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A decreasing glacier mass 
balance gradient from the edge 
of the Upper Tarim Basin to the 
Karakoram during 2000–2014
Hui Lin1,2,3, Gang Li1, Lan Cuo4,5,6, Andrew Hooper7 & Qinghua Ye4

In contrast to the glacier mass losses observed at other locations around the world, some glaciers in 
the High Mountains of Asia appear to have gained mass in recent decades. However, changes in digital 
elevation models indicate that glaciers in Karakoram and Pamir have gained mass, while recent laser 
altimetry data indicate mass gain centred on West Kunlun. Here, we obtain results that are essentially 
consistent with those from altimetry, but with two-dimensional observations and higher resolution. 
We produced elevation models using radar interferometry applied to bistatic data gathered between 
2011 and 2014 and compared them to a model produced from bistatic data collected in 2000. The 
glaciers in West Kunlun, Eastern Pamir and the northern part of Karakoram experienced a clear mass 
gain of 0.043 ± 0.078~0.363 ± 0.065 m w.e. yr−1. The Karakoram showed a near-stable mass balance 
in its western part (−0.020 ± 0.064 m w.e. yr−1), while the Eastern Karakoram showed mass loss 
(−0.101 ± 0.058 m w.e. yr−1). Significant positive glacier mass balances are noted along the edge of the 
Upper Tarim Basin and indicate a decreasing gradient from northeast to southwest.

Glaciers and ice sheets throughout the world are experiencing degradation and have contributed approximately 
29 ± 13% of the observed sea level increase from 2003 to 20091. The High Mountains of Asia (HMA) contain the 
world’s largest low-latitude, high-altitude glaciers in the world and are dominated by continental climatic sys-
tems, such as the westerlies, the Indian Monsoon and the East Asian Monsoon2, 3. Glaciers in the HMA are also 
the headwater sources of several great rivers, and the HMA is therefore also known as ‘Asian Water Tower’4. In 
contrast to other sub-regions of the HMA, including the Himalayas, Eastern Nyainqentanglha, Spiti Lahaul and 
Tien Shan, which are experiencing glacier mass loss, the Pamir-Karakoram-Kunlun region includes glaciers that 
have gained mass, although the details are debated1, 5–9. For the Karakoram and the Western Pamir, comparison 
of digital elevation models (DEMs) from the Shuttle Radar Topographic Mission (SRTM) in 2000 with stereo 
photogrammetry-based DEMs derived from 2012 SPOT/HRS data suggested a positive mass balance. This was 
termed the ‘Karakoram anomaly’5 and later the ‘Karakoram-Pamir anomaly’6. However, a satellite laser altimetry 
mission, ICESat/GLAS, indicated that a positive mass balance existed in Western Kunlun and Eastern Pamir, but 
stopped at the edge of the Karakoram, based on the use of a 1 × 1° grid7, 8. A similar result was obtained using the 
same dataset without gridding1.

Since 2011, the German Aerospace Centre (DLR) has operated the twin X-band satellites, TerraSAR-X and 
TanDEM-X (TSX/TDX), in bistatic mode. This mode is similar to the working mode of the SRTM used in 2000, 
yielding better results regarding glacier height change measurements than ICESat/GLAS laser altimetry or 
SPOT/HRS photogrammetry10, 11. Following previous studies on the ‘Karakoram-Pamir anomaly’, we divide the 
study site into six sub-regions, including West Kunlun, Extended West Kunlun (including zones A-G), Eastern 
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Karakoram, Western Karakoram, Hindu Kush, and Pamir5, 6. We analyse 39 pairs of bistatic SAR images obtained 
during 2011 and 2014 to derive decadal glacier height changes using the SAR interferometry (InSAR) technique, 
subtracting SRTM elevations observed in 2000 (Supplementary Fig. S1). The study period used covers a slightly 
longer time period than previous researches6, 7. By presuming a density of 850 ± 60 kg/m3 in both the accumula-
tion and ablation zones, we convert the decadal glacier height changes to glacier mass balances12.

The glacier mass balance pattern is heterogeneous at the sub-regional scale (Fig. 1). Only West Kunlun, 
Extended West Kunlun and Eastern Pamir show glacier mass gain, whereas most of Karakoram, Hindu Kush 
and Western Pamir lost ice mass. West Kunlun showed a positive mass balance (0.128 ± 0.055 m w.e. yr−1), and 
the surrounding area (A-F) also experienced a mass gain that varied from 0.043 ± 0.078 to 0.363 ± 0.065 m w.e. 
yr−1, with a decreasing gradient from northeast to southwest (Fig. 1, Supplementary Fig. S10). Along the edge 
of the Upper Tarim Basin in Extended West Kunlun, a more positive mass balance was observed (Fig. 1, zones 
A, B, C, and D); in almost all elevation bins except those at lowest elevations, height changes were similar and 
positive (a~d in Supplementary Fig. S19). In the West Kunlun, of the 23 large glaciers that were examined, only 
three of them showed slight negative mass balances (Fig. 2, Supplementary Table S4). Surging and quiescent 
glaciers detected by the height change pattern largely agree with results derived from feature tracking13. Yulong 
is the only glacier which is identified as a quiescent glacier in our height change pattern, not identified as such by 
previous feature tracking13. Surging and quiescent glaciers occupy almost half of West Kunlun’s glacierized area, 
which implies surging is common. Glacier height changes also agree well with results derived from ICESat/GLAS 
within its footprints14, 15. Within the Extended West Kunlun (zone G), which is close to the Eastern Karakoram 
and Spiti-Lahaul (Fig. 1 and Supplementary Fig. S11), the glacier experienced rapid degradation at a rate of 
−0.286 ± 0.067 m w.e. yr−1. Nevertheless, glacier mass balances in all studied sub-regions or sub-groups were still 
less negative than the HMA average8 of −0.37 ± 0.10 m w.e. yr−1.

A large number of glaciers in Karakoram surged or experienced quiescent phases after surging, mostly on 
the northern slope or within the Upper Tarim Basin16. Taking these glaciers into account by adding them to 
the regional mass balance regarding area as weight6, the mass balances of glaciers in the Eastern and Western 
Karakoram regions were −0.101 ± 0.058 and −0.020 ± 0.064 m w.e. yr−1, respectively. These results were closer 
to the ICESat/GLAS-derived results7, 8 than the results derived from topographic differencing between SRTM 
and stereo SPOT/HRS5, 6 data, even though our study period was similar to that used in the latter analysis. The 
latter analysis yielded a positive mass balance in both the Eastern and the Western Karakoram of 0.11 ± 0.14 and 
0.09 ± 0.18 m w.e. yr−1, respectively6. The central part of Karakoram was more stable than the fringing regions 
to both the west and east (Supplementary Table S3). Most of the mass gain occurred on the northern slope of 
the Karakoram Mountains. For both the Eastern and Western Karakoram, the glacier mass balance was more 
negative in the Upper Indus Basin than in the Upper Tarim Basin (Figs 3 and 4; Supplementary Tables S5 and 
S6). Glacier mass balances were 0.000 ± 0.066 and −0.048 ± 0.060 m w.e. yr−1 in the western and eastern parts 
inside the Upper Tarim region, respectively (Figs 3 and 4). At the far northeastern part of the Karakoram, which 
is covered by frame 2014–02–08n (Supplementary Fig. S1), close to the edge of the Upper Tarim, a significant 
positive mass balance was found at 0.114 ± 0.070 m w.e. yr−1, with similar rates of height increase in all elevation 
bins (Supplementary Fig. S29). This also suggests that the anomaly centre was not within the central Karakoram, 

Figure 1.  Glacier mass balance in the Karakoram and its surroundings during 2000~2014. The areas of the 
darker parts of triangles indicate glacier mass balance in terms of m w.e. (water equivalent) yr−1, whereas the 
lighter parts indicate the estimated standard error. The coloured dashed lines indicate the boundaries of each 
sub-region covered by TSX/TDX images. We subdivided the Extended West Kunlun, which surrounds the West 
Kunlun, into zones A-G. The Pamir was separated into western, central and eastern parts, which are shown with 
purple dashed lines. All figures are generated by Gang Li. This figure was generated with ArcGIS 10.2 software 
(http://www.esri.com/software/arcgis/arcgis-for-desktop).
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Figure 2.  Decadal glacier height changes for the West Kunlun region and its extent during 2000~2014. 
Locations of A-G are indicated in Fig. 1. Yellow lines separate this region into western, central and eastern parts. 
Their annual glacier mass balances are shown in units of m w.e. yr−1. Glacierized areas without observations 
are shown in white. This figure was generated with ArcGIS 10.2 software (http://www.esri.com/software/arcgis/
arcgis-for-desktop).

Figure 3.  As Fig. 2, but for Eastern Karakoram. The blue line naturally separates this region into the Upper 
Tarim Basin and the Upper Indus Basin. The boundary of the Eastern Karakoram region is indicated with a 
green dashed line. SA: Siachen; BA, Baltoro. This figure was generated with ArcGIS 10.2 software (http://www.
esri.com/software/arcgis/arcgis-for-desktop).
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but at the southeastern edge of the Upper Tarim7. Glacier mass balance in the Hindu Kush region has been under 
debate; our results show a negative total mass balance of −0.134 ± 0.085 m w.e. yr−1.

The Pamir region is divided into western, central and eastern sub-regions. Our findings suggest negative 
mass balances in both the Western and the Central Pamir regions, and a positive mass balance in Eastern Pamir, 
with values of −0.118 ± 0.032, −0.100 ± 0.087, and 0.124 ± 0.086 m w.e. yr−1, respectively. Gardelle et al.6 sug-
gested that there was a positive mass balance in Western Pamir of 0.14 ± 0.14 m w.e. yr−1, and that the Fedchenko 
Glacier, which is the largest glacier in this sub-region (Fig. 5 and Supplementary Fig. S14), was nearly stable. 
However, Gardner et al.1 and Kääb et al.7 identified negative sub-regional mass balances of −0.13 ± 0.11 and 
−0.48 ± 0.14 m w.e. yr−1 via satellite laser altimetry. Their major discrepancy lies with glaciers west to Fedchenko. 
Gardner et al.’s results1 present positive changes for a lot number of footprints, while Kääb et al.’s results7 are 
negative there. Our results suggest Fedchenko Glacier experienced a negative mass balance of −0.147 ± 0.069 m 
w.e. yr−1, as well as significant thinning in the ablation zone (Supplementary Fig. S37). Surging and quiescent 
glaciers are also common in Western Pamir, especially west of the Fedchenko Glacier (Fig. 5). This region, where 
Gardner et al.1 and Kääb et al.7’s discrepancy lies, presents an almost stable mass balance of −0.027 ± 0.064 m 
w.e. yr−1. Previous research using optical satellite identification17 shows stable or advancing glaciers in Eastern 
Pamir. In-situ observations within our study period in Eastern Pamir show positive average height changes for 
the Muztag Ata Glacier3. Despite the positive mass balance in both the accumulation and ablation zones, glacier 
thinning was significant in the very lowest region of the Kekesayi Glacier (Fig. 6 and Supplementary Fig. S41), 
which is the largest glacier in the Eastern Pamir. This result is similar to the finding of Holzer et al., who used 
photogrammetry18.

Our derived results suggest that the anomalous region is centred on the southern and western edges of the 
Upper Tarim basin, rather than the Karakoram region. This heterogeneous pattern of glacier mass balance is 
more similar to the previous 1° × 1° gridded results7 derived from ICESat/GLAS satellite laser altimetry than to 
the results of topographic differencing, despite the small differences in study periods and coverage investigated. 
This implies that the anomaly indicates strengthening of the westerlies3 and increased moisture in the Tarim 
region19. The increase in lake elevation south of the West Kunlun region during almost the same study period also 
suggests that increasing precipitation could be responsible for the observed glacier mass gain20, 21. Large glaciers 
in the Eastern Pamir and the West Kunlun regions, such as the Kekesayi and the Duofeng Glaciers (Figs 2 and 
6), suffered from obvious thinning of up to metres or tens of metres in one decade in their lowest sections. Their 
rates of height changes in the accumulation zones were identical, indicating that they were not surging glaciers 
experiencing a quiescent phase. Feature tracking to the Duofeng glacier also confirms this by deriving flow rates13. 
For the West Kunlun region, after removing glaciers that were surging or experiencing a quiescent phase after 
surging, depending on their flow rates13 and height change patterns, the glacier height changes show homogene-
ously increasing rates in every elevation bin above 5450 m, whereas areas below 5400 m reflect thinning (Fig. 7).

GCMs simulations do not show a strong mass balance anomaly along the edge of the Upper Tarim region; 
instead, they suggest that the major anomaly region occurs along 36.5 N° in Western Karakoram22. In contrast, 
seven TSX/TDX images in our study region, covering the Hindu Kush region to the eastern extent of West 

Figure 4.  As Fig. 3, but for the Western Karakoram. BI, Biafo; CH, Chogo Lungma; HI, Hispar; BT, Batura. This 
figure was generated with ArcGIS 10.2 software (http://www.esri.com/software/arcgis/arcgis-for-desktop).
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Figure 5.  As Fig. 2, but for the Western Pamir region. The Fedchenko Glacier is indicated by the bold boundary. 
The yellow line separates the rest of the glaciers into two sub-regions. The purple dashed line represents the 
TSX/TDX coverage. This figure was generated with ArcGIS 10.2 software (http://www.esri.com/software/arcgis/
arcgis-for-desktop).

Figure 6.  As Fig. 2, but for the Eastern Pamir region. The purple dashed line represents the TSX/TDX coverage. 
KK, Kekesayi glacier; MA, Muztag Ata glacier. This figure was generated with ArcGIS 10.2 software (http://
www.esri.com/software/arcgis/arcgis-for-desktop).
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Kunlun, show that the mass balance increases from west to the east (Fig. 8, Supplementary Figs S1, S19a–c, S23, 
S27, S28, S29). This is similar to the finding using ICESat/GLAS observations along 36 N°7. The northernmost 
part of Western Karakoram (coverage 2014-03-02n and 2014-02-08n; Supplementary Fig. S1) still presents a pos-
itive glacier mass balance. The drainage divide between the Indus Basin and the Tarim Basin seems to represent 
the limit of this mass balance anomaly. A high proportion of annual streamflow comes from glacier and snow 
melt in the Upper Indus River, the Upper Tarim River and the Upper Amu Darya River, as the dry desert in the 
lowland does not produce significant runoff 23–25. Climate change-induced snow and glacier changes could there-
fore be detrimental and may lead to potential conflict in the long run, due to shifts in the seasonal distribution of 
flow and annual yield changes26–28, as the population is projected to grow in central Asia25, 29. Some recent studies 
have already reported that enhanced glacier and snow melt has contributed to an increase in streamflow in the 
Upper Indus River in recent decades30–33.

Methods
Bistatic SAR Interferometry.  We utilized 39 pairs of X-band SAR images (Supplementary Fig. S1) and 
used SRTM data from Feb 2000 to detect glacier height changes using bistatic SAR interferometry (InSAR). In 
the case of bistatic InSAR, because the two images in a single pair are obtained at the same point in time, only 
the topographic residual phase exists in the differential interferogram. After unwrapping using a minimum cost 
flow method34, we transformed the topographic residual phase directly into height changes10. To tie the DEMs to 
the same reference frame, we assumed no height changes occurred in the off-glacier region in the whole image. 
Additionally, the off-glacier region was also employed to estimate and remove a bilinear ramp due to orbital 
errors. The RGI V5.0 dataset was used to provide the boundaries of the glaciers; manual corrections according 
to Landsat images were performed for several surging and stagnant flow glaciers’ terminus when calculating vol-
ume changes and mass balance35. The normalized differential snow index (NDSI) of cloud-free end-of-summer 
Landsat images was applied to identify clean ice glaciers using a threshold of 0.4. Foreshortening, layover, and 
shadowed regions in the SAR data were de-correlated, and the voids in the SRTM were masked out. Due to the 
complex topography, a lower proportion of pixels in the higher elevation section can be measured effectively. 
Therefore, for each elevation bin of 50 m, we calculated the mean height change and calculated the normalized 
averaged rates of glacier height change for the region of interest.

Penetration depth and seasonal effect estimation.  Microwaves can penetrate snow, firn and ice to 
a depth that depends on the density, water content and microwave frequency used36. Because X-band SRTM 
is not available everywhere, due to its narrow swath widths, we used C-band SRTM for height change estima-
tion. For each sub-region, we applied C- and X-band SRTM to estimate and remove the penetration depth 
difference on glaciers individually in each 50-m elevation bin (Supplementary Figs S2–S4). The datum dif-
ference between C- and X-band SRTM was estimated and removed by aligning the off-glacier region37. The 
clean ice and the debris-covered ice were treated separately (Supplementary Figs S3 and S4). The estimated 

Figure 7.  Glacier height changes in different elevation layers in the Western Kunlun. (a) Changes in glacier 
height for non-surging glaciers in each elevation bin. Error bars only indicate standard deviation in height 
changes in each elevation bin. (b) Glacier height distributions for both total glacierized area and the measured 
area of non-surging glaciers.
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average penetration depth differences in the West Kunlun, Karakoram and Pamir regions are 2.84 ± 0.13 m, 
2.41 ± 0.17 m, and 1.88 ± 0.29 m, respectively. To avoid the effects of seasonal snow on the penetration depth 
estimates, we mainly adopted TSX/TDX images obtained in Jan, Feb and Mar. Four pairs of images obtained 
during different months, with a region of overlap in West Kunlun, were employed to estimate the seasonal 
effect (Supplementary Figs S5 and S6). We adopted a height change correction of −0.28 m, −0.21 m, −0.14 m, 
−0.07 m, 0.07 m and 0.14 m for October, November, December, January, March and April, respectively 
(Supplementary Fig. S1 and Table S1).

Error estimation.  The glacier height change estimates include bias and random error. The former includes 
differences in the penetration depths associated with the C- and X-bands, the off-glacier region datum and sea-
sonal variations. We performed an error propagation similar to that used in the study of Gardelle et al.6; autocor-
relation distances of 2000 m and 500 m were chosen for the differencing operations between the two SRTM bands 
and the SRTM and TSX/TDX DEMs, respectively. An error of 0.15 m/month was introduced for the seasonal 
snow effect estimation. The random error depends on the number of effective measurements at each glacier and 
on the standard deviation of the elevation differences within the off-glacier region, where no height changes were 
presumed.

Figure 8.  Glacier height changes in different elevation layers along 36.5 N°. (a) Glacier height changes in 
each elevation bin for seven pairs of bistatic images along 36.5 N° (shown in different colours) from the Hindu 
Kush to the eastern extent of the West Kunlun. The specific position of the coverage refers to Figure S1 in the 
supplementary. (b) Glacier height distribution for seven pairs of image coverages. Different colours indicate 
different frames. (c) Annual glacier height changes for the total region, accumulation area and ablation area 
in seven pairs of bistatic images along 36.5 N°. The horizontal axis indicates the longitude at the centre of each 
image.
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