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Abstract

By meta-analyzing rare coding variants in whole-exome sequences of 4,133 schizophrenia cases 

and 9,274 controls, de novo mutations in 1,077 trios, and copy number variants from 6,882 cases 

and 11,255 controls, we show that individuals with schizophrenia carry a significant burden of rare 

damaging variants in 3,488 genes previously identified as having a near-complete depletion of 

loss-of-function variants. In schizophrenia patients who also have intellectual disability, this 

burden is concentrated in risk genes associated with neurodevelopmental disorders. After 

excluding known neurodevelopmental disorder risk genes, a significant rare variant burden persists 

in other loss-of-function intolerant genes, and while this effect is notably stronger in schizophrenia 

patients with intellectual disability, it is also seen in patients who do not have intellectual 

disability. Together, our results show that rare damaging variants contribute to the risk of 

schizophrenia both with and without intellectual disability, and support an overlap of genetic risk 

between schizophrenia and other neurodevelopmental disorders.

Introduction

Schizophrenia is a common and debilitating psychiatric illness characterized by positive 

symptoms (hallucinations, delusions, disorganized speech and behaviour), negative 

symptoms (social withdrawal and diminished emotional expression), and cognitive 

impairment that result in social and occupational dysfunction1,2. Operational diagnostic 

criteria for the disorder as described in the DSM-V require the presence of at least two of the 

core symptoms over a period of six months with at least one month of active symptoms3. It 

is increasingly recognized that current categorical psychiatric classifications have a number 

of shortcomings, in particular that they overlook the increasing evidence for etiological and 

mechanistic overlap between psychiatric disorders4.

A diverse range of pathophysiological processes may contribute to the clinical features of 

schizophrenia5. Indeed, previous studies have suggested a number of hypotheses about 

schizophrenia pathogenesis, including abnormal pre-synaptic dopaminergic activity6, 

postsynaptic mechanisms involved in synaptic plasticity7, dysregulation of synaptic 

pruning8, and disruption to early brain development9,10. This complexity is underpinned by 

the varied nature of genetic contributions to risk of schizophrenia. Genome-wide association 

studies have identified over 100 independent loci defined by common (minor allele 

frequency [MAF] > 1%) single nucleotide variants (SNVs)11, and a recent analysis 

determined that more than 71% of all one-megabase regions in the genome contain at least 

one common risk allele12. The modest effects of these variants (median odds ratio [OR] = 

1.08) combine to produce a polygenic contribution that explains only a fraction 

of the overall liability12. In addition, a number of rare variants have been identified that 

have far larger effects on individual risk. These are best exemplified by eleven large, rare 

recurrent copy number variants (CNVs) but evidence from whole-exome sequencing studies 

implies that many other rare coding SNVs and de novo mutations also confer substantial 

individual risk13–17. There is growing evidence that some of the same genes and pathways 

are affected by both common and rare variants7,18. Pathway analyses of common variants 

and hypothesis-driven gene set analyses of rare variants have begun to enumerate some of 
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these specific biological processes, including histone methylation, transmission at 

glutamatergic synapses, calcium channel signaling, synaptic plasticity, and translational 

regulation by the fragile X mental retardation protein (FMRP)11,13,14,19,20.

In addition to exploring the biological mechanisms underlying schizophrenia, genetic 

analyses can also be used to understand its relationship to other neuropsychiatric and 

neurodevelopmental disorders. For instance, schizophrenia, bipolar disorder, and autism 

(ASD) show substantial sharing of common risk variants21,22. Sequencing studies of 

neurodevelopmental disorders suggest that this sharing of genetic risk may extend to rare 

variants of large effect. In the largest sequencing study of ASD to date, 20 of the 46 genes 

and all six CNVs implicated (false discovery rate [FDR] < 5%) had been previously 

described as dominant causes of developmental disorders23. Furthermore, an analysis of 

60,706 whole exomes led by the ExAC consortium identified 3,230 genes with near-

complete depletion of protein-truncating variants, and de novo loss-of-function (LoF) 

mutations identified in individuals with ASD or developmental disorders were concentrated 

in this set of “LoF intolerant” genes23–25. Similarly, evidence from rare variants for a 

broader shared genetic etiology between schizophrenia and neurodevelopmental disorders 

has begun to emerge. Analyses of whole-exome data provided support for an enrichment of 

schizophrenia rare variants in intellectual disability genes, and schizophrenia cases were also 

found to have a higher concentration of ultra-rare disruptive SNVs in the ExAC LoF 

intolerant genes compared to controls13,17,26.

However, the contribution of these rare variants to risk in the wider population of individuals 

diagnosed with schizophrenia, including those without intellectual disability, remains 

unclear. Intriguingly, the 11 rare CNVs found to be highly penetrant for schizophrenia also 

increased risk for intellectual disability and other congenital defects16,27, and more 

recently, a meta-analysis of whole-exome sequence data showed that LoF variants in 

SETD1A conferred substantial risk for both schizophrenia and neurodevelopmental 

disorders18. Concurrent analyses of autism whole-exome data found that de novo loss-of-

function (LoF) mutations identified in ASD probands, particularly those that disrupt genes 

associated with neurodevelopmental disorders, were disproportionately found in individuals 

with intellectual disability23,28. These emerging results raise the possibility that rare 

schizophrenia risk variants may be concentrated in a subset of schizophrenia patients with 

co-morbid intellectual disability. Here, we present the one of the largest accumulation of 

schizophrenia rare variant data to date, which we jointly analyze with phenotype data on 

cognitive function. Using this data set, we attempt to identify groups of genes disrupted by 

schizophrenia rare risk variants, and determine if a subset of patients disproportionately 

carry these damaging alleles.

Results

Study design

To maximize our power to detect enrichment of damaging variants in schizophrenia cases in 

groups of genes, we performed a meta-analysis of three different types of rare coding variant 

studies: (1) high-quality SNV calls from whole-exome sequences of 4,133 schizophrenia 

cases and 9,274 matched controls, (2) de novo mutations identified in 1,077 schizophrenia 
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parent-proband trios (Figure 1), and (3) CNV calls from genotyping array data of 6,882 

cases and 11,255 controls. The ascertainment of these samples, data production, and quality 

control were described previously18,29. All de novo mutations included in our analysis had 

been validated through Sanger sequencing, and stringent quality control steps were 

performed on the case-control data to ensure that sample ancestry and batch were closely 

matched between cases and controls (Online Methods).

For each data type, we used appropriate methods to test for an excess of rare variants (Figure 

1, Online Methods). In analyses of case-control SNV data, we applied an extension of the 

variant threshold burden test that corrected for exome-wide differences between cases and 

controls30. We tested all allele frequency thresholds below 0.1% observed in our data, and 

assessed statistical significance by permutation testing. In analyses of de novo SNV data, we 

compared the observed number of de novo mutations to random samples from an expected 

distribution based on a gene-specific mutation rate model to calculate an empirical P-value. 

For both types of whole-exome sequencing data, we restricted our analyses to loss-of-

function variants. Finally, in analyses of case-control CNV data, we used a logistic 

regression framework that compares the rate of CNVs overlapping a specific gene set while 

correcting for differences in CNV size and number of genes disrupted7,19,31. To ensure our 

model was well calibrated, we restricted our analyses to small deletions and duplications 

overlapping fewer than seven genes with MAF < 0.1% (Supplementary Figure 1, Online 

Methods).

We tested for an excess of rare damaging variants in schizophrenia patients in 1,766 gene 

sets (Online Methods, Supplementary Table 1, and detailed results below). Gene set P-values 

were computed using the three methods and variant definitions described above, and then 

meta-analyzed using Fisher’s Method to provide a single P-value for each gene set. Because 

we gave each data type equal weight, gene sets achieving significance typically show at least 

some signal in all three types of data. We observed a marked inflation in the quantile-

quantile (Q-Q) plot of gene set P-values (Supplementary Figure 2), so we conducted two 

analyses to ensure our results were robust and not biased due to methodological or technical 

artifacts. First, we observed no inflation of P-values when testing for enrichment of 

synonymous variants in our case-control and de novo analyses (Supplementary Figure 2). 

Second, we created random gene sets by sampling uniformly across the genome, and 

observed null distributions in Q-Q plots regardless of variant class and analytical method 

(Supplementary Figure 3). These findings suggested that our methods sufficiently corrected 

for known genome-wide differences in LoF and CNV burden between cases and controls, 

and other technical confounders like batch and ancestry.

Rare, damaging schizophrenia variants are concentrated in LoF intolerant genes

We first tested whether rare schizophrenia risk variants were consistently concentrated in 

genes defined loss-of-function intolerant across study design and variant type. Because some 

of our schizophrenia exome data was included in the ExAC database, we focused on the 

subset of 45,376 ExAC exomes without a known psychiatric diagnosis and that were not 

present in our study. From this subset, 3,488 genes were found to have near-complete 

depletion of such variants, which we defined as the LoF intolerant gene set. We found that 
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rare damaging variants in schizophrenia cases were enriched in LoF intolerant genes (P < 

3.6×10−10, Table 1, Figure 2), with support in case-control SNVs (P < 5×10−7; OR 1.24, 

1.16-1.31, 95% CI), case-control CNVs (P = 2.6×10−4; OR 1.21, 1.15 – 1.28, 95% CI), and 

de novo mutations (P = 6.7×10−3; OR 1.36, 1.1 – 1.68, 95% CI). While this result was 

consistent with observations in intellectual disability and ASD24,32 the absolute effect size 

is smaller (e.g. de novos, Supplementary Figure 4 and 5). We observed no excess burden of 

rare damaging variants in the remaining 14,753 genes (Figure 2, Supplementary Figure 5). 

Furthermore, this signal was spread among many different LoF intolerant genes: if we rank 

genes by decreasing significance, the enrichment disappears in the case-control SNV 

analysis (P > 0.05) only after the exclusion of the top 50 genes. This suggests that the 

contribution of damaging rare variants in schizophrenia is not concentrated in just a handful 

of genes, but instead spread across many genes.

Schizophrenia risk genes are shared with other neurodevelopmental disorders

Given the significant enrichment of rare damaging variants in LoF intolerant genes in 

developmental disorders, autism and schizophrenia, we next asked whether these variants 

affected the same genes. We found that autism risk genes identified from exome sequencing 

meta-analyses23 and genes in which LoF variants are known causes of severe developmental 

disorders as defined by the DDD study33,34 were significantly enriched for rare variants in 

individuals with schizophrenia (PASD = 9.5 ×10−6; PDD = 2.3 ×10−6; Table 1, Online 

Methods). Previous analyses have shown an enrichment of rare damaging variants in genes 

whose mRNA are bound by FMRP in both schizophrenia and autism35,13,32, so we sought 

to identify further shared biology by testing targets of neural regulatory genes previously 

implicated in autism32,36. We observed enrichment of both such sets: promoter targets of 

CHD8 (P = 1.1×10−6) and splice targets of RBFOX (P = 1.3×10−5) (Table 1). We noted that 

some published gene lists attributed to same biological process differed due to choices of 

assay, cell type, method of sample extraction, and threshold of statistical significance, 

leading to distinct results in our gene set analyses. For example, we observed a significant 

enrichment in the published FMRP binding gene set based on mouse brain data37, but with 

no signal in one based on a human kidney cell line38.

We also tested an additional 1,759 gene sets from databases of biological pathways with at 

least 100 genes, as we lacked power to detect weak enrichments in smaller sets (Online 

Methods). We observed enrichment of damaging rare variants in schizophrenia cases at FDR 

q < 0.05 in 35 of these gene sets (Supplementary Table 1, 2). These included previously 

implicated gene sets, like the NMDA receptor and ARC complexes13,14,35,37, as well as 

novel gene sets, such as genes involved in cytoskeleton (GO: 0007010), chromatin 

modification (GO:0016568), and chromatin organization (GO: 0006325). Furthermore, the 

gene sets most significantly enriched (FDR q < 0.01) for schizophrenia rare variants (Table 

1) had all been previously linked to autism, intellectual disability, and severe developmental 

disorders23,32,33. Our enrichment results matched some of the findings from a pathway 

analysis of common risk variants in psychiatric disorders, which also implicated neuronal 

and chromatin gene sets20. However, unlike that study, we found no enrichment of rare 

variants in immune-related gene sets.
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We noticed that the 1,759 gene sets we tested were collectively enriched with LoF intolerant 

genes when compared to a random sampling of genes from the genome (Supplementary 

Figure 6 and 7). For some of the gene sets associated with schizophrenia, this over-

representation was quite substantial: 67% of the gene targets of FMRP and 74% of the genes 

associated with severe neurodevelopmental disorders are LoF intolerant. To better 

understand the consequences of this overlap on our results, we extended the gene set 

enrichment methods (Online Methods) to condition on LoF intolerance and brain-expression 

for the 35 gene sets with FDR q < 0.05 in the previous analysis (Supplementary Table 2). We 

first observed that 22 of the 35 gene sets remained significant even after conditioning on 

brain expression (Supplementary Tables 3, Online Methods), suggesting they represent more 

specific biological processes involved in schizophrenia. However, only known autism risk 

genes (P = 4.4×10−4) and neurodevelopmental disorder genes (P = 3×10−5) had an excess of 

rare coding variants above the enrichment already observed in LoF intolerant genes 

(Supplementary Table 3). Thus, in addition to biological pathways implicated specifically in 

schizophrenia, at least a portion of the schizophrenia risk conferred by rare variants of large 

effect is shared with childhood onset disorders of neurodevelopment.

Schizophrenia patients with intellectual disability have a greater burden of rare damaging 
variants

In autism spectrum disorders, the observed excess of rare damaging variants has been shown 

to be greater in individuals with intellectual disability than those with normal levels of 

cognitive function28. We observed a similar phenomenon in schizophrenia cases carrying 

SETD1A LoF variants18, so next sought to explore whether this pattern is consistent in gene 

sets implicated in schizophrenia. We acquired relevant cognitive phenotype data for 2,971 of 

the 4,131 schizophrenia patients with whole-exome sequencing data (Supplementary Figure 

8). Of these individuals, 279 were clinically diagnosed with intellectual disability in addition 

to fulfilling the full diagnostic criteria for schizophrenia (SCZ-ID subgroup, Online 

Methods). We also identified 1,165 individuals for whom we could rule out cognitive 

impairment (by excluding pre-morbid IQ < 85, fewer than 12 years of schooling or lowest 

decile of composite cognitive measures, depending on available data, Online Methods). 

Finally, we identified 1,527 individuals who were not diagnosed with intellectual disability, 

but in whom some cognitive impairment could not be excluded.

When stratifying into these three groups (intellectual disability, no intellectual disability but 

cognitive impairment not excluded, no cognitive impairment), we observed that the burden 

of rare damaging variants in LoF intolerant genes was significantly greater in the SCZ-ID 

subgroup than in the remaining schizophrenia cases (P = 2.6×10−4; OR 1.3, 1.12– 1.51, 95% 

CI) or controls (P < 5×10−7; OR 1.61, 1.37 – 1.89, 95% CI; Figure 3). In the LoF intolerant 

gene set, 0.27 (0.2 – 0.35, 95% CI) extra singleton (defined as having an allele count of one 

in our data set) LoF variants were observed per exome in SCZ-ID cases compared to 

controls, while 0.10 (0.065 – 0.13, 95% CI) extra singleton LoF variants per exome were 

observed in the remaining schizophrenia cases compared to controls (Online Methods). 

Furthermore, SCZ-ID individuals had significant enrichment of rare LoF variants in 

developmental disorder genes compared to the other cases (P = 9×10−4; OR 2.36, 1.41– 

3.92, 95% CI) or to controls (P = 9.5×10−6; OR 3.43, 2.01– 5.86, 95% CI; Figure 4). 
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Compared to controls, the SCZ-ID individuals carried 0.045 (0.03 – 0.06, 95% CI) extra 

singleton LoF variants in developmental disorder genes per exome, suggesting that around 

4% of these cases had a LoF variant that is relevant to their clinical presentation. No 

enrichment in neurodevelopmental disorder genes was observed in schizophrenia patients 

without intellectual disability, suggesting that these genes were relevant only for that subset 

of schizophrenia patients (Figure 4, Supplementary Table 4). Notably, even after excluding 

known developmental disorder genes from the set of LoF intolerant genes, we still observed 

an enrichment of rare variants in SCZ-ID patients compared to the remaining cases (P = 

1×10−3; 1.26, 1.08 – 1.47, 95% CI) or to controls (P < 5×10−7; OR 1.54, 1.31– 1.81, 95% 

CI; Supplementary Figure 9). Rare variation in these genes contributes more to disease risk 

in the subset of patients with both schizophrenia and intellectual disability.

Rare variants confer risk for schizophrenia in individuals without intellectual disability

While rare damaging variants in LoF intolerant genes were most enriched in the subset of 

schizophrenia patients with intellectual disability, we still observed a weaker but significant 

enrichment in individuals with schizophrenia for whom we could confirm do not have 

intellectual disability (P = 5.5 × 10−4; 1.16, 1.05 – 1.27, 95% CI; Figure 3). Therefore, rare 

risk variants for schizophrenia follow the pattern previously described in autism: 

concentrated in individuals with intellectual disability, but not exclusive to that group. To 

produce a more accurate estimate of the effect of damaging rare variants on schizophrenia 

conditional on their effects on overall cognition, we recalculated the enrichment of rare 

variants in LoF intolerant genes in a subset of 2,161 schizophrenia cases and 2,398 controls 

for which data on years of education was available and for whom intellectual disability 

could be excluded (Supplementary Figure 8). After controlling for differences in educational 

attainment (Online Methods), individuals with schizophrenia have a 1.26-fold excess of rare 

variants in LoF intolerant genes (P = 2 × 10−6; 1.14 – 1.38, 95% CI). This increase in our 

observed odds ratio is consistent with previous accounts that rare damaging variants also 

affect educational attainment in controls39, thus biasing our unconditional estimate.

Discussion

Our integrated analysis of thousands of whole-exome sequences demonstrates that rare 

damaging variants increase risk of schizophrenia both with and without co-morbid 

intellectual disability. While the identification of individual genes remains difficult at current 

samples sizes, we show that the burden of damaging de novo mutations, rare SNVs and 

CNVs in schizophrenia is not scattered across the genome but is primarily concentrated in 

3,488 genes intolerant of loss-of-function variants. This observation is shared with autism, 

intellectual disability, and severe neurodevelopmental disorders32,40. We recapitulate 

enrichment in previously published gene sets, including transmission at glutamatergic 

synapses and translational regulation by FMRP, and implicate other gene sets previously 

linked to autism, intellectual disability, and severe developmental disorders. However, we 

find that all of these gene sets share a large number of underlying genes, and are especially 

enriched with the 3,488 genes intolerant of LoF variants. These overlaps among gene sets 

originating from very different analyses, as well as the subtleties of how they are defined, 

suggest caution in interpreting biological explanations from observed enrichments.
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We jointly analyzed the case-control SNV data with information on cognitive function for 

2,971 patients, and find that LoF variants disrupting genes associated with severe 

developmental disorders are disproportionately found in individuals with schizophrenia with 

co-morbid intellectual disability, with 4% of these cases having a single LoF variant that is 

relevant to their clinical presentation. Even after excluding variants in known developmental 

disorder genes, rare variants contribute a greater degree to schizophrenia risk in the SCZ-ID 

subgroup of patients than the remaining schizophrenia population. These results show that 

some of these genetic perturbations have clear manifestations in childhood, and that rare risk 

variants in schizophrenia are particularly associated with co-morbid intellectual disability. 

Our observations are consistent with results in autism in which rare risk variants are 

associated with intellectual disability22,23,28. Notably, a weaker but still significant rare 

variant burden was observed in schizophrenia patients without cognitive impairment, and 

this signal persists even after controlling for educational attainment. Together, these results 

demonstrate that rare variants have different contributions to schizophrenia risk depending 

on the degree of cognitive impairment. Importantly, they do not simply confer risk for a 

small subset of patients but contribute to disease pathogenesis more broadly.

Our study supports the observation that genetic risk factors for psychiatric and 

neurodevelopmental disorders do not follow clear diagnostic boundaries. Coding variants 

disrupting the same genes, and quite possibly, the same biological processes, increase risk 

for a range of phenotypic manifestation. This clinically variable presentation is reminiscent 

of LoF variants in SETD1A and 11 large copy number variant syndromes, previously shown 

to confer risk for schizophrenia in addition to other prominent developmental defects16,18. 

It is possible that these genes contain an allelic series of variants conferring gradations of 

risk. A recent schizophrenia GWAS meta-analysis demonstrated that the common variant 

association signal was similarly enriched in LoF intolerant genes41, suggesting that 

schizophrenia risk genes may be perturbed by common variants of subtle effects and 

disrupted by rare variants of high penetrance in the population. This possibility is also 

supported by the overlap in at least some of the pathways affected by both rare and common 

variation, such as chromatin remodeling. However, the most common deletion in the 

22q11.2 locus and a recurrent two base deletion in SETD1A are associated with both 

schizophrenia and more severe neurodevelopmental disorders, suggesting the same variants 

can also confer risk for a range of clinical features18,42,43. Ultimately, it may prove 

difficult to clearly partition patients genetically into subtypes with similar clinical features, 

especially if genes and variants previously thought to cause well-characterized Mendelian 

disorders can have such varied outcomes. This pattern is consistent with the hypothesis that 

LoF variants in genes under genic constraint result in a spectrum of neurodevelopmental 

outcomes with the burden of mutations highest in intellectual disability and least in 

schizophrenia, corresponding to a gradient of neurodevelopmental pathology indexed by the 

degree of cognitive impairment, age of onset, and severity4.

Despite the complex nature of genetic contributions to risk of schizophrenia, it is notable 

that across study design (trio or case-control) and variant class (SNVs or CNVs), risk loci of 

large effect are concentrated in a small subset of genes. Previous rare variant analyses in 

other neurodevelopmental disorders, such as autism, have successfully integrated 

information across de novo SNVs and CNVs to identify novel risk loci23. As sample sizes 
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increase, meta-analyses leveraging the shared genetic risk across study designs and variant 

types, including those we did not consider here, such as classical recessive inheritance, will 

be similarly well powered to identify additional risk genes in schizophrenia.

Online Methods

Sample collections

The ascertainment, data production, and quality control of the schizophrenia case-control 

whole-exome sequencing data set had been described in detail in an earlier publication18. 

Briefly, the data set was composed of schizophrenia cases recruited as part of eight 

collections in the UK10K sequencing project, and matched population controls from non-

psychiatric arms of the UK10K project, healthy blood donors from the INTERVAL project, 

and five Finnish population studies. The UK10K data set was combined and analyzed with 

published data from a Swedish schizophrenia case-control study35. The data production, 

quality control, and analysis of the case-control CNV data set was described in an earlier 

publication29. The schizophrenia cases were recruited as part of the CLOZUK and 

CardiffCOGS studies, which consisted of both schizophrenia individuals taking the 

antipsychotic clozapine and a general sample of cases from the UK. Matched controls were 

selected from four publicly available non-psychiatric data sets. All samples were genotyped 

using Illumina arrays, and processed and called under the same protocol. Sanger-validated 

de novo mutations identified through whole exome-sequencing in seven published studies of 

schizophrenia parent-proband trios were aggregated and re-annotated for enrichment 

analyses13,44–49. A full description of each trio study, including sequencing and capture 

technology and sample recruitment was previously described18.

Sample and variant quality control

We jointly called each case data set with its nationality-matched controls, and excluded 

samples based on contamination, coverage, non-European ancestry, and excess 

relatedness18. A number of empirically derived filters were applied at the variant and 

genotype level, including filters on GATK VQSR, genotype quality, read depth, allele 

balance, missingness, and Hardy-Weinberg disequilibrium18. After variant filtering, the per-

sample transition-to-transversion ratio was ~3.2 across the entire data set, as expected for 

populations of European ancestry50. For the case-control CNV analysis, we similarly 

excluded samples based on excess relatedness, and only CNVs supported by more than 10 

probes and greater than 10 kilobases in size were retained to ensure high quality calls. All de 
novo mutations in our study had been validated using Sanger sequencing.

We used the Ensembl Variant Effect Predictor (VEP) version 75 to annotate all variants 

(SNVs and CNVs) according to Gencode v.19 coding transcripts. We defined frameshift, 

stop gained, splice acceptor, and donor variants as loss-of-function (LoF), and missense or 

initiator codon variants with the recommended CADD Phred score cut-off of greater than 15 

as damaging missense51. A gene was annotated as disrupted by a deletion if part of its 

coding sequence overlapped the copy number event. We more conservatively defined genes 

as duplicated only if the entire canonical transcript of the gene overlapped with the 

duplication event.
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Statistical tests of the case-control exome data used case-control permutations within each 

population (UK, Finnish, Swedish) to generate empirical P-values to test hypotheses. No 

genome-wide inflation was observed in burden tests of individual genes18. In the curated set 

of de novo mutations, we observed the expected exome-wide number of synonymous 

mutations given gene mutation rates from previously validated models24, suggesting variant 

calling was generally unbiased across Gencode v.19 coding genes. Lastly, the case-control 

CNV data set had been previously analyzed for burden of CNVs affecting individual genes, 

and enrichment analyses in targeted gene sets7,29.

Rare variant gene set enrichment analyses

Case-control enrichment burden tests—For the case-control SNV data set, we 

performed permutation-based gene set enrichment tests using an extension of the variant 

threshold method30. This method assumed that variants with a MAF below an unknown 

threshold T were more likely to be damaging than variants with a MAF above T, and this 

threshold was allowed to differ for every gene or pathway tested. To consider different 

possible values for threshold T, a gene or gene set test statistic t(T) was calculated for every 

allowable T, and the maximum test-statistic, or tmax, was selected. The statistical 

significance of tmax was evaluated by permuting phenotypic labels, and calculating tmax from 

the permuted data such that different values of T could be selected following each 

permutation. In Price et al., t(T) was defined as the z-score calculated from regressing the 

phenotype on the sum of the allele counts of variants in a gene with MAF < T. We extended 

this method to test for enrichment in gene sets by regressing schizophrenia status on the total 

number of damaging alleles in the gene set of interest with MAF < T (Xin,T) while 

correcting for the total number of damaging alleles genome-wide with MAF < T (Xall,T). 

Xin,T controlled for exome-wide differences between schizophrenia cases and controls, 

ensuring any significant gene set result was significant beyond baseline differences. t(T) was 

defined as the t-statistic testing if the regression coefficient of Xin,T deviated from 0. We 

then calculated t(T) for all observed thresholds below a minor allele frequency of 0.1%, and 

selected the maximum value for the tmax based on the observed data. To calculate a null 

distribution for tmax, we performed two million case-control permutations within each 

population (UK, Finnish, and Swedish) to control for batch and ancestry, and calculated tmax 

for each permuted sample while allowing T to vary. The P-value for each gene set was 

calculated as the fraction of the two million permuted samples that had a greater tmax than 

what was observed in the unpermuted data. The odds ratio and 95% confidence interval of 

each gene set was calculated using a logistic regression model, regressing schizophrenia 

status on Xin while controlling for total number of variants genome-wide (Xall) and 

population (UK, Finnish, and Swedish). Unlike gene set P-values which were calculated 

using permutation across multiple frequency thresholds, the odds ratios an d 95% CI were 

calculated using only variants observed once in our data set (allele count of 1) to ensure they 

were comparable between tested gene sets.

CNV logistic regression—We adapted a logistic regression framework described in 

Raychaudhuri et al. and implemented in PLINK to compare the case-control differences in 

the rate of CNVs overlapping a specific gene set while correcting for differences in CNV 
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size and total genes disrupted7,19,31. We first restricted our analyses to coding deletions and 

duplications, and tested for enrichment using the following model:

where for individual i, pi is the probability they have schizophrenia i, si is the total length of 

CNVs, gall is the total number of genes overlapping CNVs, and gin is the number of genes 

within the gene set of interest overlapping CNVs. It has been shown that β1 and β2 

sufficiently controlled for the genome-wide differences in the rate and size of CNVs 

between cases and control, while β3 captured the true gene set enrichment above this 

background rate7,19,31. For each gene set, we reported the one-sided P-value, odds ratio, 

and 95% confidence interval of β3.

Weighted permutation-based sampling of de novo mutations—For each variant 

class of interest, we first determined the total number of de novo mutations observed in the 

1,077 schizophrenia trios. We then generated 2 million random samples with the same 

number of de novo mutations, weighting the probability of observing a mutation in a gene 

by its estimated mutation rate. The baseline gene-specific mutation rates were obtained 

using the method described in Samocha et al. and adapted to produce LoF and damaging 

missense rates for each Gencode v.19 gene. These mutation rates adjusted for both sequence 

context and gene length, and were successfully applied in the primary analyses of large-scale 

exome sequencing of autism and severe developmental disorders with replicable 

results23,32,40. For each gene set, one-sided enrichment P-values were calculated as the 

fraction of two million random samples that had a greater or equal number of de novo 
mutations in the gene set of interest than what is observed in the 1,077 trios. The effect size 

of the enrichment was calculated as the ratio between the number of observed mutations in 

the gene set of interest and the average number of mutations in the gene set across the two 

million random samples. We adapted a method in Fromer et al. to calculate 95% credible 

intervals for the enrichment statistic13. We first generated a list of one thousand evenly 

spaced values between 0 and ten times the point estimate of the enrichment. For each value, 

the mutation rates of genes in the gene set of interest were multiplied by that amount, and 

50,000 random samples of de novo mutations were generated using these weighted rates. 

The probability of observing the number of mutations in the gene set of interest given each 

effect size multiplier was calculated as the fraction of samples in which the number of 

mutations in the gene set is the same as the observed number in the 1,077 trios. We 

normalized the probabilities across the 1,000 values to generate a posterior distribution of 

the effect size, and calculated the 95% credible interval using this empirical distribution.

Combined joint analysis—Gene set P-values calculated using the case-control SNV, 

case-control CNV, and de novo data were meta-analyzed using Fisher’s combined 

probability method with df = 6 to provide a single test statistic for each gene set. We 

corrected for the number of gene sets tested in the discovery analysis (n = 1,776) by 

controlling the false discovery rate (FDR) using the Benjamini-Hochberg approach, and 

reported only results with a q-value of less than 5%.
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Description of gene sets

The full list of tested gene sets is found in Supplementary Table 1, and a detailed description 

is provided in the Supplementary Note. Briefly, we tested all gene sets with more than 100 

genes from five public pathway databases. We additionally tested additional gene sets 

selected based on biological hypotheses about schizophrenia risk, and genome-wide screens 

investigating rare variants in intellectual disability, autism spectrum disorders, and other 

neurodevelopmental disorders. All gene identifiers were mapped to the GENCODE v.19 

release, and all non-coding genes were excluded. A total of 1,766 gene sets were included in 

our analysis.

Selection of allele frequency thresholds and consequence severity

For the case-control whole-exome data, we applied an extension of the variant threshold 

model (described above). With this method, we tested damaging variants at a number of 

frequency thresholds without specifying an a priori MAF cut-off. All thresholds below a 

MAF of 0.1% observed in our data were tested, and we assessed statistical significance by 

permutation testing. For all the whole-exome data (case-control and trio data), we restricted 

our analyses to loss-of-function variants. These variants have a clear and severe predicted 

functional consequence in that they putatively cause a single-copy loss of a gene. 

Furthermore, this class of variants had been demonstrated to have the strongest genome-

wide enrichment between cases and controls across neurodevelopmental and psychiatric 

disorders18,32,40. When selecting MAF cut-offs for case-control CNVs, we found that 

while the bulk of the test statistics were not inflated, the tail of gene set P-values were 

dramatically inflated even when testing for enrichment in the random gene sets 

(Supplementary Figure 1). This inflation in the tail of the Q-Q plot was driven in part by 

very large (overlapping more than 10 genes), more common (MAF between 0.1% and 1%) 

CNVs observed mainly in cases or controls. Some of these, such as the known syndromic 

CNVs, likely harbored true risk genes. However, because these CNVs were highly recurrent 

in cases and depleted in controls, and disrupted a large number of genes, any gene set that 

included even a single gene within these CNVs would appear to be significant, even after 

controlling for total CNV length and genes overlapped. To ensure our model was well 

calibrated and its P-values followed a null distribution for random gene sets, we explored 

different frequency and size thresholds, and conservatively restricted our analysis to copy 

number events overlapping less than seven genes (excluding the largest 10% of CNVs) with 

MAF < 0.1% (Supplementary Figure 1). Our main conclusions remained unchanged even if 

we selected a more stringent (excluding the largest 15% of CNVs) or less stringent 

(excluding the largest 5% of CNVs) size threshold.

Robustness of enrichment analyses

We uniformly sampled genes from the genome (as defined by Gencode v.19) to generate 

random gene sets with the same size distribution as the 1,776 gene sets in our discovery 

analysis. For each random set, we calculated gene set P-values for the case-control SNV 

data, case-control CNV data, and de novo data using the appropriate method and frequency 

cut-offs across all variant classes. A Q-Q plot was generated using P-values from enrichment 
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tests of each data set and variant type. Reassuringly, we observed null distributions in all 

such Q-Q plots (Supplementary Figure 3).

Comparison of de novo enrichment with broader neurodevelopmental disorders

We aggregated and re-annotated de novo mutations from four studies: 1,113 severe DD 

probands40, 4,038 ASD probands23,32, and 2,134 control probands28,32. We used the 

Poisson exact test to calculate differences in de novo rates in constrained genes between 

schizophrenia, ASD, and DD and controls. Counts in each functional class (synonymous, 

missense, damaging missense, and LoF) were tested separately, and the one-sided P-value, 

rate ratio, and 95% CI of each comparison were reported and plotted in Figure 2, 

Supplementary Figure 4 and 5.

Conditional analyses

In each of the three methods we used for gene set enrichment, we restricted all variants 

analyzed to those that reside in the background gene list, and tested for an excess of rare 

variants in genes shared between the gene set of interest (K) and the background list (B). 

Brain-enriched genes from GTEx, and the ExAC LoF intolerant genes (pLI > 0.9) were used 

as backgrounds (see above). For the case-control SNV data, we modified the variant 

threshold method to regress schizophrenia status on the total number of damaging alleles in 

genes present in both the gene set of interest and the background gene set (K ∩ B), while 

correcting for the total number of damaging alleles in the set of all background genes (B). 

The logistic regression model for the case-control CNV data was modified to:

where gB is the total number of background genes overlapping a CNV, and gK ∩ B is the 

number of genes in the intersection of the gene set of interest and the background list 

overlapping a CNV. Finally, we determined the total number of de novo mutations within the 

background gene list observed in the 1,077 schizophrenia trios, and generated 2 million 

random samples with the same number of de novo mutations. For each gene set, one-sided 

enrichment P-values were calculated as the fraction of two million random samples that had 

a greater or equal number of de novo mutations in genes in K ∩ B than what is observed in 

the 1,077 trios. Gene set P-values were combined using Fisher’s method. We restricted our 

conditional enrichment analysis to gene sets with q-value < 5% in the discovery analysis, 

and adjusted for multiple testing using Bonferroni correction (P = 0.00071, or 0.05/67 tests; 

see Supplementary Table 3).

Rare variants and cognition in schizophrenia

Within the UK10K study, 97 individuals from the MUIR collection were given discharge 

diagnoses of mild learning disability and schizophrenia (ICD-8 and -9). The recruitment 

guidelines of the MUIR collection were described in detail in a previous publication52. In 

brief, evidence of remedial education was a prerequisite to inclusion, and individuals with 

pre-morbid IQs below 50 or above 70, severe learning disabilities, or were unable to give 
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consent were excluded. The Schizophrenia and Affective Disorders Schedule-Lifetime 

version (SADS-L) in people with mild learning disability, PANSS, RDC, and DSM-III-R, 

and St. Louis Criterion were applied to all individuals to ensure that any diagnosis of 

schizophrenia was robust. Using the clinical information provided alongside the Swedish 

and Finnish case-control data sets, we identified additional 182 schizophrenia individuals 

who were similarly diagnosed with intellectual disability, for a total of 279 individuals.

Cognitive testing and educational attainment data available for a subset of samples were 

used identify schizophrenia individuals without cognitive impairment. For 502 individuals 

from the Cardiff collection in the UK10K study, we acquired their pre-morbid IQ as 

extrapolated from National Adult Reading Test (NART), and identified 412 individuals for 

analysis after excluding all individuals with predicted pre-morbid IQ of less than 85 (or 

below one standard deviation of the population distribution for IQ). We additionally 

acquired information on educational attainment in 54 schizophrenia individuals in the 

UK10K London collection, and retained 27 individuals without intellectual disability and 

who completed at least 12 years of schooling. Lastly, the California Verbal Learning Test 

was conducted on 124 Finnish schizophrenia individuals sequenced as part of UK10K, and a 

composite score was generated from measures of verbal and visual working memory, verbal 

abilities, visuoconstructive abilities, and processing speed. All individuals with intellectual 

disability had been excluded from cognitive testing. Within this set of samples, we 

additionally excluded any individuals who ranked in the lowest decile in CVLT composite 

score, and retained 92 individuals for analysis. According to these criteria, we identified 531 

of 697 schizophrenia individuals from the UK and Finnish data sets with cognitive data as 

not having intellectual disability. We additionally acquired data on educational attainment 

for the Swedish schizophrenia cases and controls from the Swedish National Registry. After 

excluding individuals with intellectual disability, we identified 1,527 schizophrenia 

individuals who did not complete secondary school (less than 12 years of schooling), and 

634 schizophrenia individuals who completed at least compulsory and upper secondary 

schooling (at least 12 years of schooling). The last group with the greatest educational 

attainment and without intellectual disability was defined as cases without cognitive 

impairment. In the Swedish sample, 49.4% of control samples had lower educational 

attainment than the 634 individuals with schizophrenia defined as having no cognitive 

impairment, suggesting that our definition was sufficiently strict. In total, combining the 

UK, Finnish, and Swedish data, we identified 1,165 schizophrenia individuals without 

cognitive impairment.

Using the variant threshold method, we tested for differences in rare LoF burden between 

the three case groups (intellectual disability, did not complete secondary school, no cognitive 

impairment) against controls. We restricted these analyses to three gene sets (LoF intolerant 

genes, genes in which LoF variants are diagnostic for severe developmental disorders, and 

LoF intolerant genes after excluding severe developmental disorders genes), and adjusted for 

multiple testing using Bonferroni correction (P = 0.0038, or 0.05/13 tests). Supplementary 

Table 4 enumerated all the statistical tests performed. To estimate the per-exome excess of 

rare singleton (defined as having an allele count of one in our data set) LoF variants in cases 

compared to controls, we regressed Xin (the number of LoF variants in the gene set of 

interest) on case status (0 or 1) while controlling for Xall (the total number of LoF variants 
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genome-wide) and population (UK, Finnish, and Swedish). The effect size and 95% CI of 

the regression coefficient of case status predictor were reported.

Data Availability

Sequence data and processed VCFs for the UK10K project were deposited into the European 

Genome-phenome Archive (EGA) under study accession code EGAO00000000079. The 

processed VCFs from the Swedish case-control study were deposited in dbGAP under 

accession code (phs000473.v1.p1). Rare variant counts, and gene-level association results 

from combining the whole-exome sequencing data sets were described in a previous 

publication18 and were made available on the PGC results and download page (https://

www.med.unc.edu/pgc/results-and-downloads).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Analysis workflow. Data sets are shown in blue, statistical methods and analysis steps are 

shown in green, and results (figures and tables) from the analysis are shown in orange. A: 
Enrichment analyses in 1,766 gene sets using the entire rare variant data set. B: Enrichment 

analyses in LoF intolerant and developmental disorder genes in the subset of cases with 

information on cognitive function. ID: intellectual disability; SCZ: schizophrenia; SCZ-ID: 

schizophrenia patients with intellectual disability.
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Figure 2. 
Enrichment of schizophrenia rare variants in genes intolerant of loss-of-function variants. A: 
Schizophrenia cases compared to controls for rare SNVs and indels; B: Rates of de novo 
mutations in schizophrenia probands compared to control probands; C: Case-control CNVs. 

P-values shown were from the test of LoF enrichment in A, LoF enrichment in B, and all 

CNVs enrichment in C. Error bars represent the 95% CI of the point estimate. LoF 

intolerant: 3,448 genes with near-complete depletion of truncating variants in the ExAC 
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database; Rest: the remaining genes in the genome with pLI < 0.9; Damaging missense: 

missense variants with CADD phred > 15. Asterisk: P < 1 x 10-3.
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Figure 3. 
Enrichment of rare loss-of-function variants in LoF intolerant genes in schizophrenia cases 

stratified by information on cognitive function compared to controls. The P-values shown 

were calculated using the variant threshold method comparing LoF burden between the 

corresponding cases and controls. Error bars represent the 95% CI of the point estimate. 

Damaging missense: missense variants with CADD phred > 15.
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Figure 4. 
Enrichment of rare loss-of-function variants in known severe developmental disorder genes 

in schizophrenia cases stratified by information on cognitive function compared to controls. 

The P-values shown were calculated using the variant threshold method comparing LoF 

burden between the corresponding cases and controls. Error bars represent the 95% CI of the 

point estimate. Damaging missense: missense variants with CADD phred > 15.
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