining twenty sets of group-specific synergy vectors 

for each group and each task. To assess between-group baseline similarity, for the two tasks 

separately, we randomly matched each of the twenty sets of the control group with a set of 

the dystonia group and we computed VS and SO between the synergy vectors of the two 

sets. We repeated the same procedure between task-specific sets of the two groups separately 

to define between-task baseline similarity.

Activation Coefficients—The cyclical nature of the Figure 8 task was leveraged to study 

the activation timings and profiles of the coefficients associated with the muscle modules 

extracted. Before computing the activation coefficients, the subject-specific matrix 

composed by the normalized EMG envelopes of the eight muscles during the execution of 

the thirty figure-eight movements was processed as follows: i) the sequence was divided into 

the thirty single figure-eight movements; ii) each portion was re-sampled to the same 

number of frames (Nframes). Given the EMGs of the thirty re-sampled figure-eight 

movements and the control-specific set of N* average synergy vectors for the Figure 8 task 

(WC
F8), the matrices of the activation coefficient A were computed by solving nonnegative 

least-squares constraints problems. For each subject, matrix A was obtained by averaging 

each of the N* activation coefficients over the thirty movements. The presence of changes in 

timing or amplitude in the activation coefficients of patients with dystonia compared to 

controls was investigated. To examine the activation timings, templates of the healthy 

activation coefficients (ĀC(t)) were obtained by averaging each of the N* activation 

coefficients over all subjects in the control group and by identifying the peaks of activation 

and the related timings. We then looked for the same peaks in A of each single subject, we 

retained the time of occurrence of the peaks expressed as percentage of the duration of the 

entire figure-eight movement (Tpan) and we compared them between the two groups. To 

examine the amplitude of the activation profiles, we first smoothed A of each subject by 

performing bin integration over 100 bins. We compared the amplitude of the N* a(t) 
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between control subjects and children with dystonia and we defined the between-group 

amplitude similarity (SimA), for each a(t), as the percentage of time bins for which no 

statistical between-group difference was reported.

EMG Activation Profiles—The study also aimed at investigating whether movement 

abnormalities in dystonia can be unveiled from the analysis of muscle activity. Possible 

between-group differences in timing and amplitude of the EMG profiles of each muscle 

recorded during the execution of the Figure 8 task were investigated following the same 

procedure described in the Activation Coefficients section.

Statistical Analysis—Normality of the data was tested through the Lilliefors test. 

Significance of VS and SO values with respect to baseline values was verified through the 

Single-sample T-test. Independent-sample T-test was used for investigating between-group 

differences in the number of synergies, and in the timings and amplitudes of A and ENV. 

Given the results of the normality tests, nonparametric statistics was run for the kinematic 

variables; between-group differences in Jerk, Err/Speed, and Spatial Variability (for both 

tasks) were investigated through the Mann–Whitney U test.

To verify that the results are not affected by the lack of 8 year old participants in the control 

group, we ran repeated measures tests between age-matched matched subgroups (Table 2) in 

which the two 8 year old children with dystonia (D2 and D8) were excluded (Dependent T-

test for between-group differences in the number of synergies and Wilcoxon test for 

kinematic variables).

For all tests, the significance level was set at 5%.

Results

Results are presented as mean and standard deviation values when normally distributed, and 

as medians and interquartile ranges otherwise (IQR).

Kinematic Analysis—During the Back and Forth task, children with dystonia were 

characterized by significantly increased Jerk [Dystonia: 0.0017 – interquartile range (IQR) 

0.0015; Control: 0.0008 – IQR 0.0006, p = 0.04] and Spatial Variability [D: 0.2660 – IQR 

0.0966; C: 0.1683 – IQR 0.0618, p < 0.01]. During the Figure 8 task (Figure 2), Err/Speed 
was significantly increased in dystonia compared to controls [D: 0.0317 – IQR 0.0180; C: 

0.0164 – IQR 0.0045, p < 0.01]. In addition, children with dystonia showed significantly 

increased Spatial Variability of the figure-eight writing outcome [D: 0.6631 – IQR 0.2382; 

C: 0.3468 – IQR 0.0706, p < 0.01].

Results obtained from the age-matched sub-groups reported a significantly increased Spatial 
Variability in children with dystonia for both tasks [Back and Forth: D: 0.2554 – IQR 

0.1153; C: 0.1698 – IQR 0.0518, p = 0.03; Figure 8: D: 0.5278 – IQR 0.2552; C: 0.3495 – 

IQR 0.0884, p = 0.03]. For the Back and Forth task, children with dystonia showed 

increased Jerk values, although statistics did not highlight a significant p-value [D: 0.0017 – 

IQR 0.0016; C: 0.0008 – IQR 0.008]. For the Figure 8 task, results confirmed significantly 
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higher Err/Speed values in dystonia compared to controls [D: 0.0278 – IQR 0.0138; C: 

0.0164 – IQR 0.0096, p = 0.03].

Number of synergies—MSE method showed that four synergies were typically required 

for the group with dystonia, similar to the number for the control group [Back and Forth: t = 
0.90, p = 0.38; Figure 8: t = −1.32, p = 0.21]. A similar number of synergies between the 

two groups was reported also with the VAFchance method, which identified an average of five 

synergies per subject for both tasks [Back and Forth: t = 1.66, p = 0.12; Figure 8: t = −1.43, 

p = 0.17]. Four synergies from all the datasets were extracted to allow between- and within-

group comparisons.

Result obtained from the age-matched subgroups were in line with those reported for the 

complete dataset.

Group- and Task-specific synergies—As shown in Figure 3, for both tasks, two 

synergies (w1 and w2) primarily involved upper limb distal muscles (distal synergies), while 

the other two modules (w3 and w4) mainly included proximal muscles (proximal synergies). 

Proximal synergies were very similar across groups and tasks: w3 involved shoulder flexors 

(AD and LD), while w4 mainly shoulder extensors (LD, PD, and SS). Distal synergies were 

different depending on the task. For the Back and Forth task, w1 essentially involved 

muscles acting on the wrist (FCU and ECR), while w2 mainly comprised muscles acting on 

the elbow joint (BIC and TRIC). For the Figure 8 task, both groups presented one distal 

synergy, w1, primarily involving flexor muscles (FCU and BIC), and one, w2, representing 

the activity of the extensors (ECR and TRIC).

Synergy Similarity—Statistics confirmed the great similarity between WD and WC (Table 

3). Between-group VS values were significantly higher than baseline similarity for each of 

the four synergy vectors, for both Back and Forth [w1: t = −9.60, p < 0.01; w2: t = −7.62, p < 
0.01; w3: t = −9.00, p < 0.01; w4: t = −5.05, p < 0.01] and Figure 8 [w1: t = −12.44, p < 0.01; 

w2: t = −15.85, p < 0.01; w3: t = −16.68, p < 0.01; w4: t = −15.97, p < 0.01] tasks. They 

exceeded 99% Level of Confidence estimated on the baseline VS similarity values. Similar 

results were found for SO values. For the Back and Forth task, three out of four values were 

significantly higher than baseline similarity [t = −15.47, p < 0.01; t = −15.40, p < 0.01; t = 
−7.28, p < 0.01]. Complete overlap between the spaces identified by WD

F8 and WC
F8 was 

instead reported for the Figure 8 task, for which all four values were significantly higher 

than baseline similarity [t = −22.36, p < 0.01; t = −21.80, p < 0.01; t = −20.50, p < 0.01; t = 
−11.92, p < 0.01]. All these values exceeded the 99% Level of Confidence estimated on 

baseline SO.

Statistics confirmed a strong and significant between-task VS of the proximal synergies for 

both groups [Dystonia (D): w3 : t = −21.48, p < 0.01; w4 : t = −21.96, p < 0.01; Control (C): 

w3 : t = −17.43, p < 0.01; w4 : t = −22.64, p < 0.01], while the distal synergy vectors seemed 

to change according to the task. Indeed, for children with dystonia, none of the distal 

synergies exceeded the DOT baseline similarity, and only w2 identified during the execution 

of the Back and Forth task was similar to w2 found for control group during the Figure 8 

task [t = −7.83, p < 0.01]. For both groups, the synergy sets identified during the execution 
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of the Back and Forth and the Figure 8 tasks shared a three-dimensional subspace [D: t = 
−26.46, p < 0.01; t = −26.27, p < 0.01; t = −25.90, p < 0.01; C: t = −26.46, p < 0.01; t = 
−26.10, p < 0.01; t = −17.18, p < 0.01].

Activation Coefficients—Two peaks were detected for ā1
C(t) (Pa1 and Pa2), two for 

ā2
C(t) (Pa3 and Pa4), one for ā3

C(t) (Pa5), and two for ā4
C(t) (Pa6 and Pa7) (Figure 4). 

Statistics reported no significant between-group difference for any of the peaks (Table 4 – 

Panel A). Differences between control and dystonia were reported when analyzing the 

amplitudes of the activation profiles for two of the coefficients (a2(t) and a4(t)). Children 

with dystonia presented a(t) characterized by overall lower amplitude (Figure 5) even if, 

overall, amplitude similarity between the two groups was fairly high, as confirmed by the 

SimA values reported for all a(t) [a1(t): 1; a2(t): 0.87; a3(t): 1; a4(t): 0.76].

EMG Activation Profiles—Three peaks were detected for FCU (Pm1, Pm2 and Pm3), two 

for ECR (Pm4 and Pm5), three for BIC (Pm6, Pm7 and Pm8), one for TRIC (Pm9), one for 

AD (Pm10), two for LD (Pm11 and Pm12), three for PD (Pm13, Pm14 and Pm15), and three 

for SS (Pm16, Pm17 and Pm18) (Figure 6). No significant between-group difference in the 

time of occurrence of the peaks was reported for any of them (Table 4 – Panel B). Between-

group differences in the amplitudes of the activation profiles were reported for five out of 

eight muscles (FCU, ECR, TRIC, LD, and SS). Overall (Figure 7), the amplitude of muscle 

activity is reduced for children with dystonia. Even if, for FCU and TRIC, significant lower 

amplitudes were restricted to a limited number of samples (SimE: FCU: 0.86; TRIC: 0.99), 

between-group differences in the amplitude of ECR, LD and SS were marked and extended 

for several samples, in accordance with their lower SimE values (ECR: 0.7; LD: 0.61; SS: 

0.64).

Discussion

Here, we applied synergy analysis using NMF on upper limb muscles of nine children with 

dystonia and nine age-matched healthy controls during the performance of a discrete and a 

continuous writing task.

In accordance with previous studies20, children with dystonia presented an impaired writing 

performance compared to their healthy peers, characterized by non-smooth and rather 

variable motor outcomes with an altered trade-off between speed and accuracy of movement. 

Surprisingly, notwithstanding the compromised kinematics of the writing performance, 

synergy analysis revealed no difference in the number of synergies between children with 

and without dystonia. Indeed, both methods reported an analogous number of synergies 

between the two groups, for both tasks. Another key result of our analysis was the strikingly 

similarity emerged for the structure of the synergy vectors between children with and 

without dystonia. This finding confirms the result reported in an early study of our group18, 

which highlighted an analogous structure of the motor modules extracted during the 

execution of a discrete motor task, and further validates it, by extending this result to a more 

complex and continuous upper limb motor action. The inclusion of two different tasks 

allowed us to investigate whether these two motor actions result from a different recruitment 

of the same motor modules, or if the motor subtasks underlying the two writing actions are 
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different. For both groups, the analysis was able to identify two synergies that primarily 

involved upper limb distal muscles, and two motor modules which mainly included proximal 

muscles. These latter were rather consistent across groups and tasks: one of the two vector 

mainly comprised muscles involved in shoulder flexion and abduction, while the second one 

was likely designated to shoulder extension and adduction. The analysis of synergies 

suggested that muscle coordination patterns at the distal level of the upper limb differed 

when performing the discrete and the continuous task. While for the first task the two distal 

synergies seemed to act on different joints (wrist and elbow), for the Figure 8 task the two 

synergies were respectively accountable for flexion and extension of the distal segments. 

This between-task difference can be explained in light of the different requirements of the 

two tasks. Indeed, for the Back and Forth task, subjects were asked to trace lines without any 

specific accuracy requirement. Our data show that the strategy adopted by the participants 

was to co-activate the distal muscles, probably to stabilize the distal joints, while most of the 

movement was accomplished at the level of the shoulder joint. On the other hand, the Figure 

8 task required the participants to pay continuous attention to the writing accuracy, resulting 

in an active contribution to motion by the distal joints, with a coordination of muscles acting 

on the elbow and the wrist joints.

The recruitment of the different motor modules throughout the execution of the figure-eight 

movement was analyzed. Results show that the timing of activation of the synergy 

coefficients was preserved for children with dystonia, while differences with healthy 

children emerged in terms of decreased amplitude of activation of the motor modules. Our 

results confirmed the hypothesis put forward by Safavynia and colleagues25 in terms of a 

lack of substantial differences in the number and structure of muscle synergies between 

subjects with and without dystonia. On the other hand, the speculation of an abnormal 

recruitment of intact motor modules was not verified, since our findings only revealed a 

slight decrease of amplitude in the peaks of activation of muscle synergies.

Although our data showed compromised kinematics for children with dystonia, the applied 

synergy analysis only revealed a minor change in the amplitude of recruitment of intact 

motor modules. This suggests that muscle synergy analysis has the ability to capture the 

muscle components that are not corrupted by the noisy elements that typically affect the 

EMGs of patients with dystonia and can be instead identified, for instance, through 

frequency-domain methods20. With the analysis of muscle synergies, such noisy elements 

may be eliminated as part of the residual variance during the process of dimensionality 

reduction, or when reducing the frequency content for the linear envelope extraction.

The important ability of capturing the uncorrupted part of the electromyographic signal 

suggests that the analysis of muscle synergies using NMF may not be an appropriate tool to 

investigate motor impairments in children with dystonia, differently from stroke patients9. 

Future studies may investigate whether the same results are replicated by applying other 

factorization algorithms.

In our analysis, electromyographic signals were normalized to a reference value to ensure 

that muscle synergies would not be biased against low-amplitude muscles9,22.
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It is worth pointing out that, although this computational step is a necessary requirement for 

the analysis, it does not allow to take into account possible differences in strength between 

subjects of such a wide age range.

It is worth noting that our analysis targeted eight muscles who played an active role in the 

task and, therefore, it would be interesting to broaden the analysis to a larger number of 

muscles, also including muscles not directly involved in task execution. This may allow a 

better understanding of whether muscle overflow in dystonia could be explained as a 

recruitment of intact, yet task-irrelevant muscle synergies.

The other important goal of our analysis was to pave the way to future studies on the design 

of synergy-based myocontrol interfaces for children with dystonia. To this end, our 

preliminary results support the feasibility of this approach in children with dystonia. Indeed, 

we showed that the timing of activation of the synergy coefficients is basically preserved in 

children with dystonia. On the other hand, the slight reduction in the amplitude of the peaks 

of activation is an issue that may likely be overcome by properly setting the gains of the 

control signals for each patient independently. In addition, the alterations emerged for the 

muscles studied independently were more significant and affected a larger number of signals 

over a greater percentage of time. Based on our findings, we can speculate that a myoelectric 

control interface driven by activation profiles associated to muscle synergies may represent a 

control scheme more suitable for children with dystonia, compared to a control approach 

that leverages pairs of independent muscles.
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Figure 1. Data analysis outline
Outline of the main computational steps: i) Synergy Extraction; ii) Estimation of the number 

of synergies (N*); iii) Extraction of Task- and Group- specific synergy sets; iv) Between-

group and between-task Synergy Similarity.
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Figure 2. Kinematic Results for the Figure 8 task
For each subject (Dystonia: light gray; Control: dark gray) the plot represents the thirty 

figure-eight traces in 2D space and each component over time.. The black bold line 

represents the guideline trace provided.
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Figure 3. Task- and Group- specific Synergies
Panel A: Back and Forth task; Panel B: Figure 8 task. Each panel represents the sets 

composed of 4 synergy vectors obtained by averaging the synergies belonging to the same 

cluster, for the two groups separately (Dystonia: upper row, light gray [W DB&F; WD
F8]; 

Control: lower row, dark gray [WC
B&F; WC

F8]. Error-bars represent standard error values).
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Figure 4. Between-group difference in the timings of a(t)
The upper row represents ĀC(t) obtained by averaging each an(t) over all control subjects. 

ĀC(t) were used to identify the peaks of activation of the 4 an(t). 2 peaks for ā1
C(t) (Pa1 and 

Pa2), 2 peaks for ā2
C(t) (Pa3 and Pa4), 1 peak for ā3

C(t) (Pa5), and 2 peaks for ā4
C(t) (Pa6 and 

Pa7) were detected. Lower rows represent, for each group separately (Dystonia: light gray; 

Control: dark gray), the frequency distribution of the time of occurrence of each peak 

(Tpan). No statistical between-group differences were reported for any of the peaks.
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Figure 5. Between-group difference in the amplitude of a(t)
The Figure represents the 4 a(t), extracted during the execution of a single Figure 8 

movement, averaged over each group (Dystonia: light gray; Control: dark gray). For each of 

the 100 time bins, statistical difference between the two groups is represented with a red 

background line. While t-test didn’t report any differences for a1(t) and a3(t) (SimA values 

equal to 1), some between-group differences were highlighted for a2(t) and a4(t) (SimA= 

0.87 and 0.76, respectively).
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Figure 6. Between-group difference in the timings of muscle activity
The upper row represents  obtained by averaging each of the 8 envelopes over all 

control subjects.  were used to identify the peaks of activation of the 8 muscles. 3 

peaks for FCU (Pm1, Pm2 and Pm3), 2 peaks for ECR (Pm4 and Pm5), 3 peaks for BIC 

(Pm6, Pm7 and Pm8), 1 peak for TRIC (Pm9), 1 peak for AD (Pm10), 2 peaks for LD (Pm11 

and Pm12), 3 peaks for PD (Pm13, Pm14 and Pm15), and 3 peaks for SS (Pm16, Pm17 and 

Pm18) were detected. Lower rows represent, for each group separately (Dystonia: light gray; 

Control: dark gray) the frequency distribution of the time of occurrence of each peak 

(Tman). No statistical between-group differences were reported for any of the peaks.
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Figure 7. Between-group differences in the amplitude of muscle activity
The Figure represents the envelopes of the 8 muscles (FCU: Flexor Carpi Ulnaris; ECR: 

Extensor Carpi Radialis; BIC: Biceps Brachii; TRIC: Triceps Brachii; AD: Anterior Deltoid; 

LD: Lateral Deltoid; PD: Posterior Deltoid; SS: Supraspinatus) during the execution of a 

single Figure 8 movement, averaged over each group (Dystonia: light gray; Control: dark 

gray). For each of the 100 time bins, statistical difference between the two groups is 

represented with a red background line. While t-test didn’t report any differences for BIC, 

AD, and PD (SimE values equal to 1), some between-group differences were highlighted for 

FCU, ECR, TRIC, LD, and SS (SimE= 0.86, 0.7, 0.99, 0.61, 0.64, respectively).
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Table 2

Subject subgroups for age-matched statistics

Dystonia Control

ID Age Age ID

Pair 1 D6 10 10 C2

Pair 2 D7 10 10 C3

Pair 3 D1 14 12 C1

Pair 4 D9 15 17 C7

Pair 5 D4 18 18 C6

Pair 6 D3 19 19 C4

Pair 7 D5 19 18 C9
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