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Abstract

Source imaging based on magnetoencephalography (MEG) and electroencephalography (EEG) 

allows for the non-invasive analysis of brain activity with high temporal and good spatial 

resolution. As the bioelectromagnetic inverse problem is ill-posed, constraints are required. For the 

analysis of evoked brain activity, spatial sparsity of the neuronal activation is a common 

assumption. It is often taken into account using convex constraints based on the l1-norm. The 

resulting source estimates are however biased in amplitude and often suboptimal in terms of 

source selection due to high correlations in the forward model. In this work, we demonstrate that 

an inverse solver based on a block-separable penalty with a Frobenius norm per block and a l0.5-

quasinorm over blocks addresses both of these issues. For solving the resulting non-convex 

optimization problem, we propose the iterative reweighted Mixed Norm Estimate (irMxNE), an 

optimization scheme based on iterative reweighted convex surrogate optimization problems, which 

are solved efficiently using a block coordinate descent scheme and an active set strategy. We 

compare the proposed sparse imaging method to the dSPM and the RAP-MUSIC approach based 

on two MEG data sets. We provide empirical evidence based on simulations and analysis of MEG 

data that the proposed method improves on the standard Mixed Norm Estimate (MxNE) in terms 

of amplitude bias, support recovery, and stability.
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electroencephalography; structured sparsity
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I. Introduction

SOURCE imaging with magnetoencephalography (MEG) and electroencephalography 

(EEG) delivers insights into the active brain with high temporal and good spatial resolution 

in a non-invasive way [1]. It is based on solving the bioelectromagnetic inverse problem, 

which is a high dimensional ill-posed regression problem. In order to render its solution 

unique, constraints have to be imposed reflecting a priori assumptions on the neuronal 

sources. In the past, several source reconstruction techniques have been proposed, which are 

based on the assumption that only a few focal brain regions are involved in a specific 

cognitive task. Inverse methods favoring sparse focal source configurations to explain the 

MEG/EEG signals include parametric [2], scanning [3]–[6], and imaging approaches [7]–

[12]. These techniques, which are partly used in clinical routine, are suitable e.g. for 

analyzing evoked responses or epileptic spike activity. Classic MEG/EEG source imaging 

technique using sparsity-inducing penalties are the Selective Minimum Norm Method [7] or 

Minimum Current Estimate (MCE) [13]. Both approaches are based on the Lasso [14], i.e., 

regularized regression with an l1-norm penalty, which is a convex surrogate for the optimal, 

but NP hard l0-norm regularized regression problem. To reduce the sensitivity to noise and 

avoid discontinuous, scattered source activations [8], mixed norms such as the l2,1-mixed-

norm used in Group Lasso [15] or Group Basis Pursuit [16] can be applied. The idea is to 

take the spatio-temporal characteristics of neuronal activity into account by imposing 

structured sparsity in space or time [8], [9], [17], [18]. We refer to [19] for a general review 

on group selection in high-dimensional models. A prominent example is the Mixed-Norm 

Estimate (MxNE) proposed in [9], which extends the MCE to multiple measurement vector 

problems by applying a block-separable convex penalty. Each block represents the source 

activation over time of a dipole with free orientation at a specific source location. Spatial 

sparsity is promoted by an l1-norm penalty over blocks, whereas a Frobenius norm per block 

promotes stationary source estimates, i.e., a source with a non-zero amplitude at one time 

instant has a non-zero amplitude during the full time window of interest [9], [20]. The 

Frobenius norm also prevents the orientations of the free orientation dipoles from being 

biased towards the coordinate axes [21]. These convex approaches allow for fast algorithms 

with guaranteed global convergence. However, the resulting source estimates are biased in 

amplitude and often suboptimal in terms of support recovery [22], which is impaired by the 

high spatial correlation of the MEG/EEG forward model. As shown e.g. in the field of 

compressed sensing, promoting sparsity by applying non-convex penalties, such as 

logarithmic or lp-quasinorm penalties with 0 < p < 1, improves support reconstruction in 

terms of feature selection, amplitude bias, and stability [22]–[24]. Several approaches for 

solving the resulting non-convex optimization problem have been proposed including 

generalized shrinkage [25], iterative reweighted l1 [22], [26]–[28], or iterative reweighted l2 

optimization [29]–[33]. See [27], [34] for a review of these approaches for single and 

multiple measurement vector problems. Several MEG/EEG sparse source imaging 

techniques based on iterative reweighted l2 optimization have been proposed [29], [35]–[38]. 

An iterative reweighted l1 optimization technique for EEG source imaging was proposed in 

[39], which however does not impose structured sparsity and applies a fixed orientation 

constraint [40]. In this paper, we propose the iterative reweighted Mixed-Norm Estimate 

(irMxNE), a novel MEG/EEG sparse source imaging approach based on the framework of 
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iterative reweighted l1, which promotes structured sparsity to improve MEG/EEG source 

reconstruction. A preliminary version of this method was presented in [41]. Similar 

approaches have recently been proposed in other fields of research [34], [42]. The irMxNE 

is based on a non-convex block-separable penalty, which combines a Frobenius norm per 

block and an l0.5-quasinorm over blocks. The non-convex objective function is minimized 

iteratively by computing a sequence of weighted MxNE problems. For solving the convex 

surrogate problems, we propose a new computationally efficient strategy, which combines 

block coordinate descent [27], [43], [44] and a forward active set strategy with convergence 

controlled by means of the duality gap, which converges significantly faster than the original 

MxNE algorithm proposed in [9]. We provide information on the integration of different 

source orientation constraints [40] and discuss specific problems of MEG/EEG source 

imaging such as depth bias compensation and amplitude bias correction. We present 

empirical evidence using simulations and analysis of two experimental MEG data sets that 

the proposed method outperforms MCE and MxNE in terms of amplitude bias, active source 

identification, and stability. Finally, we compare the proposed approach with the dSPM [45] 

and RAP-MUSIC method [5] based on two MEG data sets.

Notation

We mark vectors with bold letters, a ∈ ℝN, and matrices with capital bold letters, A ∈ 
ℝN×M. The transpose of a vector or matrix is denoted by aT and AT. The scalar a[i] is the ith 

element of a. A[i,:] corresponds to the ith row and A[:, j] to the jth column of A. ‖A‖Fro 

indicates the Frobenius norm, and ‖A‖ the spectral norm of a matrix.

II. Materials and Methods

A. The inverse problem

The MEG/EEG forward problem describes the linear relationship between the MEG/EEG 

measurements M ∈ ℝN×T (N number of sensors, T number of time instants) and the source 

activation X ∈ ℝ(SO)×T (S number of source locations, O number of orthogonal dipoles per 

source location with O = 1 if source orientation is postulated, e.g. using the cortical 

constraint [46], and typically O = 3 otherwise). The model then reads:

(1)

where G ∈ ℝN×(SO) is the gain or leadfield matrix, a known instantaneous mixing matrix, 

which links source and sensor signals. E is the measurement noise, which is assumed to be 

additive, white, and Gaussian,  for all j. This assumption is acceptable on the 

basis of a proper spatial whitening of the data using an estimate of the noise covariance [47]. 

As SO ≫ N, the MEG/EEG inverse problem is ill-posed and constraints have to be imposed 

on the source activation matrix X to render the solution unique. By partitioning X into S 

blocks Xs∈ ℝO×T, where each Xs represents the source activation at a specific source 

location s over time and across O orthogonal current dipoles, we can apply a penalty term 

 promoting block sparsity by combining a Frobenius norm per block and a l0.5-

quasinorm penalty over blocks. The optimization problem reads:
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(2)

where λ> 0 is the regularization parameter balancing the data fit and penalty term. Similar to 

the constraint applied in MxNE [9],  promotes source estimates with only a few focal 

sources that have non-zero activations during the entire time interval of interest. The 

Frobenius norm per block Xs, which combines l2-norm penalties over time and orientation 

as proposed in [8], [13], [20], imposes stationarity of the source estimate and prevents the 

source orientations from being biased towards the coordinate axes [21]. The l0.5-quasinorm 

penalty promotes spatial sparsity.

B. Iterative reweighted Mixed Norm Estimate

The proposed block-separable regularization functional is an extension of the l2,p-quasinorm 

penalty with 0 < p < 1 used in [22], [26], [27], [32]. These works showed, based on the 

framework of Difference of Convex functions programming or Majorization-Minimization 

algorithms, that the resulting non-convex optimization problem can be solved by iteratively 

solving a sequence of weighted convex surrogate optimization problems with weights being 

defined based on the previous estimate. The convex surrogate problem is obtained by 

replacing the non-decreasing concave function  with a convex upper bound using a 

local linear approximation at the current estimate. By solving this sequence of surrogate 

problems, the value of the non-convex objective function decreases, but without guarantee 

for convergence to a global minimum. The cost function in Eq. (2) can thus be minimized by 

computing the sequence of convex problems given in Eq. (3). The weights for the kth 

iteration are obtained from the previous source estimate . Intuitively, sources with 

high amplitudes in the (k-1)th iteration will be less penalized in the kth iteration and 

therefore further promoted.
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(3)

As each iteration is equivalent to solving a weighted MxNE problem, we call this 

optimization scheme the iterative reweighted MxNE (irMxNE). Due to the non-convexity of 

the optimization problem in Eq. (2), the procedure is sensitive to the initialization of w(k)[s]. 

In this paper, we use w(1)[s] = 1 for all s as proposed in [26]. Consequently, the first iteration 

of irMxNE is equivalent to solving a standard MxNE problem. As each iteration of the 

iterative scheme in Eq. (3) solves a convex problem with guaranteed global convergence, the 

initialization of X has no influence on the final solution. X can thus be chosen arbitrarily and 

we use warm starts for improving the computation time. For sources with  Eq. 

(3) has an infinite regularization term. Typically, a smoothing parameter ε is added to avoid 

weights to become zero [22], [26], [31]. Here, we reformulate the weighted MxNE 

subproblem and apply the weights without epsilon smoothing by scaling the gain matrix 

with a weighting matrix W(k) as given in Eq. (4). After convergence, we reapply the scaling 

to  to obtain the final estimate .

(4)

with W(k) ∈ ℝSO×SO being a diagonal matrix, which is computed according to Eq. (5):

(5)

where 1(O) ∈ ℝO is a vector of ones and ⨂ is the Kronecker product. In each MxNE 

iteration, we restrict the source space to source locations with w(k) [s] > 0 to reduce the 

computation time.
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We control the global convergence of each weighted MxNE subproblems in Eq. (4) by 

monitoring the duality gap. For details on convex duality in the context of optimization with 

sparsity-inducing penalties, we refer to [48]. In the following, we summarize the rationale 

for this stopping criterion. For a general minimization problem, the minimum of the primal 

objective function ℱp (X) is bounded below by the maximum of the associated dual 

objective function ℱd (Y), i.e., ℱp(X*) ≥ ℱd(Y*), where X* and Y* are the optimal 

solutions of the primal and dual problem. The duality gap η = ℱp (X) − ℱd (Y) ≥ 0, where 

X and Y are the current values of the primal and dual variable, is thus non-negative and 

provides an upper bound on the difference between ℱp (X) and ℱp(X*). If strong duality 

holds, the duality gap at the optimum is zero. To use this stopping criterion in practice, we 

need to derive the dual problem and choose a good feasible dual variable Y given a value of 

X, which allows for η = 0 at the optimum.

Due to Slater’s conditions [49], strong duality holds for the MxNE subproblem and we can 

check convergence of an iterative optimization scheme solving Eq. (4) by computing the 

current duality gap η(i) = ℱp (X(i)) − ℱd(Y(i)) ≥ 0. Based on the Fenchel-Rockafellar duality 

theorem [50], the dual objective function associated to the primal objective function

is given in Eq. (6). For a detailed derivation, we refer to [9].

(6)

where Tr indicates the trace of a square matrix, and Ω* the Fenchel conjugate of Ω, which is 

the indicator function of the associated dual norm. As shown in [9], a natural mapping from 

the primal to the dual space is given by a scaling of the residual . This is 

motivated by the fact that the solution of the dual problem at the optimum is proportional to 

the residual, which follows from the associated KKT conditions [9]. The scaling is done 

according to Eq. (7) such that the dual variable Y satisfies the constraint of Ω*.

(7)

In practice, we terminate the iterative optimization scheme for solving MxNE, when the 

estimate at the kth iteration X(i) is ε-optimal with ε = 10−6, i.e., η(i) < 10−6. According to [9], 

this is a conservative choice provided that the data is scaled by spatial pre-whitening.

For solving the weighted MxNE subproblems, we propose a block coordinate descent 

(BCD) scheme [43], which, for the problem at hand, converges faster than the Fast Iterative 

Shrinkage-Thresholding algorithm (FISTA) proposed earlier in [9] (cf. section III-B). A 

BCD scheme for solving the Group LASSO was proposed in [27], [44]. The subproblem per 

block has a closed form solution, which involves applying the group soft-thresholding 
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operator, the proximity operator associated to the l2,1-mixed-norm [9]. Accordingly, the 

closed form solution for the BCD subproblems solving the MxNE problem can be derived, 

which is given in Eq. (8).

(8)

The step length μ[s] for each BCD subproblem is determined by  with 

 being the Lipschitz constant of the data-fit restricted to the sth source location. 

This step length is typically larger than the step length applicable in iterative proximal 

gradient methods, which is upper-bounded by the inverse of L = ‖GTG‖. Pseudo code for the 

BCD scheme is shown in Algorithm 1.

Algorithm 1

MxNE with BCD

Require: M, G, X, μ, λ> 0, ∈> 0, and S.

  1: Initialization: η = ℱp (X) − ℱd (Y)

  2: while η ≥ ε do

  3:  for s = 1 to S do

  4:   Xs ← Solve Eq. (8) with X, μ, and M

  5:  end for

  6:  η = ℱp (X) − ℱd (Y)

  7: end while

Algorithm 2

MxNE with BCD and active set strategy

Require: M, G, λ> 0, ε> 0, and S.

  1:
Initialization: X = 0, , η = ℱp (X) − ℱd (Y)

  2: for s = 1 to S do

  3:

  

  4: end for

  5: while η ≥ ε do

  6:
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  7:
  

  8:
 Define  and  by restricting G and X to 

  9:

   Solve Algorithm 1 with μ,  and 

10:

   for , else 0

11:  η = ℱp (X) − ℱd (Y)

12: end while

The BCD scheme is typically applied using a cyclic sweep pattern, i.e., all blocks are 

updated in a cyclic order in each iteration. However, as the penalty term in Eq. (2) promotes 

spatial sparsity, most of the blocks of  are zero. We can thus reduce the computation time 

by primarily updating blocks, that are likely to be non-zero, while keeping the remaining 

blocks at zero. For this purpose, data-dependent sweep patterns (such as greedy approaches 

based on steepest descent [51], [52]) or active set strategies [53], [54] can be applied. In this 

paper, we combine BCD with a forward active set strategy proposed in [9], [54]. Pseudo 

code for the proposed MxNE solver is provided in Algorithm 2.

We start by estimating an initial active set of sources  by evaluating the Karush-Kuhn-

Tucker (KKT) optimality conditions, which state that  if  [9]. 

We select the N sources as the initial active set, which violate this condition the most (we 

use N = 10 in practice). Subsequently, we restrict the source space to the sources in  and 

estimate  by solving Eq. (4) with convergence controlled by the duality gap. After 

convergence of this restricted optimization problem, we check whether  is also an ε-

optimal solution for the original optimization problem (without restricting the source space 

to ) by computing the corresponding duality gap η assuming that all sources, which are 

not part of the active set, have zero activation. If is not an ε -optimal solution indicated 

by η ≥ ε, we re-evaluate the KKT optimality conditions and update the active set  by 

adding the N sources with the highest score. We then repeat the procedure with warm start.

Algorithm 3

Iterative reweighted MxNE

Require: M, G, λ> 0, ε > 0, τ > 0, and K.

  1:

Initialization: 

  2: for k = 1 to K do

  3:  G(k) = GW(k)

  4:

   Solve Algorithm 2 with G(k) and X(k)

  5:
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  6:

  

  7:   break

  8:  end if

  9:

 W(k+1) ← Solve Eq. 5 with 

10: end for

We terminate irMxNE when  with a user specified threshold τ, which 

we set to 10−6 in practice. The proposed optimization algorithm for irMxNE is fast enough 

to allow its usage in practical MEG/EEG applications. Full pseudo code for irMxNE is 

provided in Algorithm 3.

C. Source constraints and bias

1) Source orientation—The proposed BCD scheme is applicable for MEG/EEG inverse 

problems without and with orientation constraint. For imposing a loose orientation 

constraint [40], we apply a weighting matrix K = diag([1,ρ,ρ]) to each block of the gain 

matrix Gs ∈ ℝN×3 with Gs [:, 1 ] corresponding to the dipole orientated normally to the 

cortical surface, and Gs[:, 2] and Gs[:, 3] to the two tangential dipoles. The weighting 

parameter 0 <ρ ≤ 1 controls up to which angle the rotating dipole may deviate from the 

normal direction [20], [40]. The orientation-weighted gain matrix  is hence defined as 

, where I(S) ∈ ℝS×S is the identity matrix. Since the penalty in Eq. (8) does 

not promote sparsity along orientations, the irMxNE result is not biased towards the 

coordinate axes [21]. When the source orientation is postulated a priori (e.g. normal to the 

cortical surface), each block Xs corresponds to the activation of a fixed dipole. 

Consequently, the Frobenius norm per block can be replaced by the l2-norm of the source 

activation of the corresponding fixed dipole.

2) Depth bias compensation—Due to the attenuation of the bioelectromagnetic field 

with increasing distance between source and sensor, deep sources require higher source 

amplitudes to generate sensor signals of equal strength compared to superficial sources. 

Consequently, inverse methods, which are based on constraints penalizing the source 

amplitudes, have a bias towards superficial sources. In order to compensate this bias, each 

block of the gain matrix is weighted a priori. Here, we apply the depth bias compensation 

proposed in [55], which computes the weights used for depth bias compensation based on 

the SVD of the gain matrix.

3) Amplitude bias compensation—Source activation estimated with source 

reconstruction approaches based on lp-quasinorms with 0 < p ≤ 1, such as MxNE and 

irMxNE, show a varying degree of amplitude bias due to the inherent shrinkage. The 

standard practice for compensating the amplitude bias consists in computing the least 

squares fit after restricting the source space to the support of , which is typically an over-

determined optimization problem. In contrast, we apply the debiasing approach proposed in 
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[20], which preserves the source characteristics and orientations estimated with irMxNE by 

estimating a scaling factor for each source, which is constrained to be above 1 and constant 

over orientation and time. The bias corrected source estimate  is computed using D as 

, where the diagonal scaling matrix D is estimated based on the convex problem:

D. Simulation setup

We compare MCE, MxNE and irMxNE in terms of amplitude bias, support recovery, and 

stability using simulated auditory evoked fields. The simulation, which was repeated 100 

times, is based on a real gain matrix computed with a three-shell boundary element model 

using 4699 cortical sources with fixed orientation (normal to the cortical surface), and a 306-

channels Elekta Neuromag Vectorview system (Elekta Neuromag Oy, Helsinki, Finland) 

with 102 magnetometers and 204 gradiometers. The sampling rate was set to 1 kHz and we 

restricted the analysis to the time window from 60 ms to 150 ms. We generated single trials 

by activating two dipolar sources, one in each transverse temporal gyrus, with Gaussian 

functions peaking at 100 ms and 110 ms with a peak amplitude of 55 nAm and 45 nAm, 

Xsim. Background activity was generated by ten dipolar sources placed randomly on the 

cortical surface. Each dipole was activated with filtered white noise with a peak amplitude of 

100 nAm. The filter coefficients were determined by fitting an auto-regressive process of 

order 5 to real baseline MEG data [20]. By averaging 100 single trials, the SNR of the 

evoked response, which we compute using spatial whitened data as 

, was set to SNR = 2.63 ± 0.46. Source reconstruction was 

computed without orientation constraint, where none of the dipoles used to generate the gain 

matrix was oriented perpendicularly to the cortical surface. All methods were applied with 

different regularization parameters λ given as a percentage of the respective λmax, which is 

the smallest regularization parameter leading to an empty active set [9]. We evaluate the 

source reconstruction performance by means of the true and false positives counts. We 

consider a source to be a true positive, if its geodesic distance along the cortical surface from 

the true source location is less than 1 cm. A value of 1 cm is what would be considered an 

acceptable localization error for most neuroscience applications. Moreover, we present the 

active set size and the root mean square error in the sensor space, 

. To evaluate the stability of the reconstructed support, we 

compute Krippendorff’s alpha [56].

E. Experimental MEG data

We evaluate the performance of MxNE and irMxNE using data from the MIND multi-site 

MEG study [57]–[59]. We use two different data sets from one exemplary subject, auditory 

evoked fields (AEF) and somatosensory evoked fields (SEF), recorded using the 306-

channels Elekta Neuromag Vectorview system. A detailed description of the data and 

paradigms can be found in [57]–[59]. For the AEF data set, we report results for AEFs 

evoked by left auditory stimulation with pure tones of 500 Hz. The analysis window for 
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source estimation was chosen from 50 ms to 200 ms based on visual inspection of the 

evoked data to capture the dominant N100m component. For the SEF data set, we analyzed 

SEFs evoked by bipolar electrical stimulation (0.2 ms in duration) of the left median nerve. 

To capture the main peaks of the evoked response and to exclude the strong stimulus artifact, 

the analysis window was chosen from 18 ms to 200 ms based on visual inspection. 

Following the standard pipeline from the MNE software [60], signal preprocessing for both 

data sets consisted of signal-space projection for suppressing environmental noise, and 

baseline correction using pre-stimulus data (from −200 ms to −20 ms). Epochs with peak-to-

peak amplitudes exceeding predefined rejection parameters (3 pT for magnetometers, 400 

pT/m for gradiometers, and 150 V for EOG) were assumed to be affected by artifacts and 

discarded. This resulted in 96 (AEF) and 294 (SEF) artifact-free epochs, which were 

resampled to 500 Hz. The gain matrix was computed using a set of 7498 cortical locations, 

and a three-layer boundary element model. The stability of the source reconstruction was 

tested using a resampling technique. For each data set, we generated 100 random sets of 

epochs by randomly selecting 80% of all available epochs without replacement. The noise 

covariance matrix for spatial whitening was estimated for each subsample using prestimulus 

data (from −200 ms to −20 ms). We applied both MxNE and irMxNE on the average of each 

random set without orientation constraint. Due to the lack of a ground truth, the source 

reconstruction performance is evaluated by means of the Goodness of Fit (GOF) and the 

active set size. To compare results with well established source reconstruction techniques, 

we compute the dSPM solution [45] without orientation constraint and the RAP-MUSIC 

estimate [5] for both data sets using the MNE-Python software [61]. For RAP-MUSIC, we 

use single-dipole and two-dipole independent topographies to address the problem of 

correlated sources [4]. A similar idea is pursued e.g. by dual core beamformers [62]. The 

correlation threshold was set to 0.95 as proposed by Mosher et al. [4]. The rank of the signal 

subspace was determined by thresholding the eigenvalues of the data covariance based on an 

estimate of the noise variance. As we apply a spatial whitening, the threshold was set to 1.

III. Results

A. Simulation study

The results of the simulation study (100 repetitions) for different regularization parameters 

(from 5 to 100% of λmax) are presented in Fig. 1. The source space contained 4699 sources 

and one source per hemisphere was active indicated by the horizontal dashed lines in Fig. 1a 

and b. True positive counts above this threshold indicate suboptimally sparse source 

estimates, whereas counts close to zero indicate false negatives. We can see that the irMxNE 

approach provides the best support recovery. It allows to reconstructs single dipoles in both 

regions of interest, whereas MCE and MxNE find multiple correlated sources. Particularly 

for low values of λ, MCE and MxNE overestimate the size of the active set leading to a 

large number of false positives, whereas irMxNE generates significantly less false positives. 

The mean active set size confirms that irMxNE provides the sparsest result of all three 

methods. The mean RMSE is shown in Fig. 1e. While all methods profit from the debiasing 

procedure, the effect on irMxNE is less pronounced compared to the other methods 

indicating a reduced amplitude bias. The best result is obtained with irMxNE. 

Krippendorff’s α indicates that the support reconstructed with irMxNE is more stable 
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compared to MCE or MxNE. The source estimate is thus less dependent on the epochs used 

for generating the evoked response.

B. Experimental MEG data

1) Auditory evoked fields—We first compare the performance of the proposed BCD 

scheme for solving the weighted MxNE with the Fast Iterative Shrinkage Thresholding 

Algorithm (FISTA) [63], a proximal gradient method used in [9]. Both methods were 

applied with and without active set strategy. All computations were performed on a 

computer with a 2.4 GHz Intel Core 2 Duo processor and 8 GB RAM. The computation 

times as a function of λ are presented in Fig. 2. The BCD scheme outperforms FISTA both 

with and without active set strategy. Combining the BCD scheme and the active set strategy 

reduces the computation time by a factor of 100 and allows to compute the MxNE on real 

MEG/EEG data in a few seconds. Since subsequent MxNE iterations are significantly faster 

due to the restriction of the source space, irMxNE also runs in a few seconds on real 

MEG/EEG source localization problems.

We applied MxNE and irMxNE (with and without debiasing) with different regularization 

parameters λ to 100 AEF data sets generated by averaging randomly selected subsets of 

epochs. The mean GOF around the N100m component (from 90 ms to 150 ms) and the 

mean active set size are presented in Fig. 3 as a function of λ. We can see that the debiasing 

procedure has a strong effect on MxNE, whereas the GOF of the irMxNE result is only 

slightly improved indicating less amplitude bias. Debiased MxNE and irMxNE yield similar 

GOFs with similar plateaus, but irMxNE provides a sparser, i.e., simpler model.

The selection probability for all sources being, at least once, part of the active set obtained 

with MxNE or irMxNE is shown in Fig. 4. MxNE selects multiple sources with high 

probability within each region of interest, which is a consequence of the correlated design. 

The irMxNE approach is more selective and provides sparser source estimates. Moreover, 

the number of false positives, i.e., sources outside of the regions of interest, is lower for 

irMxNE, particularly for low values of λ.

Exemplary source reconstructions for debiased MxNE and irMxNE are illustrated in Fig. 5. 

For comparison, we present a RAP-MUSIC estimate based on single- and two-dipole 

independent topographies [4], [5]. The maximum dSPM score [45] per source is shown as an 

overlay on each cortical surface. MxNE with λ/λmax = 60% shows activation in both 

primary auditory cortices with main peaks around 110 ms corresponding to the N100m 

component. The activation on the right hemisphere is however split into two highly 

correlated dipoles, which are partly located on the wrong side of the Sylvian fissure. 

Increasing λ does not fix the latter issue, since dipoles in the left primary auditory cortex are 

eliminated before actually erasing spurious activity on the right hemisphere. The loss of the 

active source in the left auditory cortex is also indicated by the drop of the GOF in Fig. 3. 

The size of the signal subspace for RAP-MUSIC was estimated to be 50 by the thresholding 

procedure. Being based on an empirical estimate of the data covariance, this procedure tends 

to overselect the rank of the signal subspace [5] and the RAP-MUSIC estimate depends on 

the correlation threshold. With the setting proposed in [4], only two independent 

topographies, a single- and a two-dipole topography, yield sufficient subspace correlations. 
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The dipoles are reconstructed close to the primary auditory cortex on both hemispheres. The 

GOF of the three-dipole model is 86.7%. Using single- and two-dipole topographies 

provides better RAP-MUSIC estimates than using only single-dipole topographies. The 

irMxNE with λ/λmax = 60%, which converged after 10 iterations, reconstructs single 

dipoles in both primary auditory cortices. Intuitively, the green and blue sources, which are 

the strongest sources according to MxNE with λ/λmax = 60%, are favored at the next 

iteration of the reweighted scheme pruning out the source on the wrong side of the Sylvian 

fissure present in the MxNE result. The estimated source locations roughly match the peaks 

of the dSPM estimate. The source estimate obtained with dSPM or similar linear inverse 

methods (sLORETA, MNE, etc.) is however spatially smeared. To reduce the smearing of 

the dSPM estimate, one could increase the threshold, yet it would make it time dependent 

and certainly too high to see weaker sources. Alternatively, post-processing is generally 

required, e.g. by defining regions of interest, to improve interpretability. Note also that, in 

contrast to dSPM, source amplitudes obtained with irMxNE are moments of electrical 

dipoles expressed in nAm, which is similar to dipole fitting procedures [2]. The GOF of the 

two-dipole model obtained with irMxNE is 81.9% and thus only slightly lower than the 

three-dipole model obtained with RAP-MUSIC.

2) Somatosensory evoked fields—We applied MxNE and irMxNE (with and without 

debiasing) with different regularization parameters to 100 averaged random subsets of 

epochs of the SEF data set. The mean GOF and the corresponding active set size for MxNE 

and irMxNE (with and without debiasing) as a function of the regularization parameter λ are 

shown in Fig. 6. We can see again that irMxNE yields significantly sparser source estimates, 

which however allow for a better GOF compared to MxNE. The GOFs of the MxNE and 

irMxNE results with and without debiasing illustrate also that the irMxNE source estimates 

are less biased in amplitude.

Fig. 7 presents the selection probability for all sources, which are non-zero in at least one 

MxNE or irMxNE estimate. The irMxNE typically selects only one source per region of 

interest for different values of λ. The number of false positives is also significantly lower. 

These results confirm the findings obtained from the AEF data set in section III-B1. The 

stability analysis reveals also that the source in the contralateral secondary somatosensory 

cortex (S2c) is less stable compared to the ipsilateral sources, which might be caused by its 

relatively weak field pattern [12].

Fig. 8 presents source reconstruction results obtained with MxNE and irMxNE for selected 

regularization parameters. As in section III-B.1, we show a RAP-MUSIC estimate and 

added the maximum dSPM score per source as an overlay to all subfigures. MxNE with λ/
λmax = 40% reconstructs dipoles in the contralateral primary somatosensory cortex (cS1), 

the contralateral and ipsilateral secondary somatosensory cortices (cS2 and iS2), and the 

posterial parietal cortex (cPPC). The source locations roughly coincide with the main peaks 

of the dSPM estimate. As for the AEF data set, the source activation per region is split into 

several correlated dipoles. An increase of the regularization parameter results in a loss of 

physiologically meaningful source activity such as activation in iS2, which is visible in the 

dSPM estimate. The relevance of this activation is also indicated by the drop of the GOF in 

Fig. 6. The signal subspace estimation for RAP-MUSIC yields a signal subspace size of 43. 
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Hence, the RAP-MUSIC estimate depends on the choice of the correlation threshold. For 

our settings, four independent topographies, two single- and two two-dipole topographies, 

are above the subspace correlation threshold. Dipoles are reconstructed in all relevant areas. 

The activation in cS1 is split into several dipoles, probably due to the fixed orientation 

source model applied in RAP-MUSIC. The GOF of this six-dipole model is 82,6%. The 

RAP-MUSIC estimate benefits from using single and two-dipole topographies. The irMxNE 

approach with λ/λmax = 40% converged after 14 reweightings. The resulting source estimate 

contains four single dipoles representing activation in each of the four regions. The GOF of 

the four-dipole model obtained with irMxNE is 81.4% and thus higher than the GOF of the 

corresponding MxNE estimate and only slightly lower than the GOF of the six-dipole model 

obtained with RAP-MUSIC.

IV. Discussion and Conclusion

In this work, we presented irMxNE, an MEG/EEG inverse solver based on regularized 

regression with a non-convex block-separable penalty. The non-convex optimization 

problem is solved by iteratively solving a sequence of weighted MxNE problems, which 

allows for fast algorithms and global convergence control at each iteration. We proposed a 

new algorithm for solving the MxNE surrogate problems combining BCD and a forward 

active set strategy, which significantly decreases the computation time compared to the 

original MxNE algorithm [9]. This new algorithm makes the proposed iterative reweighted 

optimization scheme applicable for practical MEG/EEG applications. The approach is also 

applicable to other block-separable non-convex penalties such as the logarithmic penalty 

proposed in [22] by adapting the definition of the weights in Eq. (5). The irMxNE method is 

designed for offline source reconstruction, which is still the main application of MEG/EEG 

source imaging in research and clinical routine. However, we are aware of a growing interest 

in real-time brain monitoring [64]. New techniques such as parallel BCD schemes [51], 

clustering approaches [65], and safe rules [66] can help to further reduce the computation 

time. As proposed in [22], [26], the first iteration of irMxNE is equivalent to computing the 

standard MxNE. Consequently, the irMxNE result is at least as sparse as the MxNE 

estimate. The iterative reweighting procedure can thus be considered as a post-processing for 

MxNE improving source recovery, stability, and amplitude bias. This was confirmed by 

empirical results based on simulations and two MEG data sets. We attribute this to the 

spatial correlation and the poor conditioning of the forward operator in MEG/EEG source 

analysis. An alternative approach to improve the conditioning of the inverse problem based 

on clustering the columns of the gain matrix is presented in [65], which however affects the 

spatial resolution. The source locations reconstructed by irMxNE roughly coincided with the 

main peaks of the dSPM estimate, which demonstrate that the proposed inverse solver can 

present a simple and easy-to-interpret spatio-temporal picture of the active sources. The 

models reconstructed with RAP-MUSIC provided a slightly higher goodness of fit, but 

contained more active sources. We found that RAP-MUSIC benefits from using single-

dipole and two-dipole independent topographies. The use of higher-order source models, 

which are limited to a small number of correlated sources, however significantly increases 

the computational complexity, particularly for source spaces with high resolution. 

Approaches improving the computation time of RAP-MUSIC are presented in [64]. In 
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contrast, irMxNE makes no assumption on the number of correlated sources. Its 

computation time is not dramatically affected by the resolution of the source space. Model 

selection for sparse source imaging approaches, which amounts here to choosing the 

regularization parameter, is a critical aspect. Automatic approaches based on minimizing the 

prediction error such as cross-validation tend to overestimate the number of active sources 

and increase the false positive rate. Here, we selected the regularization parameter based on 

the GOF and the size of the active set. A similar procedure is used e.g. in sequential dipole 

fitting. The development of an automatic model selection procedure for the proposed inverse 

solver is future work. In particular, approaches maximizing model stability are an interesting 

alternative [67], [68]. Model selection is however a general issue in MEG/EEG source 

reconstruction. In our comparison with RAP-MUSIC, we found e.g. that the size of the 

signal subspace and the correlation threshold have a strong influence on the final source 

estimate. Due to the limited number of samples, we can only obtain an empirical estimate of 

the data covariance, which involves the risk of overestimating the size of the signal subspace 

using the thresholding procedure. The correlation threshold is used to switch to higher order 

source models and to account for noise components in the signal subspace. Similar to 

MxNE, irMxNE assumes that the locations of active sources is constant over time. Hence, it 

should be applied to data, for which this model assumption is approximately true, e.g., by 

selecting intervals of interest or applying a moving window approach. To go beyond 

stationary sources, the reconstruction of non-stationary focal source activation can be 

improved by applying sparsity constraints in the time-frequency domain such as in the TF-

MxNE [20]. Preliminary results on the application of non-convex regularization for such 

models based on iterative reweighting procedures were presented in [69]. The irMxNE 

solver is available in the MNE-Python package [61].
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Fig. 1. 
Results of the simulation study based on simulated AEFs for MCE, MxNE and irMxNE. 

The source space contained a total of 4699 sources and the simulation was repeated 100 

times: (a) mean true positive count (left A1), (b) mean true positive count (right A1), (c) 

mean false positive count, (d) mean active set size, (e) mean RMSE without (solid) and with 

(dashed) debiasing, and (f) Krippendorff’s α.
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Fig. 2. 
Computation time as a function of λ for MxNE on real MEG data (free orientation) using 

BCD and FISTA with (solid) and without (dashed) active set strategy.
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Fig. 3. 
Mean GOF, and active set size for MxNE and irMxNE without (solid) and with (dashed) 

debiasing for the AEF data.
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Fig. 4. 
Source selection probability for the AEF data set using MxNE (left) and irMxNE (right). 

The plot is restricted to sources that are active in at least one random subsample. The 

colored patches on the inflated brain indicate regions of interest based on anatomical labels 

(green, yellow, red). Source indices, which are in the regions of interest, are highlighted by 

corresponding color marks. The transversal temporal gyrus is indicated in green.
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Fig. 5. 
Source reconstruction results using AEFs evoked by left auditory stimulation. The estimated 

source locations for MxNE (a, b), RAP-MUSIC (c) and irMxNE (d), indicated by colored 

spheres, and the corresponding time courses are color-coded. The maximum of the dSPM 

estimate per source, which is thresholded for visualization purposes, is shown as an overlay 

on each cortical surface.
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Fig. 6. 
Mean GOF, and active set size for MxNE and irMxNE without (solid) and with (dashed) 

debiasing for the SEF data.
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Fig. 7. 
Selection probability for sources obtained with MxNE (left) and irMxNE (right) for the SEF 

data. The plot is restricted to sources that are active in at least one random subsample. The 

colored patches on the inflated brain indicate regions of interest based on anatomical labels 

(green, yellow, red). Source indices, which are in the regions of interest, are highlighted by 

corresponding color marks.
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Fig. 8. 
Source reconstruction results using SEFs evoked by electrical stimulation of the left median 

nerve. The estimated source locations for MxNE (a, b), RAP-MUSIC (c) and irMxNE (d), 

indicated by colored spheres, and the corresponding time courses are color-coded. The 

maximum of the dSPM estimate per source, which is thresholded for visualization purposes, 

is shown as an overlay on each cortical surface.
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