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Identification of non-activated 
lymphocytes using three-
dimensional refractive index 
tomography and machine learning
Jonghee Yoon1,2,5, YoungJu Jo1,2, Min-hyeok Kim3, Kyoohyun Kim1,2, SangYun Lee1,2,  
Suk-Jo Kang3 & YongKeun Park1,2,4

Identification of lymphocyte cell types are crucial for understanding their pathophysiological roles in 
human diseases. Current methods for discriminating lymphocyte cell types primarily rely on labelling 
techniques with magnetic beads or fluorescence agents, which take time and have costs for sample 
preparation and may also have a potential risk of altering cellular functions. Here, we present the 
identification of non-activated lymphocyte cell types at the single-cell level using refractive index (RI) 
tomography and machine learning. From the measurements of three-dimensional RI maps of individual 
lymphocytes, the morphological and biochemical properties of the cells are quantitatively retrieved. To 
construct cell type classification models, various statistical classification algorithms are compared, and 
the k-NN (k = 4) algorithm was selected. The algorithm combines multiple quantitative characteristics 
of the lymphocyte to construct the cell type classifiers. After optimizing the feature sets via cross-
validation, the trained classifiers enable identification of three lymphocyte cell types (B, CD4+ T, and 
CD8+ T cells) with high sensitivity and specificity. The present method, which combines RI tomography 
and machine learning for the first time to our knowledge, could be a versatile tool for investigating the 
pathophysiological roles of lymphocytes in various diseases including cancers, autoimmune diseases, 
and virus infections.

Lymphocytes consist of various cell types including B, helper (CD4+) T, cytotoxic (CD8+) T, and regulatory T 
cells, and play crucial roles in the adaptive immune system1. Each lymphocyte cell type has different functions: 
B lymphocytes produce antibodies, and T lymphocytes recognize a specific antigen and execute effector func-
tions. The lymphocyte population and function are tightly regulated to defend the host against harmful invaders 
or abnormal conditions1, 2. Disturbances in lymphocyte function and regulation are related to various diseases 
including cancers3–5, autoimmune diseases6, 7, and virus infections8, 9.

To understand the roles of different types of lymphocytes, several methods based on labelling techniques 
have been developed to identify and separate lymphocyte cell types. Because different types of non-activated 
lymphocytes have very similar cellular morphology such as a large nucleus with small cytosolic regions and 
round shapes, it is impossible to discriminate lymphocyte cell types with conventional optical methods such as 
bright-field microscopy or phase contrast microscopy10. To overcome this difficulty, specific surface membrane 
proteins, known as surface markers, are recognized and tagged with magnetic beads or fluorescence molecules 
via antigen-antibody binding. Then each type of lymphocytes can be distinguished and separated by magnetic 
forces or fluorescence signals11. Targeting surface markers is a precise and efficient approach to determine the cell 
types; however, labelling methods have potential risks of altering cellular functions by modifying membrane pro-
tein structures. In addition, labelling methods have limitations in the number of cell types that can be identified 
simultaneously due to the limited multiplexing capability of the labelling agents12.
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Label-free approaches such as mass spectroscopy12 and Raman spectroscopy10 have also been introduced to 
overcome the limitations of labelling methods because these spectroscopic methods exploit intrinsic biochemical 
properties of cells. Mass spectroscopy measures cellular biochemical properties which enable the profiling of 
lymphocyte proteins as well as the identification of lymphocyte cell types. However, it has a limitation in live-cell 
analysis due to the homogenization process of the cells. Raman spectroscopy measures molecular vibrations and 
also characterizes biochemical properties of a sample. Raman spectroscopy permits label-free live-cell analysis of 
lymphocytes with high accuracy; however, it requires a bulky optical system and long acquisition time (typically 
several seconds per cell) which limits its practical use.

Here, we present a method to identify lymphocyte cell types by exploiting optical diffraction tomography 
(ODT) and machine learning. ODT is a label-free imaging technique that measures a three-dimensional (3-D) 
refractive index (RI) tomogram of a sample which provides quantitative morphological and biochemical infor-
mation13, 14. ODT has been widely used to study various biological samples including red blood cells15–22, white 
blood cells (WBC)23, 24, hepatocytes25, cancer cells16, 26–32, neurons32, 33, bacteria34–36, phytoplankton37, and hair38. 
In our previous study, we reported that ODT enables the quantitative analysis of WBCs including lymphocytes 
and macrophages23; we demonstrated that the two WBC subtypes could be discriminated using ODT. However, 
we were unable to simply identify lymphocyte cell types due to their nearly indistinguishable cellular morphology 
and biochemical characteristics.

In the present study, we use machine learning techniques to systematically interrogate the subtle differences 
between the lymphocyte cell types. Since RI is an intrinsic property of each biochemical component, the measured 
3-D RI tomograms should encode the cell-type-specific fingerprints. However, it is difficult to manually discover 
such fingerprint information due to the complexity of 3-D tomograms. To solve this difficulty, statistical classifi-
cation methods construct classification models by combining multiple features in a data-driven manner, instead 
of conventional hypothesis-driven investigations. This approach is especially powerful for high-dimensional data 
that are extremely difficult to be manually processed by humans due to the complexity and large size39, and 
thus machine learning techniques have been widely used to solve complex biological problems: identification of 
bacterial species40, 41, discrimination of WBC subtypes42, 43, investigation of pathophysiological conditions44–46, 
and classification of kinetic cell states47. Here we combine 3-D RI tomography and machine learning for the first 
time; we exploit statistical classification techniques to establish the cell type classifiers using the quantitative mor-
phological and biochemical information extracted from the 3-D RI tomograms of individual lymphocytes. The 
trained classifiers enable identification of three lymphocyte cell types (B, CD4+ T, and CD8+ T cells) with high 
sensitivity and specificity.

Results
The overall procedures for identification of non-activated lymphocytes are summarized in Fig. 1. The present 
approach involves three steps: (i) measurement of the 3-D RI tomograms of individual lymphocytes (Fig. 1a), (ii) 
construction of the statistical cell type classifiers using the quantitative biochemical and morphological features 

Figure 1.  Schematic diagrams of the label-free identification of individual lymphocytes using optical 
diffraction tomography and machine learning. (a) Procedures for label-free measurement of 3-D RI tomograms 
of lymphocytes. Multiple holograms of a lymphocyte are measured by changing the angle of illumination. 
Optical field information with various incident angles was retrieved from the measured holograms, and then 
3-D RI tomograms were reconstructed using an optical diffraction tomography algorithm. Scale bar, 5 μm. (b) 
Training a statistical cell type classifier for identifying lymphocyte cell types using the k-NN algorithm. The 
multiple quantitative morphological and biochemical features of individual lymphocytes were combined to 
recognize and exploit the cell-type-specific fingerprints via supervise learning. (c) Identifying the cell types of 
newly observed individual lymphocytes with the established classifier. (d) Schematic of the experimental setup. 
A Mach-Zehnder interferometric microscope equipped with a 2-D scanning galvanomirror (GM) was used for 
measuring the holograms of individual lymphocytes. L1−6, lenses; P, pinhole; BS1−2, beam splitters; M1−4, 
mirrors; CL, condenser lens; OL, objective lens.
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extracted from the tomograms (Fig. 1b), and (iii) identification of the new individual lymphocytes using the 
established classifiers (Fig. 1c).

Figure 1a shows the procedures for reconstructing the RI tomograms of the individual lymphocytes. To recon-
struct a 3-D RI tomograms, multiple 2-D holograms of a cell are measured at various angles of illuminations 
using an interferometric microscope48 (Fig. 1d). A coherent laser beam is split into two arms by a beam splitter. 
One arm passes through a sample, and then the diffracted light from the sample is projected onto a camera plane 
through a microscope. At the camera plane, the sample beam interferes with the other arm to generate a spatially 
modulated hologram. The angle of the beam impinging onto the sample is controlled by a dual-axis galvanomir-
ror. From the measured holograms, complex optical fields consisting of both the amplitude and quantitative 
phase images are retrieved using a field retrieval algorithm49, 50. Then, a 3-D RI tomogram of a lymphocyte is 
reconstructed using the multiple optical amplitude and phase information via an optical diffraction tomography 
algorithm14, 51 (see Methods).

We obtained and sorted three lymphocyte cell types, B, CD4+ T, and CD8+ T cells, from mice peripheral 
blood (see Methods). The measured 3-D RI tomograms of the individual lymphocytes are shown in Fig. 2. The 
cross-sectional slices of the representative 3-D tomograms of the three cell types are shown in Fig. 2a–c, respec-
tively. To facilitate visualization, the tomographic data was 3-D rendered using a customized transfer function in 
a commercialized software (TomoStudioTM, Tomocube Inc., Republic of Korea) to resemble haematoxylin and 
eosin staining (Fig. 2d–f and Supplementary Videos 1–3). Clearly, the measured RI distribution visualizes the cel-
lular boundaries and internal organelles such as nuclear membranes and nucleoli. The B cell shows a well-defined 
nucleus and nucleoli with RI values ranging from 1.34 to 1.41. We also note that the RI values of the cytosolic 
regions of the CD4+ and CD8+ T cells are higher than that of the B cell. Despite of these slight differences in RI 
distribution, the cell-type-specific fingerprints for cell type identification could not be clearly defined through 
visual interrogation, mainly due to the cell-to-cell variations.

Next we extracted the quantitative characteristics of the individual lymphocytes from the 3-D RI tomograms 
as illustrated in Fig. 3 (n = 149, 95, and 112 for B, CD4+ T, and CD8+ T cells, repsectively). The five quantitative 
morphological (surface area, volume, and sphericity) and biochemical (protein density and dry mass) parameters 
were calculated from the tomograms (see Methods). The cellular surface area and volume of the lymphocytes were 
simply calculated from the segmented (RI threshold = 1.340) voxel information of the 3-D tomograms, and then 
the sphericity, a dimensionless parameter that indicates the roundness of the cellular morphology, was obtained 

Figure 2.  Representative 3-D RI tomograms of each lymphocyte cell type and the 3-D rendered images with 
quantitative characterization. Cross-sectional slices of a RI tomogram of (a) B cell, (b) CD4+ T cell, and 
(c) CD8+ T cell. Scale bar, 2 μm. (d–f) 3-D rendered tomograms and quantitative characterization of the 
morphological and biochemical features of (a–c). Scale bar, 2 μm. SA, surface area; CV, cellular volume; SI, 
sphericity; PD, protein density; DM, dry mass.
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by the ratio of the surface area and volume. The cellular protein density and dry mass were retrieved using the 
RI values that are linearly proportional to the local concentration of non-aqueous molecules (mostly proteins).

To investigate the differences among the lymphocyte cell types, a statistical analysis was conducted on the 
quantitative parameters of the three lymphocyte cell types. First we studied the inter-type differences in the quan-
titative morphological features. The cellular surface areas of the B, CD4+ T, and CD8+ T lymphocytes were 
145.87 ± 20.25, 167.23 ± 32.08, and 160.80 ± 19.12 μm2, respectively (Fig. 3a). The B cells had significantly smaller 
cellular surface areas compared to the T cells (P < 0.001), while there was no significant difference between the 
CD4+ and CD8+ T cells. The cellular volumes of the lymphocytes also show a similar tendency with the result of 
the cellular surface area analysis. The cellular volumes of the B cells (133.43 ± 26.47 fL) were significantly smaller 
(P < 0.001) compared to those of the CD4+ T (155.73 ± 35.14 fL) and CD8+ T (152.77 ± 26.52 fL) cells (Fig. 3b), 
while the CD4+ and CD8+ T cells had similar cellular volumes. The sphericities were 0.86 ± 0.06, 0.84 ± 0.06, 
and 0.86 ± 0.05 for the B, CD4+ T, and CD8+ T cells, respectively (Fig. 3c). The sphericities of the CD4+ T cells 
were statistically smaller than those of the B cells (P < 0.01) and CD8+ T cells (P < 0.05). Note that all the lym-
phocyte cell types had high sphericity values which suggest the round shapes of the lymphocytes.

We also compared the biochemical properties of the lymphocyte cell types. The cellular protein densities of 
the B, CD4+ T, and CD8+ T cells were 15.43 ± 1.88, 14.81 ± 2.54, and 16.66 ± 1.88 g/dL, respectively (Fig. 3d). 
The CD8+ T cells had significantly higher cellular protein densities compared to those of the others (P < 0.001). 
The cellular dry mass was 20.28 ± 2.97, 22.65 ± 4.49, and 25.19 ± 3.51 pg for the B, CD4+ T, and CD8+ T cells, 
respectively, and showed significant differences (P < 0.001) between all the cell types (Fig. 3e). The B cells had a 
smaller cellular dry mass compared to the T cells. Moreover, the CD8+ T cells were statistically heavier than the 
CD4+ T cells. To summarize, we observed several statistical differences in both morphological and biochemical 
features at the population level. However, we failed to manually establish cell type classifiers based on these param-
eters at the single-cell level, due to the high dimensionality of the feature space and the cell-to-cell variations.

To achieve accurate identification of individual lymphocytes, we employed a machine learning approach to 
combine and exploit multiple features encoded in the 3-D RI tomograms. First we enlarged the feature space by 
extracting the quantitative parameters calculated at 20 different threshold RI values (from 1.340 to 1.378 with 
an increment of 0.002) to reveal the information specific to intracellular components in addition to the overall 
morphology (Supplementary Fig. 1). Then we systematically investigated the 100-dimensional feature space (5 
parameters per threshold value), which is impractical be manually explored, using statistical classification mod-
els. We employed the well-known k-nearest neighbours (k-NN) algorithm52, 53 (see Methods) with k = 4 after 
comparing several models (Supplementary Fig. 2).

The statistical classification, or supervised machine learning, was performed through the training and test 
stages as explained earlier (Fig. 1b,c). We randomly split each lymphocyte subtype data into 70% and 30% of 
training (n = 104, 66, and 77 for B, CD4+ T, and CD8+ T cells, repsectively) and test sets (n = 45, 29, and 35 for B, 
CD4+ T, and CD8+ T cells, repsectively), respectively. First we constructed the cell type classifiers by combining 
subsets of the features extracted from the training data set. We exhaustively searched the optical combinations of 
the features via cross-validation (see Methods) and the classifier with the best training accuracy was selected. The 
established classifiers exploit the cell-type-specific fingerprints recognized from the high-dimensional feature 
space. To test if these fingerprints are general to new lymphocytes, we identified the individual lymphocytes cat-
egorized as the test data. The test accuracy and its sub-parameters, called sensitivity (true positive results over all 

Figure 3.  Quantitative analysis of the morphological and biochemical parameters of the individual B, CD4+ 
T, and CD8+ T cells. (a–c) The scatter plots of the morphological features: (a) surface area, (b) cell volume, 
and (c) sphericity. (d,e) The scatter plots of the biochemical features: (d) protein density and (e) dry mass. Each 
symbol indicates a single-cell measurement. Note that a single 3-D RI tomogram simultaneously provides all 
five parameters. Horizontal black lines, mean values; vertical lines with intervals, standard deviation. *P < 0.05; 
**P < 0.01; ***P < 0.001.
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positive inputs) and specificity (true negative results over all negative inputs), were calculated by comparing the 
machine-predicted and true cell types.

Figure 4 and Tables 1–3 illustrate the identification performance for both training and test stages. We per-
formed statistical classification on three different combinations of the lymphocyte cell types: (i) binary classifica-
tion of B and T lymphocytes, (ii) binary classification of the two T lymphocyte types (CD4+ and CD8+), and (iii) 
multiclass classification of all three types of lymphocytes. First, the two T cell types were considered as one class to 
train a binary classifier of B and T cells (Fig. 4a). The accuracy of the optimized classifier was 93.15% and 89.81% 

Figure 4.  Identification performance of the optimized lymphocyte cell type classifiers. The performance of cell 
type identification was illustrated for (a) binary classification of B and T cells, (b) binary classification of CD4+ 
and CD8+ T cells, and (c) multiclass classification of all three lymphocyte cell types, for both training and test 
sets. Note the small difference between the training and test cases, suggesting nice generalization of the trained 
classifiers. The numbers below the name of each cell type indicate the number of cells used.

Training Test

Output cell type 
(number of cell)

Sensitivity (%)

Output cell type 
(number of cell)

Sensitivity (%)B cell T cell B cell T cell

Input cell 
type

B cell 96 8 92.31 Input cell 
type

B cell 42 3 93.33

T cell 9 135 93.75 T cell 8 55 81.30

Specificity (%) 93.75 92.31 93.15 (overall) Specificity (%) 81.30 93.33 89.81 (overall)

Table 1.  Detailed performance of the B and T lymphocyte cell type classifiers. The identification accuracy and 
its sub-parameters, sensitivity and specificity, were also presented.

Training Test

Output cell type 
(number of cell)

Sensitivity (%)

Output cell type 
(number of cell)

Sensitivity (%)
CD4+ T 
cell

CD8+ T 
cell

CD4+ T 
cell

CD8+ 
T cell

Input cell 
type

CD4+ T 
cell 54 12 81.82

Input cell 
type

CD4+ T 
cell 25 4 86.21

CD8+ T 
cell 6 71 92.21 CD8+ T 

cell 6 29 82.86

Specificity (%) 92.21 81.82 87.41 (overall) Specificity (%) 82.86 86.21 84.38 (overall)

Table 2.  Detailed performance of the CD4+ and CD8+ T lymphocyte cell type classifiers. The identification 
accuracy and its sub-parameters, sensitivity and specificity, were also presented.
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for the training and test cases, respectively (selected features: surface area (RI threshold = 1.342, 1.368), volume 
(1.368), sphericity (1.342, 1.368), protein density (1.368), and dry mass (1.342, 1.368)). Second, the CD4+ and 
CD8+ T cells were statistically classified also in a binary fashion (Fig. 4b). The accuracy was 87.41% and 84.38% 
for the training and test sets, respectively (selected features: surface area (1.342, 1.362) and sphericity (1.324, 
1.362)). Lastly, the multiclass cell type classifier of the three lymphocyte cell types was constructed. The identi-
fication accuracy for the training and test were 80.65% and 75.93%, respectively (selected features: surface area 
(1.340), sphericity (1.370), protein density (1.370), and dry mass (1.370)). The small differences in accuracy (i.e. 
negligible overfitting) suggest that the trained cell type classifiers make use of the general characteristics of each 
lymphocyte cell type; thus the trained classification models would accurately identify the newly observed indi-
vidual lymphocytes.

Discussion
We demonstrated the identification of non-activated lymphocyte cell types at the single-cell level using ODT 
and machine learning. ODT provides quantitative morphological and biochemical information on the individ-
ual lymphocytes by measuring their 3-D RI distribution. We extracted the quantitative parameters from the 
3-D tomograms and observed significant differences between the cell types at the population level. However, 
we failed to construct accurate cell type classifiers at the single-cell level, mainly due to the high dimensionality 
of the feature space and the cell-to-cell variations. To overcome this limitation, the k-NN (k = 4) algorithm was 
employed as a statistical classification method to systematically extract and exploit the cell-type-specific finger-
prints encoded in the 3-D RI tomograms. The optimized cell type classifiers can discriminate B and T cells with 
high accuracy of approximately 90%. The CD4+ and CD8+ T cells could be distinguished as well with an overall 
accuracy of over 80%. In addition, the simultaneous multiclass identification of the three lymphocyte cell types 
presented an overall accuracy of over 75%.

The identification performance shows that the classification models discriminate B and T lymphocytes more 
precisely compared to the T cell subtype identification (CD4+ and CD8+ T cells); these results imply that the 
differences in cellular morphology and biochemical properties between the B and T cells are more distinct than 
those between the CD4+ and CD8+ T cells. This observation is consistent with the previous knowledge of 
the lymphocyte-differentiation pathway54. The B and T lymphocytes originate from hematopoietic stem cells 
and then mature in different organs. Thus, the lymphocytes have similar cellular phenotypes such as one large 
nucleus and spherical shapes; however, the B and T cells have entirely different cellular functions. Even though 
our method established the cell type classifiers by optimizing the features based on the statistical performance 
instead of biological relevance, the machine learning algorithm automatically recognizes and exploits the distinct 
differences in the morphological and biochemical properties between the lymphocyte cell types.

The present approach combines 3-D RI tomography and statistical classification, for the first time to our 
knowledge, which provides several advantages. First, the present method enables the identification of lympho-
cyte cell types exploiting intrinsic optical properties of cells, which cannot be achieved by conventional optical 
microscopic techniques without using fluorescent methods. As ODT measures intrinsic 3-D RI distribution of 
individual lymphocytes, it provides consistent and highly reproducible results. In contrast, labeling methods such 
as fluorescence microscopy techniques can provide molecular-specific localization information. However, their 
signals are generally qualitative, and may vary significantly depending on experimental protocols, skills, and 
equipment. This variability of labeling methods may decrease overall identification accuracy. Alternatively, exist-
ing bright-field or phase contrast microscopy can be used to measure 2-D morphological features, such as pro-
jected area, aspect ratio, and nucleus size. However, these qualitative image data obtained with these conventional 
bright-field or phase contrast microscopy only provide limited information. We found that statistical classifica-
tion performed by morphological information only (surface area, cellular volume, and sphericity) lowers overall 
accuracy (Supplementary Fig. 3). This result clearly indicates the advantages of using the 3-D RI tomogram. 
Second, the present method uses a simple and cost-effective optical setup compared to fluorescence-activated cell 
sorting or other label-free techniques such as Raman spectroscopy. Recently, a 3-D holographic microscope has 
become commercially available, which simplifies the optical system and achieves over 100 tomograms per second 
by exploiting a digital micromirror device to reduce the required time for measuring a 3-D RI tomogram55, 56. 
Thus, the present approach can be easily transferred to basic research facilities and clinics. Lastly, there is no lim-
itation in applying the present method to discriminate other types of cells including RBCs, cancer cells, neurons, 

Training Test

Output cell type (number 
of cell)

Sensitivity (%)

Output cell type (number 
of cell)

Sensitivity (%)B cell
CD4+ 
T cell

CD8+ 
T cell B cell

CD4+ 
T cell

CD8+ 
T cell

Input cell 
type

B cell 89 6 9 85.58

Input cell 
type

B cell 39 1 5 86.67

CD4+ 
T cell 8 49 9 74.24 CD4+ 

T cell 2 21 6 72.41

CD8+ 
T cell 7 9 62 79.49 CD8+ 

T cell 2 10 22 64.71

Specificity (%) 89.58 91.76 89.41 80.65 (overall) Specificity (%) 93.65 86.08 89.41 75.93 (overall)

Table 3.  Detailed performance of the three lymphocyte cell types classifiers. The identification accuracy and its 
sub-parameters, sensitivity and specificity, were also presented.
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and glial cells. Because ODT has been widely used to measure various biological samples, the present approach 
can be readily used to identify various cell types.

One of the limitations of the current study is that antibody-labelled lymphocytes were used to demonstrate the 
proof of principle. Because labeling and sorting procedures are inevitable to confirm the presence of antibodies in 
lymphocytes, and the use of antibody labeling is a standard technique to assure the subtypes of antibody-specific 
classification. Nonetheless, this approach still uses the intrinsic imaging contrast – 3-D RI tomography, and the 
labeling agents used to specify antibodies have negligible effects to the measured 3-D RI signal. CD4 antibody 
bound per cell value is about 48,000 and the total number of protein per cell of a eukaryotic cell is in the order 
of billions57, 58. Thus, antibody staining accounts for less than 0.0005% of total protein numbers, which can be 
ignored in the measured 3-D RI tomogram because the RI signals attribute to total protein distributions.

From the algorithmic point of view, there are several points to be improved for practical use of the proposed 
technique. As described earlier, we compared several statistical classification algorithms including the k-NN 
(k = 4 and k = 6), linear discrimination analysis, quadratic discrimination analysis, naïve Bayes, and decision tree 
(Supplementary Fig. 2), and selected the k-NN (k = 4) as the classification model. While we tested several machine 
learning algorithms exploiting quantitative features with different thresholds widely used in ODT-based studies, 
employing advanced features extraction methods and statistical classification models could enhance the overall 
identification performance. Unfortunately, designing powerful features for 3-D biological microscopy data, espe-
cially for 3-D RI tomograms, has been largely unexplored and is beyond the scope of this proof-of-concept study. 
The methods developed in different disciplines could be translated to facilitate this direction: scale-invariant fea-
ture transform for X-ray computerized tomography59 or histogram-based features for lidar-based point clouds60. 
However, these ‘shallow’ descriptors require laborious optimization procedures specific to samples and imaging 
setups employed.

We expect that ‘deep’ learning, a state-of-the-art machine learning technique based on multilayered neural 
networks, could be a powerful and generic feature extraction strategy for 3-D biological microscopy. Recently, 
our group successfully combined 2-D holographic microscopy and deep learning for the label-free screening of 
multiple pathogens61. Upon extension to 3-D ODT, the remarkable flexibility and learning abilities of deep neural 
networks would let us fully exploit the complex information encoded in the 3-D RI tomograms and dramatically 
enhance the identification performance. An important step in this direction is to combine the proposed method 
with high-throughput imaging technologies62 to obtain a large size of training data sufficient for deep learning.

In summary, we envision that ODT combined with machine learning will be a useful tool in biomedical 
research. ODT quantitatively provides the morphological and biochemical characteristics of the samples, and 
then machine learning enables the label-free identification of cell types using the measured quantitative infor-
mation. The present method can be widely used in the study of immunology, cancer biology, and neuroscience.

Methods
Mice.  C57BL/6 J mice (gender and age-matched, 6–8 weeks) were purchased from Daehan Biolink (Republic 
of Korea). Animal care and experimental procedures were performed under approval of the Institutional Animal 
Care and Use Committee of KAIST (KA2010-21, KA2014-01 and KA2015-03). All the experiments in this study 
were carried out in accordance with the approved guidelines.

Flow cytometry for lymphocyte sorting.  White blood cells were isolated from the blood harvested from 
the heart of mice. Erythrocytes were removed by ACK lysis. Cells were blocked with anti-CD16/32 and then 
stained for surface molecules. DAPI (4,6-diamidino-2-phenylindole; Roche, Switzerland) was used for dead cell 
exclusion. Sorting was performed on an Aria II or III system (BD Biosciences, CA) using an 85-μm nozzle or 
Astrios system (Beckman Coulter, CA) using a 70-μm nozzle. Antibodies for flow cytometry were purchased 
from BD Biosciences, eBioscience (CA), Biolegend (CA). The antibodies used were CD3ε (clone 17A2), CD4 
(GK1.5), CD8α (53-6.7), CD19 (1D3), CD45R (B220, RA3-6B2), NK1.1 (PK136).

3-D refractive index tomography.  To reconstruct the 3-D RI tomograms of lymphocytes, a 
Mach-Zehnder interferometric microscope was used15 (Fig. 1d). A laser beam from a diode-pumped solid-state 
laser (λ = 532 nm, 100 mW, Shanghai Dream Laser Co., China) is split into two arms using a beam splitter. One 
arm illuminates a sample with various illumination angles ranging from −60° to 60° in air at the sample plane with 
respect to the optic axis, which is systematically controlled with a dual-axis galvanomirror (GVS012, Thorlabs, 
NJ), and the other is used as a reference beam. The sample is placed between a condenser lens (UPLSAPO Water 
60×, numerical aperture (NA) = 1.2, Olympus, Japan) and an objective lens (PLAPON Oil 100×, NA = 1.4, 
Olympus, Japan). For a single cell level analysis, we locate a single cell in the field of view using a manual trans-
lation stage. The diffracted light from the sample is then collected by the objective lens and projected onto the 
camera plane. At the camera plane, the sample beam interferes with the reference beam, generating spatially mod-
ulated holograms, which are then captured by a CMOS camera (1024 PCI, Photron USA Inc., CA). For recon-
structing a 3-D RI tomogram, a total of 300 holograms of a sample are measured with a frame rate of 1000 Hz by 
changing the angle of illuminations which takes 0.3 s. Then, the optical field information (amplitude and phase) 
of the measured holograms are retrieved using a field retrieval algorithm based on Fourier transform49, 50. From 
the retrieved multiple amplitude and phase information, a 3-D RI tomogram is reconstructed using an optical 
diffraction tomography algorithm14, 51. An iterative regularization algorithm with a non-negativity constraint 
was used to fill the missing cone information which results from the limited NA of the condenser and objective 
lenses63. Details on reconstructing 3-D RI tomograms can be found elsewhere15, 64. The experimental resolution of 
our setup estimated by imaging a micro-bead was 373 nm and 496 nm for lateral and axial directions, respectively, 
which is consistent with the theoretical values65.
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Image processing and statistical analysis.  Image processing was performed with Matlab (R2014b; 
MathWorks Inc., MA) and ImageJ (the National Institutes of Health, MD). The RI isosurfaces were rendered 
with commercial software (TomoStudioTM, Tomocube Inc., Republic of Korea). Statistical analysis was done with 
GraphPad Prism (GraphPad Software Inc., CA). P-values were calculated by Student’s t−test.

Calculation of the quantitative structural and biochemical characteristics.  The quantitative 
structural and biochemical parameters of the individual lymphocytes were calculated from the measured 3-D RI 
tomograms. To calculate the cellular surface area S and volume V, the voxels with the RI values higher than the 
threshold RI value were selected for segmentation from a 3-D RI tomogram of a lymphocyte. The surface are and 
volume were calculated from the number of voxels at the boundary and inner region of the segmented region, 
respectively. The sphericity, which is a dimensionless parameter that indicates the roundness of a lymphocyte, 
was obtained from the calculated surface area and volume as follows: Sphericity = π1/3·(6 V)2/3/S. The biochemical 
characteristics (protein density and dry mass) were obtained from the RI values due to the well-characterized 
linear relation between the RI value and the local concentration of non-aqueous molecules (i.e., proteins, lipids, 
and nucleic acids inside cells; mostly proteins). RI values were converted to the protein density C with the follow-
ing relation: n = n0 + αC, where n and n0 are the RI values of a voxel and the medium, respectively, and α is the 
refractive index increment (RII). Because it is known that most proteins have similar RII values, we used a RII 
value of 0.2 mL/g in this study. The total dry mass of a lymphocyte was calculated by simply integrating the pro-
tein density over the cellular volume. Details on calculating the quantitative information from 3-D RI tomograms 
can be found elsewhere23, 25.

Machine learning.  We investigated the 100-dimensional feature space as described in the main text. We 
selected the k-NN (k = 4) as the classification model after comparing several algorithms (Supplementary Fig. 2). 
The k-NN algorithm predicts the class of a newly observed data by choosing the most frequent class labels of k 
nearest neighbour data points in the feature space. We standardized all features prior training and test because 
k-NN is sensitive to pre-processing. Since there exists substantial redundancy between the features and it is desir-
able to choose minimal number of features to reduce overfitting, it was crucial to select the optimal feature set. 
We exhaustively searched all combinations of the morphological and biochemical features obtained at a single 
or two different RI threshold values. The feature set with the highest cross-validation accuracy was selected. The 
optimized classifier was tested using the data that was not utilized for training.
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