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Abstract

Therapeutic options for the treatment of an increasing variety of cancers have been

expanded by the introduction of a new class of drugs, commonly referred to as checkpoint

blocking agents, that target the host immune system to positively modulate anti-tumor

immune response. Although efficacy of these agents has been linked to a pre-existing level

of tumor immune infiltrate, it remains unclear why some patients exhibit deep and durable

responses to these agents while others do not benefit. To examine the influence of tumor

genetics on tumor immune state, we interrogated the relationship between somatic mutation

and copy number alteration with infiltration levels of 7 immune cell types across 40 tumor

cohorts in The Cancer Genome Atlas. Levels of cytotoxic T, regulatory T, total T, natural

killer, and B cells, as well as monocytes and M2 macrophages, were estimated using a

novel set of transcriptional signatures that were designed to resist interference from the cel-

lular heterogeneity of tumors. Tumor mutational load and estimates of tumor purity were

included in our association models to adjust for biases in multi-modal genomic data. Copy

number alterations, mutations summarized at the gene level, and position-specific muta-

tions were evaluated for association with tumor immune infiltration. We observed a strong

relationship between copy number loss of a large region of chromosome 9p and decreased

lymphocyte estimates in melanoma, pancreatic, and head/neck cancers. Mutations in the

oncogenes PIK3CA, FGFR3, and RAS/RAF family members, as well as the tumor suppres-

sor TP53, were linked to changes in immune infiltration, usually in restricted tumor types.

Associations of specific WNT/beta-catenin pathway genetic changes with immune state

were limited, but we noted a link between 9p loss and the expression of the WNT receptor

FZD3, suggesting that there are interactions between 9p alteration and WNT pathways.

Finally, two different cell death regulators, CASP8 and DIDO1, were often mutated in head/

neck tumors that had higher lymphocyte infiltrates. In summary, our study supports the rele-

vance of tumor genetics to questions of efficacy and resistance in checkpoint blockade ther-

apies. It also highlights the need to assess genome-wide influences during exploration of

any specific tumor pathway hypothesized to be relevant to therapeutic response. Some of

the observed genetic links to immune state, like 9p loss, may influence response to cancer
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immune therapies. Others, like mutations in cell death pathways, may help guide combina-

tion therapeutic approaches.

Introduction

Checkpoint blocking cancer therapeutics, such as ipilimumab, nivolumab, pembrolizumab

and atezolizumab, act by targeting immune cell signaling molecules rather than targeting the

tumor directly. The molecular targets of these agents, CTLA-4, PD-1, and PD-L1, are compo-

nents of pathways that inhibit T cell function[1]. Clinical experience with checkpoint blockade

monotherapy and combinations has demonstrated dramatic tumor shrinkage and long-term

durable, often drug-free, survival in some patients; however, many patients do not appear to

benefit[2,3]. A number of different parameters have been explored to predict and explain the

heterogeneity of patient benefit, within and across different cancer types. These include differ-

ences in the activation state of the tumor-immune infiltrate[4], differences in antigenicity of

the cancer cells due to differential expression and presentation of neo-antigens[5–8], and dif-

ferences in composition of intestinal flora[9,10]. One of the most extensively studied potential

biomarkers for checkpoint blocking agents is the cell surface expression of PD-L1, which is

induced by interferon gamma from infiltrating lymphocytes and may be a surrogate for

inflammatory state[11,12].

In addition to passenger mutations which can lead to expression of neo-antigens, the

genetic history of tumorigenesis, manifest in the pattern of driver mutations and other neces-

sary changes acquired during development, may affect the inflammatory state. Tumor driver

pathways, such as WNT/Beta-catenin and FAK, have been recently linked with immune state

in human tumors and identified as specific modulators of immune function in animal tumor

models[13,14]. However, these studies have focused on specific cancer driver pathway hypoth-

eses, and have yet to report their results in the context of a systematic genetic analysis. Rooney

et. al. have reported a landmark study describing many tumor parameters, including genetic,

that influence the strength of a ’cytotoxic T cell signature’ in tumors across The Cancer

Genome Atlas (TCGA, TCGA Research Network: http://cancergenome.nih.gov/) [15]. Porta-

Pardo and Godzik have also studied the association of cancer mutations with a general esti-

mate of immune infiltrate across TCGA[16]. Mutations associated with the interferon gamma

signaling and antigen presentation pathways have recently been associated with acquired resis-

tance to PD-1 blockade[8]. We sought to discern whether tumor genetic profiles could gener-

ally be correlated with the composition of specific subtypes of tumor immune infiltrate.

We have performed a systematic interrogation of the complex associations of cancer muta-

tion and copy number alterations (CNA) with levels of immune infiltrate across solid TCGA

tumors. Immune cell levels were estimated using novel transcriptional marker sets for major

immune cell types, which were trained to resist interference from the cellular and transcrip-

tional complexity of tumors. We also attempted to address several of the biases that introduce

complexity in multi-modal TCGA data analysis in our analytical models. We have identified

both previously reported and novel mechanisms by which tumor genetics may influence

immune state. Additionally, we observed changes that suggest some tumors may genetically

adapt to ongoing immune responses in ways that may broaden our definitions of immuno-

editing[17]. Other associations of genetic changes with immune dynamics may reflect the evo-

lutionary history of tumor subtypes in indirect ways, serving as a proxy for the tumors’ latent

characteristics.

Identifying genetic correlates of immune infiltrates in tumors
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Results

In our experience, many transcriptional marker sets for immune cells derived from the litera-

ture or trained from data on cell-sorted peripheral blood immune cells perform poorly when

applied to data derived from tumor samples. Sometimes, even markers viewed as canonical for

immune cell types are not always specific in RNA-seq data. For example, data from sorted

human immune populations within the Immunological Genome Project suggests that CD4

transcription is higher on monocytes than on CD4+ T cells in RNA-seq data (http://immgen.

org)[18,19]. Analysis of human melanoma single cell RNA-seq data from Tirosh et al. confirms

that, in human tumors, CD4 is co-expressed with both T cell (CD3E) and myeloid (CSF1R)

markers [20](Fig 1A).

In principle, if members of an immune marker set are cell-type specific, their transcript lev-

els should be correlated with each other when examining a panel of tumors. We evaluated

RNA expression correlation across TCGA solid-tumor cohorts for various immune cell

marker sets obtained from the literature and from RNA-seq of sorted immune cells[21]. Our

analysis often revealed very low correlation for expression of the genes within each given

immune marker set, indicating that transcripts with coordinated expression in sorted immune

cells are often heterogeneously expressed in more complex tissue samples. For example, a reg-

ulatory T cell (Treg) signature utilized in Rooney et al. was composed of seven genes, including

the FOXP3 transcription factor, whose expression is a hallmark of CD4+ regulatory T (Treg)

cells[15,22]. Pearson correlation analysis of the other members of this signature with FOXP3

across TCGA tumors revealed only 1 marker with correlation above 0.5 (CTLA4, 0.76) and

two markers with correlation below 0.1 (IL4, 0.05; IL5, 0.01).

We therefore created alternative sets of transcriptional markers for immune cell types,

designed to be appropriate to study of complex tumor samples. We did this by demanding that

members of a set retain correlation with each other when examining TCGA tumors, and also

that they are highly ranking neighbors of each other when looking at correlations of all tran-

scripts in TCGA RNA-seq data. These sets were derived by first evaluating co-expression of

candidate sentinel markers that displayed selectivity of RNA expression for the target cell type

(CD8A for CD8+ T cells, FOXP3 for regulatory T cells, etc) with all transcripts across TCGA

solid-tumor cohorts (details in Methods). We then used a stringent metric of mutual rank dis-

tance to identify gene neighbors for the sentinel markers[23] (Table 1). The principle of the

mutual rank metric is that that highest scoring gene neighbors are not only highly correlated

with each other, but are also each other’s highest ranking match, and a penalty is applied as

these mutual ranks become lower. These methods were employed to limit the inclusion of

transcripts that are present in a more diverse range of cell types than the sentinel (manuscript

in preparation).

Fig 1B presents one example, a view of the (mutual rank) co-regulatory network around

FOXP3, a canonical marker of immuno-suppressive regulatory T cells. Transcript abundances

for CCR8 possessed a both a strong as well as selective correlation to FOXP3 when compared

to other neighbors, including transcripts probably more reflective of pan-T cell content (CD3

epsilon/CD3E, CD2), or markers correlated with both FOXP3 and pan-T markers (TIGIT,

ICOS). A similar mutual rank analysis of the Tiros et al. single cell melanoma RNA-seq con-

firmed the co-expression of FOXP3 and CCR8 (Fig 1C). FOXP3 and CCR8 were ultimately

chosen as a signature set for Treg estimation. Signature sets for other immune cell types were

derived in a similar fashion; for macrophages, a highly co-regulated set (VSIG4, CD163,

MS4A4A) was derived (Macrophage: Fig 1D). To create a quantitative score from the signature

genes, simple medians of each marker set were used, once individual marker expression was

normalized to a standard distribution (details in Methods).
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Fig 1. Expression and correlation of immunological markers in TCGA and Tirosh et al. single cell melanoma RNA-seq data. A:

CD4 is co-expressed with both T cell (CD3E) and myeloid linege (CSF1R) markers in melanoma. Scatter plots of CD4, CD3E, and

CSF1R transcript levels from a single-cell RNA-seq data study of melanoma patients (Tirosh et al.). Only CD45 positive cells (PTPRC,

expression > 1) are shown. Gaussian noise (s.d. = 0.25) was added to the transcript estimates to improve data visualization (log2 scale).

B: Mutual rank-based co-regulatory network around FOXP3 in TCGA. All solid tumor samples in the TCGA pan-cancer data release

were used to create the mutual rank correlation network. Color saturation and thickness of lines represent strength of correlation. CCR8

and FOXP3 were selected to create a regulatory T cell (Treg) signature for estimating Treg content in tumors. C: Mutual rank-based co-

regulatory network around FOXP3 in Tirosh et al. single cell melanoma RNA-seq data. D: Mutual rank-based co-regulatory network

around macrophage marker VSIG4 in TCGA. VSIG4, CD163, and MS4A4A were selected to create a signature to estimate macrophage

content in tumors.

https://doi.org/10.1371/journal.pone.0179726.g001
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Linear regression methods were used to identify tumor genetic changes associated with

altered immune state across the tumor cohorts of non-hematopoietic origin in TCGA, using

our RNA-based cellular signatures to estimate relative levels of each immune cell type. For

study of association with mutation, the estimated overall mutational burden of each tumor

was used as a covariate in order to control for the increased likelihood of any specific mutation

in tumors with a high mutational load as well as expectation of increased immune infiltrate in

highly mutated tumors. For each gene, a gene-level aggregated mutation score as well as posi-

tion-specific mutations were tested for association with estimates of immune content. For

gene-level copy number alterations (CNA) we applied estimates of tumor purity, derived from

a meta-analysis of TCGA tumors, as a covariate to adjust for possible biases in GISTIC esti-

mates depending on tumor purity[24]. For a given gene, the association of copy number gains

and losses on immune state were assessed independently.

We observed mutations, focal CNA, and large-scale CNA, some spanning hundreds of mil-

lions of bases, associated with changes in estimated levels of immune cell types in tumors. For

example, in TCGA head and neck cancer, we observed relationships between CD8+ T cell esti-

mates and mutations in the p53 tumor suppressor (TP53, Chr17), caspase 8 (CASP8, Chr2)

the RNA polymerase component POLR3A (Chr10), death-inducer obliterator 1 (DIDO1

Chr20), and CYLD (Chr16), a modulator of the nuclear factor kappa-B pathway (Fig 2). CD8

T cell levels were also in association with large copy number alterations on chromosomes 3, 5,

9, 18, and other chromosomal regions. Copy number gains along a region of chromosome 16

are in association with lower CD8 T cell levels, while copy number losses are associated with

higher CD8 estimates. the peaks of CNA associations to immune state were broad.

Among the well-studied drivers of oncogenesis we observed a strong link between copy

number loss of the CDKN2A region of chromosome 9p and estimates of many immune cell

types. CDKN2A is a tumor suppressor/negative regulator in the CDK4/Rb pathway, and is fre-

quently lost and/or mutated in melanoma, pancreatic cancers, and other tumor types[25]. We

observed a marked reduction in estimates of CD8+ T cells, Tregs, B cells, and the general T cell

population linked to loss of the chromosome 9p region (Fig 3A and 3B). The associations

between 9p loss and decrease in the estimated levels of infiltrate were observed in several

tumor types, with the strongest associations seen in melanoma, pancreatic, and head/neck can-

cer cohorts (Table 2). The region of association spans a large part of chromosome 9p and

includes many loci in addition to CDKN2A (Fig 4). The genes in this region include a large

cluster of genes encoding alpha-interferons and MTAP, a protein involved in adenosine

metabolism that can also regulate STAT signalling[26]. The genes encoding PD-1 ligands

Table 1. RNA-seq based marker sets created and used in this study to estimate immune cell levels in

tumors.

Signature Membership Description

TCD8 CD8A, CD8B CD8+ T cell

Treg FOXP3, CCR8 Regulatory T cell

Tcell CD3D, CD3E, CD2 T cell (general)

Bcell CD19, CD79A, MS4A1 B cell

NK KIR2DL1, KIR2DL3, KIR2DL4, KIR3DL1, KIR3DL2, KIR3DL3,

KIR2DS4

Natural killer cell

Mono CD86, CSF1R, C3AR1 Monocyte

MFm2 CD163, VSIG4, MS4A4A M2 Macrophage

TregCD8 Treg, TCD8 Treg versus CD8+ T

cell

NKCD8 NK, TCD8 NK versus CD8+ T cell

https://doi.org/10.1371/journal.pone.0179726.t001
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CD274/PD-L1 and PDCD1LG2/PD-L2, as well as nearby Janus kinase JAK2, are sometimes

contained within the region of 9p loss. The largest effect size on CD8+ T cell estimates were

not at CDKN2A. We attempted to further dissect the region of association by analysis of signif-

icance, effect size, correlation of transcription with CNA, and concordance of these signals

across multiple tumor types. For example, we examined chromosome 9 across melanoma,

head/neck, and pancreatic cancer, using effect size rather than significance as a measure, and

also studying a mean-based summary of the three indications (S1 Fig). The analysis did not

result in discovery of a peak of association that would suggest a candidate mediator, but the

multi-indication analysis may have limited the list of top candidates to a smaller region of 9p.

Finally, amplification of PD-L1 (CD274) on chromosome 9p by neoplasms is well documented

in Hodgkin lymphoma; one might hypothesize that, considering its known immuno-suppres-

sive role, amplification of the PD-L1 genomic region could be an active immuno-evasion

mechanism in multiple tumor types[27]. We did not observe evidence for significant associa-

tion of PD-L1 copy number gains with altered immune estimates in melanoma (P = 1), lung

adenocarcinoma (P = 1), or any other cohort in the solid tumors studied.

Fig 2. Landscape of association between tumor copy number changes, mutations, and CD8+ T cell estimates in TCGA head and

neck cancer. Chromosomal location is shown on the horizontal axis with each point (mutation) or bar (CNA) representing the results for a

locus. The length of the bars reflects the strength of the association signal; for CNAs, the sign indicates copy number gains (positive) or

losses (negative). Mutation are indicated by stars and annotated with the HGNC gene name.

https://doi.org/10.1371/journal.pone.0179726.g002
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TP53 mutation is the most common mutation in cancer, and loss of TP53 function leads to

overall genetic instability and resistance to DNA damage-mediated apoptosis. We found

greater immune cell abundance estimates in TP53 mutant breast cancer (Table 3, Fig 3C).

However, TP53 mutation was associated with lower T, B, and NK cell abundance estimates in

head and neck cancer (Fig 3D).

Fig 3. Association of CDKN2A CNA and TP53 mutation with immune estimates in tumors. (A-B) Relationship of CDKN2A copy

number estimates to B and T cell estimates across TCGA melanoma. The horizontal scale is the log2 GISTIC CNA estimate (0 = diploid,

-1.3 = homozygous loss). The signature scores are measured in units of standard deviation of the signature’s variation across TCGA

tumors. Independent tests of association were performed for CNA > -0.1 and CNA < 0.1. The lines drawn are the linear regressions of the

gain/loss CNA with the immune estimate, with shading to indicate the 95% confidence interval around the line’s slope (without model

covariate adjustments or multiple test corrections). (C) Relationship of TP53 mutation to regulatory T cell (Treg) estimates across breast

cancer. (D) Relationship of TP53 mutation to CD8+ Tcell estimates in head and neck cancer.

https://doi.org/10.1371/journal.pone.0179726.g003
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Several position-specific TP53 mutations were also found to be in association with estimates

of T and NK cells. These mutations included R249S mutations, which have been linked to afla-

toxin and hepatitis-associated liver cancer, and were associated with high estimates of NK cells

in lung adenocarinoma[28]. Mutations in synaptonemal complex protein 2 (SYCP2), a protein

involved in meiosis, were associated with lower estimates of Treg cells (-logP = 3, effect size

-1.24) and the Treg/CD8 T cell ratio in head and neck cancer (Fig 5A)[29].

Among genes that may directly or indirectly modulate tumor immune state via interferon

signaling or antigen presentation pathways, Zaretsky et al. describe loss-of-function mutations

in Beta-2 microglobulin (B2M) and the JAK2 kinase as candidate mechanisms of acquired

resistance to immunotherapy in the clinic[8]. B2M mutations were associated with higher esti-

mates of NK cells in melanoma (effect size 1.3, -logP = 1.8) and lung adenocarcinoma (effect

size 1.3, -logP 2 = 2). In micro-satellite stable (MSS) colon cancer we observed a similar posi-

tive association of JAK2 mutations with NK cell estimates (effect size 1.3, -logP = 1.7).

Recent reports suggest that activation of elements in the WNT/beta-catenin pathway lead

to a suppressed immune micro-environment in melanoma models and possibly in human

melanomas[13]. No significant association of beta-catenin (CTNNB1) mutations with esti-

mates of immune levels was observed in our study, although there was a negative association

between mutation and markers of fibroblast content in liver cancer (data not shown) Muta-

tions of APC, a tumor suppressor in the WNT/beta-catenin pathway, were linked to lower lev-

els of monocyte, macrophage, and CD8+ T cell estimates in colon adenocarcinoma and higher

NK cell estimates in kidney papillary cell cancer (Table 4). Although one can observe negative

correlations between MYC copy number gains and CD8 T cell estimates in melanoma (Pear-

son correlation: -0.18) and some other tumor types, the MYC copy number levels are also

highly correlated with purity estimates (melanoma Pearson correlation: 0.33). We did not

observe a significant association of MYC copy number gains with immune estimates in mela-

noma in our models that include purity estimates as a covariate, but did observe associations

of small effect size in head/neck, stomach, and the Luminal B subtype (LumB) of breast cancer

(Table 4). Finally, we noticed a strong correlation between WNT receptor Frizzled 3 (FZD3)

expression and 9p loss in melanoma (Fig 5C).

Mutations in genes in the RAS/RAF pathway were associated with changes in immune esti-

mates, but, despite the frequency of their occurrence in different tumor histologies, we

observed associations in limited tumor types. BRAF V600E mutations were associated with

higher T cell and other immune cell estimates in thyroid cancer. (Table 5). Despite the high

Table 2. Associations of loss of CDKN2A with estimates of immune cell types in tumors.

Signature Bladder Breast Head Neck Kidney Clear Lung Adeno Melanoma Pancreatic

Bcell -0.38 (2.6) -0.34 (2) -0.62 (12) -0.4 (2) -0.88 (22.4) -0.94 (7.2)

MFm2 -0.35 (2.3) -0.58 (1.5)

Mono -0.35 (2.6) -0.34 (1.6) -0.59 (1.7)

NK -0.38 (4.7)

NKCD8 0.5 (6)

TCD8 -0.63 (12.5) -0.76 (16.3) -0.72 (3.3)

Tcell -0.48 (7.9) -0.76 (19) -0.65 (3)

Treg -0.58 (12.2) 0.76 (5.9) -0.58 (10.3) -0.58 (1.9)

TregCD8 0.37 (3.1) 0.74 (4.7)

Values are reported as Effect Size with associated P values in parenthesis (-log10 P). The units of effect size are change in signature score (units of

standard deviation) per unit of GISTIC (log2) CNA change.

https://doi.org/10.1371/journal.pone.0179726.t002
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frequency of BRAF mutations in melanoma, we did not observe association of BRAF mutation

with any immune signature there. Among the RAS family members, NRAS mutations were

also linked to levels of T cells and Tregs in thyroid cancer. However, the direction of associa-

tion was reversed from that of the BRAF mutations, with NRAS mutant tumors having lower

estimates of CD8+ T, Treg, and pan-T cells.

Fig 4. Relationship between chromosome 9 genetic changes and immune cell abundance estimates in TCGA melanoma.

Chromosomal location is displayed on the horizontal axis, and effect size is displayed on the vertical axis. Each data point represents the

results for a given locus, with significance (negative log(10) P value) indicated by the size of the data point. The negative log(10) of the

multiplicity-corrected model P value is plotted on the vertical axes; negative values indicate a negative effect on the cellular estimate. A

large region of chromosome 9p, when lost, is in association with the changes in cellular estimates for many immune cell types. The

horizontal axis is the physical coordinate on chromosome 9 in units of 106 bases. The vertical axis is the negative log(10) of the model P

value, with negative numbers used to indicate associations that decrease the immune estimate being tested.

https://doi.org/10.1371/journal.pone.0179726.g004
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Mutations in the PIK3CA oncogene were associated with higher estimates of CD8+ T cells

and NK cells, along with decreased Treg/CD8 ratios, across multiple tumor types (Table 6).

We observed association with both gene-level mutation calls as well as position-specific muta-

tions, many of which have been characterized as activating mutations in PIK3CA[30]. Muta-

tions in FGFR3 were associated with decreased estimates of multiple immune infiltrate types

in bladder cancer and increased NK cell estimates in head and neck cancer (Table 7 and Fig

5D). Many of the FGFR3 mutations introduce cysteines into the receptor that result in cova-

lent dimerization and activation of the receptor[31] while others are reported to inhibit recep-

tor internalization and enhance signalling[32].

Finally, non-synonymous mutations in two distinct regulators of cell death were linked to

altered immune state. Caspase 8 (CASP8) mutations were associated with higher T and NK

cell estimates and lower Treg/CD8 ratios in head/neck cancer, and a specific Q156 nonsense

mutation was associated with higher NK cells in breast cancer. (Fig 6A and Table 8). Death

inducer-obliterator 1 (DIDO1) mutations were similarly associated with higher NK cell esti-

mates (Fig 6B) in head/neck cancer. The pattern of mutations in across these genes was gener-

ally consistent with loss of function (data not shown), although some CASP8 mutations have

been shown to increase nuclear factor kappa B signaling in tumor models[33].

Table 3. Associations of TP53 mutations with estimates of immune cell levels across TCGA cohorts.

Cohort Sig Variant Association

Bladder Cancer NK TP53 G245S 2.63 (4.2)

Breast (Basal) NK TP53 W91 stop 2.91 (1.6)

Breast Cancer Bcell TP53 mutant 0.29 (3.1)

Breast Cancer NK TP53 W91 stop 3.24 (1.9)

Breast Cancer NK TP53 mutant 0.26 (3.7)

Breast Cancer TCD8 TP53 mutant 0.25 (1.7)

Breast Cancer Tcell TP53 mutant 0.26 (2.4)

Breast Cancer Treg TP53 mutant 0.51 (18.4)

Breast Cancer TregCD8 TP53 mutant 0.26 (3.3)

Colon (MSS) NK TP53 S94 stop 3.38 (6.2)

Colon (MSS) NKCD8 TP53 S94 stop 3.02 (2)

Colon Cancer NK TP53 S94 stop 3.17 (3.5)

Head and Neck Cancer Bcell TP53 mutant -0.5 (6.1)

Head and Neck Cancer NK TP53 mutant -0.48 (8.3)

Head and Neck Cancer TCD8 TP53 mutant -0.66 (13.2)

Head and Neck Cancer Tcell TP53 mutant -0.45 (5)

Head and Neck Cancer TregCD8 TP53 mutant 0.41 (4.7)

Head and Neck Cancer TregCD8 TP53 N239D -2.41 (2.5)

Lung Adenocarcinoma NK TP53 E224 splice 4.46 (6.7)

Lung Adenocarcinoma NK TP53 R249S 5.31 (7.5)

Lung Adenocarcinoma NKCD8 TP53 R249S 4.33 (4.2)

Lung Adenocarcinoma NKCD8 TP53 E224 splice 4.85 (6.9)

Lung Squamous Cell Carcinoma NK TP53 R158H 3.14 (2.5)

Stomach Cancer NK TP53 I195N 2.49 (2.8)

Values are reported as Effect Size with associated P values in parenthesis (-log10 P). The units of effect size are change in signature score (units of

standard deviation) for mutant versus wild type.

https://doi.org/10.1371/journal.pone.0179726.t003
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Discussion

Investigating the association between cancer genetics and tumor immune infiltrate requires

quantitative estimates of intra-tumoral immune cell content. Of the various high-throughput

data available in TCGA, RNA-seq data on transcription of immune markers is an obvious

starting point, but not without challenges. Signature sets derived from RNA-seq of sorted

immune cell populations from peripheral blood, such as FANTOM consortium studies, offer

one way to estimate immune levels[21]. We were discouraged by our observation that only a

Fig 5. Association of SYCP2 and FGFR3 with immune estimates in tumors; correlation of chromosome 9p copy number

(CDKN2A) with FZD3 RNA expression. A: Relationship between SYCP2 mutation and Treg—CD8 ratios in head and neck cancer. B:

correlation of FZD3 (log2) RNA expression with CDKN2A copy number. C: Relationship between FGFR3 mutation and macrophage

(MFm2) estimates in bladder cancer.

https://doi.org/10.1371/journal.pone.0179726.g005
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fraction of markers derived from FANTOM data were well correlated with each other across

tumors in TCGA. Markers derived from RNA-seq on sorted immune cells must demonstrate

selectivity of expression not just versus other immune cells, but also across diverse tumor cells,

tumor-associated stroma, and vasculature. A related challenge observed with immunological

markers selected from the literature is that they are often derived from flow cytometry data;

unfortunately, we do not have the luxury of gating for a particular cell type with gross tumor

Table 4. Associations of APC mutation and MYC copy number gains with estimates of immune cell levels.

Variant Signature Breast Breast (LumB) Colon Head and Neck Kidney Papillary Cell Stomach

APC mutant MFm2 -0.75 (5)

APC mutant Mono -0.77 (5.2)

APC mutant NK 5.09 (9.4)

APC mutant NKCD8 4.81 (7.2)

MYC gain Bcell -0.27 (1.9) -0.22 (1.9)

MYC gain MFm2 0.2 (2.2)

MYC gain Mono 0.19 (1.7)

MYC gain TregCD8 0.1 (1.5)

Values are reported as Effect Size with associated P values in parenthesis (-log10 P). The units of effect size are change in signature score (units of

standard deviation) for mutant versus wild type in the case of mutations. For copy number changes the effect size is in S.D. units per change in GISTIC2

score.

https://doi.org/10.1371/journal.pone.0179726.t004

Table 5. Association of RAS/RAF oncogene family member mutations with estimates of immune cell types across TCGA.

Variant Signature Bladder Colon Testicular Thyroid

BRAF mutant MFm2 0.4 (2.7)

BRAF mutant Mono 0.45 (3.9)

BRAF mutant NK 0.58 (1.4)

BRAF mutant NKCD8 -0.38 (3.9)

BRAF mutant Tcell 0.48 (6)

BRAF mutant Treg 0.66 (14.9)

BRAF mutant TregCD8 0.43 (5.9)

BRAF V600E MFm2 0.45 (3.1)

BRAF V600E Mono 0.54 (5.2)

BRAF V600E NKCD8 -0.37 (3.1)

BRAF V600E Tcell 0.59 (10.1)

BRAF V600E Treg 0.75 (19.8)

BRAF V600E TregCD8 0.49 (7.9)

KRAS G12V MFm2 -2.81 (2.8)

NRAS mutant Bcell -0.8 (3.7)

NRAS mutant Tcell -0.82 (4.7)

NRAS mutant Treg -0.74 (3.6)

NRAS Q61R Bcell -0.81 (2.2)

NRAS Q61R NK 1.64 (2.4)

NRAS Q61R Tcell -0.82 (2.8)

NRAS Q61R Treg -0.7 (2.2)

Values are reported as Effect Size with associated P values in parenthesis (-log10 P). The units of effect size are change in signature score (units of

standard deviation) for mutant versus wild type.

https://doi.org/10.1371/journal.pone.0179726.t005
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RNA-seq data. Even a marker as canonical as CD4 is not a selective transcriptional marker for

CD4+ T cells. Newman et al. recently reported a compelling support vector machine model

that was trained with mixtures of immune and tumor cells and successfully predicts immune

composition in tumors, but the published methods have not been trained for use on RNA-seq

data, and the methods are not freely available[34].

We chose to re-derive immune signature marker sets directly from TCGA tumor data

using a handful of sentinel markers (FOXP3, CD8A, CD19, etc.) for immune cells and utilizing

mutual rank distance metrics to expand the local gene expression neighborhoods[23]. The use

of mutual rank distance measures is one effective way to identify strict gene neighbors in the

context of a large overall correlation structure of immune markers in tumors. The principle of

this metric is similar to the widespread use of ’reciprocal best hits’ in DNA and protein

sequence analysis to define gene orthologs across species[35], but applied here to gene expres-

sion neighbors in RNA-seq data. Alternatively, one could have used partial correlation theoret-

ical methods to derive similar sets of strict gene neighbors[36]. In our efforts to derive a

signature for regulator T cells (Tregs), we discovered a tight association between FOXP3

expression and the expression of the chemokine receptor CCR8 across TCGA tumors. Survey

of the the immunological genome database (http://immgen.org) and other databases of

immune gene expression would not have suggested that CCR8 was a selective marker for

Tregs. Plitas et al. have recently confirmed the selective expression of CCR8 on Treg cells from

human breast tumors, and argue that anti-CCR8 therapies to target Tregs may be a promising

approach to cancer immunotherapy[37].

We purposely kept these signature sets small (usually 2–3 genes/signature) and the mathe-

matical model simple (usually a median of z-scored gene expression values). Larger set sizes

and more complicated models could conceivably result in better predictors, but as signatures

Table 6. Relationship of PIK3CA oncogene mutations with estimates of immune cell types across TCGA.

Cohort Signature Variant Association

Breast Cancer NK PIK3CA E81K 2.43 (2.4)

Cervical Cancer NK PIK3CA H1047R 3.53 (3.3)

Colon (MSS) NK PIK3CA R88Q 1.16 (1.7)

Stomach Cancer TCD8 PIK3CA mutant 0.57 (2)

Testicular Cancer NK PIK3CA mutant 1.9 (2.1)

Values are reported as Effect Size with associated P values in parenthesis (-log10 P). The units of effect size are change in signature score (units of

standard deviation) for mutant versus wild type.

https://doi.org/10.1371/journal.pone.0179726.t006

Table 7. Association of FGFR3 mutations with estimates of immune cell types across TCGA.

Variant Signature Bladder Head and Neck

FGFR3 mutant Bcell -0.71 (5.3)

FGFR3 mutant MFm2 -1.09 (15.7)

FGFR3 mutant Mono -1 (12.5)

FGFR3 mutant Tcell -0.51 (1.8)

FGFR3 mutant Treg -0.72 (6.9)

FGFR3 G382R NK 4.61 (5)

FGFR3 S249C MFm2 -0.86 (1.9)

Values are reported as Effect Size with associated P values in parenthesis (-log10 P). The units of effect size

are change in signature score (units of standard deviation) for mutant versus wild type.

https://doi.org/10.1371/journal.pone.0179726.t007
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become more complex it also becomes more difficult to understand the nature of their failures.

Because these sets were derived from correlation within tumors, rather than from isolated

immune cell populations, they have demonstrated some level of resistance to interference

from expression by the complex cellular environment of tumor and stroma. As a final conser-

vative measure, we excluded tests of association of immune signatures with genetics for any

given cohort when the median Pearson correlation within the marker set was less than 0.45.

Work is ongoing to acquire a compendium of tumor RNA-seq data combined with flow-

cytometry based quantitation of tumor immune content, which can serve as a gold standard

for further assessment and validation of our immune cell type signatures.

Of the major genetic events that were in association with T cell levels in tumors, we found

that loss of the chromosome 9p genomic region (driven by p16/CDKN2A) was among most

significant. This result is in agreement with a report by Linsley et al. that demonstrated a link

between interferon gene cluster loss (adjacent to CDKN2A) and decreased levels of several

immune signatures in melanoma[38]. These effects were not reported by Rooney et al. as asso-

ciated with their cytotoxic T cell signature, possibly because a strong effect is only observed in

a handful of cohorts across TCGA[15]. In general, we see no reason to presume that the driver

Fig 6. Mutations in cell death pathways. A: Relationship between CASP8 mutation with CD8+ T cell (TCD8) estimates in head and

neck cancer. B: Relationship between DIDO1 mutation and NK estimates in head and neck cancer.

https://doi.org/10.1371/journal.pone.0179726.g006

Table 8. Association of mutations in cell death pathway genes CASP8 and DIDO1 with estimates of

immune cell types across TCGA.

Variant Signature Breast Head and Neck

CASP8 mutant TCD8 0.59 (3)

CASP8 mutant TregCD8 -0.47 (1.8)

CASP8 Q156 stop NK 3.14 (1.4)

DIDO1 mutant NK 1 (7.2)

Values are reported as Effect Size with associated P values in parenthesis (-log10 P). The units of effect size

are change in signature score (units of standard deviation) for mutant versus wild type.

https://doi.org/10.1371/journal.pone.0179726.t008
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of a tumor CNA (in this case CDKN2A) is necessarily also the driver of the immune effect.

The region of association we observed for 9p loss is present across the entire chromosome

arm. Within it are the adenosine-modulating enzyme MTAP and the largest cluster of alpha

interferons in the human genome. In addition, the PD-1 ligands PD-L1 and PD-L2, as well as

the JAK/STAT member JAK2, are on 9p and sometimes in linkage with CDKN2A loss.

The reported trends for higher immunotherapy response rates in tumors with higher infil-

trate suggests that our results might be used to guide therapeutic options, regardless of our

understanding of cause and effect relationships[4]. One could infer that tumors harboring 9p

alterations, in addition to having fewer T cells, would be less responsive to immunotherapy.

Zaretsky et al. have recently reported a genetic study focused on patients that relapse during

the course of pembrolizumab (anti—PD-1) therapy[8]. Although the study was limited to a

few patients, they observed homozygous loss-of-function mutations in JAK2 in a relapsed

patient, and in vitro studies demonstrated that cell lines lacking JAK2 were incapable of

responding to gamma-interferon. Also, Gao et al. have studied mechanisms of resistance to

anti-CTLA4 therapy in metastatic melanoma and concluded that copy number alterations

containing interferons and interferon pathway genes, many on chromosome 9p, can predict

response to therapy[39]. Thus, an accumulating body of evidence is now pointing to genetic

disruptions of chromosome 9p playing a role in resistance to immuno-therapy.

Our study independently assessed the effects of copy number gains and losses. We reasoned

that the biological driver of copy number gains and losses observed in any chromosomal

region could often be distinct. This allowed an analysis of copy number gains of PD-L1

(CD274) and PD-L2(PDCD1LG2) on chromosome 9p, despite the partial linkage with nearby

CDKN2A loss that would have resulted in a spurious association in a combined analysis.

Expression of PD-L1 in tumors is associated with response rates to anti—PDCD1 therapy[40].

Amplification of PD-L1 by neoplasms is well documented in Hodgkin lymphoma, and one

might hypothesize that amplification of the PD-L1 genomic region could be an active

immuno-evasion mechanism in multiple tumor types[27]. However, we observed no compel-

ling evidence for association of PD-L1 amplification with any immune cell abundance estimate

tested.

We observed several other very large chromosomal regions whose copy number estimates

were associated with abundance estimates for many immune cell types. Most of these events,

such as CNA on the long arm of chromosome 5, are copy number losses linked to decreased

estimates of lymphocyte abundance (Fig 2). This common pattern of CNA loss leading to

decreased immune estimates might suggest that immuno-editing could be taking place. Fur-

ther work will be needed to confirm our attempted removal of the bias that tumor purity intro-

duces to GISTIC estimates, a bias that would lead to aberrant association of all CNA with

lower estimates of immune infiltrate.

One might have expected that the genetic instability of tumors with inactivated TP53 would

be associated with higher immunogenicity of tumor and higher immune infiltrate. We did not

observe a general correlation of TP53 mutations with immune cell estimates in tumors across

TCGA cohorts, but associations were present in breast and head/neck cancers. TP53 muta-

tions were associated with higher estimates of immune infiltrates in breast cancer. However,

we found that in head and neck cancers the presence of TP53 mutations was associated with

lower estimates of various immune infiltrates. As TP53 mutation has been shown to be

inversely correlated with human papilloma virus infection (HPV) status in head and neck can-

cer, we believe that TP53 mutation status may be serving as an inverse marker of viral infection

in this tumor type, with the HPV-infected tumors displaying a higher estimate of immune

infiltrate[41]. In some cases we observed effects of specific TP53 mutations, such as the R249S

mutation in lung adenocarcinoma, previously described in hepatitis and aflatoxin-associated
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liver cancer, that alter TP53 function in ways more subtle than simple loss of function and also

suggests that some genetic-immune interactions could be related to environmental and/or

viral insults[28].

Our study confirmed the report of Rooney et al. that caspase-8 mutations are associated

with altered immune content estimates in some tumors. This is not an independent confirma-

tion, as the data in our analyses both come from only modestly different releases of TCGA.

However, in our study we observed a significant association only in head/neck and breast can-

cer[15]. CASP8 is one of the terminal elements in the cellular apoptosis pathway. CASP8 muta-

tions were associated with higher CD8+ T and NK cell levels, in a mutational pattern

suggesting loss of function. One possibility is that mutations of CASP8 are adaptations to an

established immune response, providing resistance to T and NK cell-mediated cell killing.

However, the switch from apoptotic to necroptotic cell death pathways can be associated with

higher immunogenicity, especially when nuclear factor kappa B activity is present in the dying

cells, which should lead to higher infiltrate[42]. It has also been reported that many CASP8

mutations, while loss of function in some aspects, result in increases in nuclear factor kappa B

signaling and general tumor inflammatory state[33].

We also found that mutations in the cell death modulator DIDO1 (death obliterator-

inducer 1) manifest a similar pattern in to CASP8 in head and neck cancer, with DIDO1 muta-

tions associated with higher estimates of natural killer cells. Finally, we observe mutations in

beta-2 microglobulin (B2M), a necessary component of antigen presentation, associated with

high estimates of NK cells in melanoma, and JAK2 mutations with higher NK levels in colon

cancer. These results are thematically in line with recent report of mutations in beta-2 micro-

globulin and JAK kinases as escape mechanisms in patients that have relapsed during pembro-

lizumab therapy[8] and consistent with the previous report of B2M association with immune

state by Rooney et al.[15].

Although we saw some evidence of genetic changes in the WNT/beta-catenin pathway in

association with immune estimates, the results are mixed. We did not observe compelling evi-

dence for the association of any CTNNB1 (beta-catenin) mutation on immune estimates in our

study. We did observe a link between the presence of APC mutations and decreases in estimates

of myeloid and CD8+ T cells in colon adenocarcinoma, but increases in NK estimates in kidney

papillary carcinoma were observed. Although amplification of MYC is inversely correlated with

T cell estimates in some tumor types and Spranger et al. report a strong relationship between

MYC expression and T cell estimates in melanoma[13], once we included estimates of tumor

purity as a covariate in the analysis we did not observe association of MYC CNA with immune

estimates in melanoma, and limited association elsewhere. We did, however, observe a strong

correlation between FZD3 receptor expression and 9p loss in melanoma, suggesting that there

may be a link between chromosome 9p loss and beta-catenin pathway status. To more thor-

oughly test WNT/beta-catenin hypotheses, multi-gene and multi-positional genetic signatures

may need to be created to capture beta-catenin pathway activation via diverse genetic changes.

Although our study attempts to be comprehensive, it is limited in several aspects. A number

of TCGA cohorts are still not large enough to expect sensitive identification of genetic-

immune interactions, and even for large cohorts, associations with rarer genetic changes will

be too infrequent to sensitively measure. Although the rarer mutations and CNA might not be

practically useful for patient stratification, they could still be a source of biologically rich infor-

mation about the interactions of tumor genetics with immune state.

We attempted to adjust for two of the major possible biases in TCGA data in our models.

First, one might expect that tumors with higher overall mutational burdens will have increased

immune infiltrate, and this is observed in some tumor types[15,43]. We tried to control for

this by using the observed total mutational burden of each sample as a covariate in our studies
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of mutation. It is possible that these corrections are over-conservative in cases where high

mutational load and immune response leads to genetic adaptation by tumor, consistent with

the observations of B2M mutations reported by Rooney et al.[15], where we observe a more

limited strength of association in our model. Second, the GISTIC2 estimates of copy number

alteration will be attenuated by the diploid nature of any non-tumor cell within the tumor. Left

uncorrected, this bias can result in the prediction that any high-level amplification or deletion

will be immunosuppressive. We similarly chose to include an estimate of tumor purity as a

covariate in our CNA model to try to adjust for this bias, despite the possibility the adjustment

is overly conservative, as immune infiltrate is one component of tumor impurity. Finally,

more intricate regression models than the ones described here could be devised that include

factors such as clinical stage, sex, and more detailed tissue origin into the models.

It is important to highlight that we cannot infer cause and effect, in either direction, from

any results in the current study. More conventional studies of human genetic effects on

immune state usually are usually grounded in the assumption that the genetic variation is the

cause of the immune change[44]. We cannot rely on that assumption in cancer. Although it is

an intriguing hypothesis that the mutations in cell death pathways (CASP8, DIDO1) observed

in head/neck cancer could be a tumor adaptation to ongoing immune activity, additional

experiments will be necessary to establish this. There’s also the possibility that the genetic

changes we observed are part of a rich history of tumor or tumor subtype evolution that ulti-

mately and only indirectly lead to the immune change, i.e. we are identifying a latent tumor

subtype. The observed association of TP53 mutations with lower immune estimates in head/

neck cancer may be a reflection of the HPV origin of many of the TP53 wild-type tumors in

the cohort. In thyroid cancer, the fact that activating BRAF and NRAS mutations are associ-

ated with immune changes in opposite directions, despite a common ability to activate the

RAS/RAF/MEK/ERK pathway, may be another example where our analysis is identifying

tumor subtypes rather than identifying cause-effect relationships. All of the above points mean

that even for oncogene mutations linked to decreased infiltrate, like FGFR3 in bladder cancer,

there is no assurance that inhibition of the oncogene’s signaling pathway will alter tumor

immune dynamics. However, the FGFR3 result is one case where the cause and effect hypothe-

sis is directly testable by study of FGFR3 inhibitors in cancer models.

An additional challenge, not uncommon in genome-wide association studies, is the some-

times very large chromosomal regions (CNA) found to be in association with the phenotype

(estimates of immune infiltrate). Although in some cases these CNA possess a peak when

inspected for significance and/or effect size, in many cases the regions of association span mil-

lions of bases. The attempt to dissect the 9p region is one example: extensive study of the

region across multiple tumor types failed to yield a clear candidate mediator of the effects

(assuming a cause-effect relationship exists).

From comparison between all position-specific mutations across the TCGA cohorts and T

cell estimates, there is little in our results to suggest that we have identified recurrent T cell

neo-epitopes from tumors that lead to consistently altered lymphocyte levels, although we pur-

posely limited our study to the more frequent mutations across TCGA. We did note that the

BRAF V600E mutation is distinctly associated with higher T cell estimates, but this is only

observed in thyroid cancer, despite the prevalence of this mutation in melanoma and occur-

rence in other tumor types.

Conclusion

Our study of the relationship between tumor genetics and immune infiltrate is a starting point

toward understanding how tumor evolution shapes the immune response and immune
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evasion, and possibly vice versa. We have identified some of the major genetic events linked to

immune cell levels in tumors, some of which will likely influence response to immunotherapy.

We developed a set of transcriptional markers for estimating relative levels of various immune

cell types via a network correlation approach that was designed to resist interference from the

heterogeneity of tumor tissue. We observed a strong relationship between copy number loss of

a large region of chromosome 9p and decreased lymphocyte estimates in melanoma and sev-

eral other tumor types. Although we could not identify specific loci on 9p responsible for the

association, the recent reports of mutations in inteferon signaling pathways that lead to resis-

tance to immunotherapy suggests that both the alpha-interferon cluster as well as JAK2 are

candidate mediators, and that 9p alterations are relevant to response/resistance to immuno-

therapy. We also noted associations of several cancer driver mutations in genes such as

PIK3CA, BRAF, RAS family members, and FGFR3, with estimates of immune infiltrate,

although these associations were often observed in limited tumor types. Finally, we observed

that mutations in cell death pathway genes, CASP8 and DIDO1 were associated with higher

immune infiltrate in head and neck cancers, and that several position-specific TP53 mutations

possessed this phenotype. We think it is reasonable to consider that these mutations may be

adaptations to ongoing immune activity in those tumors, and that examination of the combi-

nation therapy of agents that stimulate or modify cell death pathways with immune checkpoint

blocking agents is warranted.

We also discovered some of the complexities in working with immune signatures and

multi-modal tumor data. The large regions of association of many copy number alterations

with immune estimates will require further studies to ascribe cause and effect on immune state

to any particular loci. Biases in genomic data due to tumor purity and other possible factors

can give strong association signals; when we removed some of these biases many signals (such

as MYC amplification) were diminished or disappeared. Finally, the complexity of tumor com-

position and the highly correlated nature of immune infiltrate in tumors means that care must

be taken to find markers as specific as possible for a given cell type. Efforts are underway to

refine our marker sets as well as to acquire experimental data crucial to adding validation

beyond our current criteria of mutual-rank correlation in tumors (manuscript in preparation).

Our genome-wide association analysis provides a baseline to compare against emerging

hypotheses about tumor genetics and immunotherapy. As an example, in the case of WNT/

beta-catenin pathway activation in melanoma, we were able to identify a relationship between

what we view as a dominant effect of chromosome 9p loss with FZD3 receptor expression. We

hope our work will help to guide future mechanistic studies on the influence of specific cancer

pathways on immune state and response to immunotherapy, placing new hypotheses in the

context of global tumor genetic—immune interactions.

Methods

TCGA data

Data from TCGA (TCGA Research Network: http://cancergenome.nih.gov/) was obtained

from the University of California Santa Cruz Xena TCGA Pan-Cancer (PANCAN) reposito-

ries (http://xena.ucsc.edu/public-hubs/). Gene expression: UCSC Xena team, HiSeqV2_PAN-

CAN, 2015-10-29. Values are log2(x+1) transformed RSEM gene-level expression estimates.

CNA data: UCSC Xena team, TCGA_PANCAN_gistic2, 2015-10-26. Values are estimated

using the GISTIC2 algorithm, the TCGA Firehose pipeline produced segmented CNV data,

which was then mapped to genes to produce gene-level estimates. Gene-level Mutation data:

UCSC Xena, TCGA_PANCAN_mutation_xena_gene, 2015-11-11. Genes are annotated as 0

(wt) or 1 (mutant) if they contain a non-silent mutation (nonsense, missense, frame-shift
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indels, splice site mutations, and stop codon read-throughs). Mutation were assigned a value

of 0.5 if two different samples from the same tumor were analyzed and a single sample con-

tained a non-silent mutation call. Position-level mutation data: UCSC Xena, TCGA_PAN-

CAN_mutation_xena, 2015-11-11. Cancers of hematopoietic orgin (leukemias, lymphomas,

gliomas, and thymomas) were excluded from the analysis.

Tumor subtype information for colon and breast cancers was taken from the corresponding

phenotype annotation files from UCSC. Subtype classification for gastric cancer was obtained

from the TCGA gastric cancer publication[41].

Analyses were performed in the R language for statistical computing [45]. The plyr package

was used for data manipulation[46], ggplot2 was used for plotting[47], and limma was

employed for model fitting and hypothesis testing[48,49]. The qgraph package was used for

network plotting[50]. Knitr was used for manuscript generation from R Markdown[51–53].

Transcript co-regulation was measured using a 3-way mutual rank distance, an extension

of the method described by Huttenhower et al. across all transcripts in the TCGA RNA data

set, tumor only[23]. Each loci’s transcript expression values from TCGA PANCAN were first

individually fitted to a standard distribution within cohort, then all cohorts were combined

into a single data set. Pearson correlation was then used to rank all neighbors for each gene.

All possible gene trios were evaluated for the minimum product of their six mutual ranks.

Each gene-gene distance was expressed as the base 10 logarithm of this minimum score.

Melanoma single cell RNA-seq

Processed single cell RNA-seq data from Tirosh et al [20] were obtained from the Broad Single

Cell Portal (https://portals.broadinstitute.org/single_cell).

Signatures that estimate immune cell content in tumors

Signature scoring: Signature estimates were constructed as the median of z-scored (log2)

expression values of each signature gene component except for the NK markers (see below).

TCD8 (CD8+ T cells): (CD8A, CD8B) Source: Mining of immune signatures in tumors

using CD8A as sentinel marker. Reciprocal-Mutual-Rank methods were used to identify tran-

scripts most intimately associated with sentinel markers. Caveats: CD8A is also expressed in a

fraction of dendritic cells, some NK cells, and occasionally (rarely) in tumors.

Treg (Regulatory T Cells): (FOXP3, CCR8) Source: Mining of immune signatures in tumors

using FOXP3 as sentinel marker. Reciprocal-Mutual-Rank methods were used to identify tran-

scripts most intimately associated with sentinel markers. Caveats: Although CCR4 and CCR8

seem to be most predominantly co-expressed with FOXP3 in tumors, in sorted immune cells

these receptors can also be seen in activated populations of CD4+ and CD8+ T cells.

Tcell (Pan T-Cell): (CD3D, CD3E, CD2) Mining of immune signatures in tumors using

CD3 family members as sentinel markers. Reciprocal-Mutual-Rank methods were used to

identify transcripts most intimately associated with CD3 epsilon (CD3E).

Bcell (B-cell): (CD19, CD79A, MS4A1) Source: Mining of immune signatures in tumors

using CD19 as sentinel marker. Reciprocal-Mutual-Rank methods were used to identify tran-

scripts most intimately associated with sentinel markers.

Mono (Monocyte lineage): (CD86, CSF1R, C3AR1) Source: Examination of correlation

between antigen presenting cell-related genes across TCGA. Caveats: may not discriminate

well between monocytes, macrophages, and other related members of the lineage.

M2mf (M2 Macrophage): (CD163, VSIG4, MS4A4A) Source: cross-referencing of Fantom/

Hacohen/Rooney macrophage marker sets with mutual rank distance measures across TCGA

[21]. The initial set was expanded with neighboring genes, cross-referenced with the literature
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and Mouse Immunological Genome Project (http://immgen.org) expression profiles to reduce

to a small list of macrophage markers.

NK (Natural Killer cells): (KIR2DL1, KIR2DL3, KIR2DL4, KIR3DL1, KIR3DL2, KIR3DL3,

KIR2DS4) Source: Mutual-rank correlation analysis of Natural Killer Group (NKG) and

Killer-Cell Immmunoglobulin-Like Receptor (KIR) receptor families in TCGA tumor data

revealed co-regulation of multiple members of the KIR family. However, any specific KIR gene

was often observed to be at the lower limit of detection set by the TCGA RNA-seq pipeline.

Compared to other cellular signatures, a larger collection of (KIR) markers was selected, a

mean instead of median summarization was used to estimate NK cell content, and a small

Gaussian noise component was added (mean 0.16, standard deviation 0.08) to improve the

normality of the NK signature score distribution.

TregCD8 and NKCD8 signatures were constructed by subtracting the TCD8 estimate from

Treg estimate, or the TCD8 from the NK estimate, respectively.

Analytical models

Associations between gene mutations and immune signatures were estimated by the linear

regression models of the form:

Immune Signature � Mutationþ Cohort þMutation : Cohort þ Total Mutation

where ’Total Mutation’ is the total number of observed mutations in the sample (log2 scaled),

used as a covariate. ’Mutation’ is considered a numeric variable in the model, with possible val-

ues of 0 (no mutation observed), 1 (mutation observed in TCGA sample), 0.5 (mutation

observed in 1 of multiple TCGA samples available for that tumor).

Associations between gene copy number alterations and immune signature scores were

estimated linear regression models of the form:

Immune Signature � Copy Number þ Cohort þ Copy Number : Cohort þ Purity Estimate

where copy number is a continuous-valued (log2) estimate obtained from GISTIC2 analysis of

Affymetrix SNP 6 SNP/CNV array data, processed by TCGA[54].

Associations between copy number gains were performed with all data where GISTIC esti-

mates were> -0.1 (log2 transformed GISTIC values). The associations with copy number

losses were performed with data where GISTIC estimates were< 0.1.

Purity estimates were derived from data from the tumor purity meta-analysis published by

Butte et al[24]. An RNA expression-based linear model was re-derived from the Butte et al.
purity estimates by fitting a 50 marker linear model of transcripts positively correlated with

purity estimates, and applying the model to all samples in the study.

Mutation and CNA candidates: The top 3200 most frequently mutated genes across TCGA

were used in the mutation analysis. All gene-level CNA were used in the analysis in order to

allow finer mapping of association peaks. P values reported are corrected for multiple testing

using p.adjust in R and the holm method[45] following the limma algorithm’s eBayes adjust-

ment for multiple tests of immune signatures[48]. For mutation, the 3200 mutations in the

analysis were used as the number of tests. For CNA, where groups of markers are often highly

correlated, we single-linkage clustered all CNA data and identified 1023 separate groups that

displayed Pearson correlation less than 0.95 with each other. We used 1023 as the effective

number of tests for the correction. In all of the models, we excluded tests of association of a

particular immune signature with genetics for any given cohort when the median Pearson cor-

relation within the marker set was less than 0.45.
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Supporting information

S1 Fig. Alternative views of the relationship of chromosome 9 CNA to estimates of CD8

+ T cell levels across melanoma, head/neck, and pancreatic cancer in TCGA. Chromosomal

location is displayed on the horizontal axis, and the magnitude of effect of copy number

change on CD8+ T cell estimates (rather than -logP, as in the main figures) is displayed on the

vertical axis. Each data point represents the result for a given locus, with significance (negative

log(10) of P value) indicated by size of the data point. The unit of effect size is the change in

TCD8 signature score (units of standard deviation of signature score across all TCGA tumors)

per (log2) unit of GISTIC copy number change. Individual panel: association between loss of a

given chromosomal region and CD8+ T cell estimates in melanoma, pancreatic, head-neck

cancer. Mean panel: a combined analysis across the three cohorts (mean effect size).

(TIFF)

S1 Data. A compressed, comma-delimited file containing all the genetic association results

contained in this study. Column key: "Cohort", TCGA tumor type or sub-cohort tested; "Sig",

immune cell signature; "Type", type of genetic change (CNA/cnv, mutation/mut, position spe-

cific mutation/fmut); "Variant", mutation or CNA tested; "Chr", chromosome of variant; "Pos",

position of variant(megabases); "minP", minimum uncorrected P value from any tumor type

among contrasts tested in model; "P", corrected -log(10) P value; "Effect", effect size; "Dir",

direction of effect size; "P.orig", P value corrected for multiple tests of signatures by limma but

not for multiple tests of genetic changes. A snapshot of the UCSC Xena team’s November 2015

release of TCGA data used in this work, along with the R and R markdown code used to per-

form the analysis and generate this manuscript, is available at http://fiveprime.org/GENIO.
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