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R isk prediction equations have been a cornerstone of
cardiovascular disease prevention strategies for 2

decades. These equations serve as tools to convert data on
multiple risk factors into a summary estimate of a person’s
likelihood of experiencing a cardiovascular event over a given
period. The first widely used cardiovascular risk prediction
equation was the Framingham Risk Score (FRS), developed
from the country’s first longitudinal cardiovascular cohort
study. Eventual adoption of the FRS into the Third Report of
the National Cholesterol Education Program’s Adult Treatment
Panel (ATP-III) cholesterol guidelines in 2001 firmly estab-
lished absolute risk assessment as an integral part of primary
prevention, operationalizing the widely accepted paradigm
that more intensive prevention efforts, specifically drug
therapy, should be directed to those at higher risk.1

In 2013, the American College of Cardiology and American
Heart Association released updated clinical practice guideli-
nes for the treatment of blood cholesterol to reduce
atherosclerotic cardiovascular disease event risk.2 These
guidelines reaffirmed the risk-based prevention paradigm but
moved one step further by eliminating cholesterol goals,
instead identifying evidence-based risk thresholds to define
groups with net benefit from statin therapy, in order to guide
clinician–patient decision making in primary prevention. The
prominent role of absolute risk assessment in these guide-
lines led to an intense focus on the new cardiovascular risk
prediction equations recommended by these guidelines, the
Pooled Cohort Equations (PCE).3

Since release of the 2013 American College of Cardiology/
American Heart Association prevention guidelines, there have
been numerous studies evaluating the performance of the
PCE in different settings; reported results have been mixed,
and findings have been heavily influenced by diverse and
contentious methodological approaches in those reports.4–6

Some analyses have identified overprediction of risk with the
PCE,7–11 while others have found acceptable calibration,
particularly at clinically relevant risk levels near decision
thesholds.12–15 The prevailing uncertainties have led to calls
for transformative changes in the way risk prediction
algorithms are developed and validated.6,16 One potential
approach is to move away from population-based cohort
studies toward contemporary and real-world populations from
electronic health records (EHRs) that reflect current trends in
racial diversity, risk factor prevalence, preventive medication
use, and disease incidence.

Yet, the use of EHRs as a tool for clinical research is still in
its infancy, and few health systems have follow-up long
evaluations to advance the field.17

In this issue of JAHA, Wolfson et al report a new analysis
that evaluates the performance of 2 cardiovascular risk
prediction equations in an integrated healthcare system with
a mature and comprehensive EHR.18 The investigators
analyzed data from 84 116 adults aged 40 to 79 years who
were part of the HealthPartners system in Minnesota from
2001 to 2011 to determine the discrimination and calibration
of the 2007 general FRS equations19 and the PCE.3 Using
accepted methods for recalibration, the investigators also
evaluated the performance of refitted FRS and PCE models
within their system. In keeping with the pragmatic nature of
EHR-based studies, the authors used risk factor measure-
ments that were collected (or imputed values for those not
collected) as part of routine clinical care and identified
cardiovascular events by insurance claims data and state vital
records that are included in the HealthPartners system.

Importantly, the authors found that, in this real-world EHR
cohort, both the published and refitted FRS and PCE produced
relatively accurate risk predictions. Specifically, the original
FRS had a C-index of 0.740 (95% CI, 0.724–0.755) and a
calibration statistic of 9.1 (P=0.028), while the PCE had a
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C-index of 0.747 (95% CI, 0.727–0.768) and a calibration
statistic of 43.7 (P<0.001). Furthermore, visual assessment of
both calibration plots was acceptable. Not surprisingly,
calibration was better with refitted models but results were
qualitatively similar.

A key strength of this analysis is the inclusive selection
criteria used by the investigators that produced a real-world
and representative primary care population. Overly restrictive
selection criteria in such validation studies can lead to bias,
an underappreciated threat that has plagued previous
attempts to study these equations in EHR cohorts.6,10

Additionally, the authors employed robust, multiple imputa-
tion methods to account for missing lipid data, a reality of
working with real-world EHR data.

There are, however, some limitations worth noting. First,
the studied population was quite similar in racial and
demographic characteristics to the cohorts from which the
FRS and PCE were derived. This likely explains the minimal
effect of recalibration on model performance, a finding that
may differ in more heterogeneous samples and settings. It is
worth remembering that recalibration analyses were critical in
gaining broader acceptance of the original FRS,20 and these
techniques will continue to remain relevant when applying risk
prediction equations to new settings or different populations.
Second, because of the authors’ reliance on administrative
data for outcome assessment, the risk for misclassification
exists, particularly for the outcomes of peripheral arterial
disease and heart failure predicted by the general FRS
equations.21,22 While this decision resulted from pragmatic
and defensible considerations, future research will be needed
to fully appreciate how this compares with the standardized
methods used for outcome adjudication in many population-
based cohorts. Third, although the general FRS equations
have been available for nearly a decade, they have not been
incorporated into any clinical practice guideline, and they
contain heterogeneous atherosclerotic and nonatheroscle-
rotic clinical outcomes. Therefore, risk estimates from this
FRS do not align with any specific guideline recommendation.
In the 2013 American College of Cardiology/American Heart
Association cholesterol guidelines, for example, the 10-year
absolute risk threshold of 7.5% was specifically identified to
mark a risk level where clinical trial data demonstrated that
benefits of statin treatment for fatal and nonfatal atheroscle-
rotic events clearly outweighed known risks of adverse
events.2

Finally, the analyses by Wolfson et al focus only on
statistical metrics that evaluate model performance (discrim-
ination and calibration) but do not indicate the downstream
implications of these estimates on treatment decision-
making. From a clinical perspective, calibration in particular
is a visual exercise more than a statistical exercise. P-values
for calibration are notoriously sensitive to sample size, and

they do not indicate in which part of the risk spectrum any
miscalibration may be occurring. Obviously, good calibration
is most important near potential decision thresholds, and it is
less important (or even irrelevant) at the extremes of the risk
distribution. In the Wolfson et al analysis, for example, the
PCEs were very well calibrated at low and moderate risk
ranges, and overpredicted only in ranges above the clinical
decision threshold of 7.5%, where “overprediction” is far less
important, and may actually be a function of the application of
risk-reducing therapies during follow-up that altered the
predicted natural history of atherosclerotic cardiovascular
disease risk. At lower levels of risk, such as 10-year risk levels
of 5% to 7.5% and 7.5% to 10%, predicted event rates for the
FRS were lower than the observed rates (6.1% predicted
versus 6.5% observed and 8.6% predicted versus 10.4%
observed, respectively). In contrast, the PCE slightly overpre-
dicted risk at these same thresholds (6.1% predicted versus
5.6% observed and 8.6% versus 7.4% observed, respectively).
While the former might have better calibration, one might
accept a more sensitive risk estimator from a public health
perspective, particularly when considering the use of safe,
effective, and low-cost medications such as statins. These
limitations notwithstanding, the analysis by Wolfson et al is
an important and valuable demonstration of the successful
application of the FRS and PCE to a modern EHR system and
should hopefully address uncertainties about the relevance of
these equations in the contemporary era.

As clinical practice guidelines continue to move toward
personalized treatment recommendations that are tailored to
the unique benefit–harm assessments of a given patient,
integration of clinical risk prediction equations will remain
essential for guiding absolute risk assessment. Continued
progress in health information exchanges and the establish-
ment of standards for data harmonization, data quality, and
electronic outcome assessment may one day lead to a
nationwide electronic cohort capable of supporting ongoing
refinement of risk prediction equations using real-world
clinical data.23 However, until that time, we will likely save
far more lives and prevent many more events by focusing on
implementation of existing guideline-linked equations such as
the PCE, with decision-support algorithms, in EHR platforms.

Predicting the future is an inherently imperfect science, but
we must not forget that quantitative risk assessment is just
the start, not the end, of a treatment decision. Risk estimates
must be contextualized by clinicians for patients during a
shared treatment discussion.2 Although recent years have
seen great interest in the accuracy of cardiovascular risk
prediction equations, there remains uncertainty over whether
use of any cardiovascular risk estimate in clinical practice
actually improves cardiovascular outcomes,24 and there are
very limited data on how to best present this information for
clinical decision making.25 Ultimately, analyses such as those
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by Wolfson et al should serve to remind us that currently
available risk prediction equations, even those derived from
“historical” cohorts, remain applicable today. Now, we must
continue the difficult work of identifying the best strategies
for implementing these tools in practice to end the epidemic
of cardiovascular disease in the population.
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