
RESEARCH ARTICLE

A fast and accurate zebra finch syllable

detector

Ben Pearre1*, L. Nathan Perkins1, Jeffrey E. Markowitz2, Timothy J. Gardner1

1 Department of Biology, Boston University, Boston, Massachusetts, United States of America, 2 Department

of Neurobiology, Harvard Medical School, Boston, Massachusetts, United States of America

* bwpearre@bu.edu

Abstract

The song of the adult male zebra finch is strikingly stereotyped. Efforts to understand motor

output, pattern generation, and learning have taken advantage of this consistency by inves-

tigating the bird’s ability to modify specific parts of song under external cues, and by examin-

ing timing relationships between neural activity and vocal output. Such experiments require

that precise moments during song be identified in real time as the bird sings. Various sylla-

ble-detection methods exist, but many require special hardware, software, and know-how,

and details on their implementation and performance are scarce. We present an accurate,

versatile, and fast syllable detector that can control hardware at precisely timed moments

during zebra finch song. Many moments during song can be isolated and detected with false

negative and false positive rates well under 1% and 0.005% respectively. The detector can

run on a stock Mac Mini with triggering delay of less than a millisecond and a jitter of σ� 2

milliseconds.

1 Introduction

The adult zebra finch (Taeniopygia guttata) sings a song made up of 2–6 syllables, with longer

songs taking on the order of a second. The song may be repeated hundreds of times per day,

and is almost identical each time. Several brain areas reflect this consistency in highly stereo-

typed neural firing patterns, which makes the zebra finch one of the most popular models for

the study of the neural basis of learning, audition, and control.

If precise moments in song can reliably be detected quickly enough to trigger other appara-

tus during singing, then this consistency of behaviour allows a variety of experiments. A com-

mon area of study with song-triggered experiments is the anterior forebrain pathway (AFP), a

homologue of mammalian basal ganglia consisting of a few distinct brain areas concerned

with the learning and production of song. For example, stimulation of the lateral magnocellu-

lar nucleus of the anterior nidopallium (LMAN)—the output nucleus of the AFP—at precisely

timed moments during song showed that this area controls specific variables in song output

[1]. Song-synchronised stimulation of LMAN and the high vocal centre (HVC) in one hemi-

sphere or the other showed that control of song rapidly switches between hemispheres [2].

Feedback experiments have shown that Field L and the caudolateral mesopallium may hold a

PLOS ONE | https://doi.org/10.1371/journal.pone.0181992 July 28, 2017 1 / 18

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Pearre B, Perkins LN, Markowitz JE,

Gardner TJ (2017) A fast and accurate zebra finch

syllable detector. PLoS ONE 12(7): e0181992.

https://doi.org/10.1371/journal.pone.0181992

Editor: Brenton G. Cooper, Texas Christian

University, UNITED STATES

Received: September 15, 2016

Accepted: March 31, 2017

Published: July 28, 2017

Copyright: © 2017 Pearre et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: Song data used for

training and testing are available at 10.17605/OSF.

IO/BX76R The four software packages are available

under Open Source licenses from DOIs listed in

Appendix A of the manuscript, and also here: 10.

5281/zenodo.437555 10.5281/zenodo.437557 10.

5281/zenodo.437559 10.5281/zenodo.437558.

Funding: This work was funded by NIH grants

5R01NS089679-02 and 5U01NS090454-02. The

funders had no role in study design, data collection

and analysis, decision to publish, or preparation of

the manuscript.

https://doi.org/10.1371/journal.pone.0181992
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0181992&domain=pdf&date_stamp=2017-07-28
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0181992&domain=pdf&date_stamp=2017-07-28
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0181992&domain=pdf&date_stamp=2017-07-28
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0181992&domain=pdf&date_stamp=2017-07-28
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0181992&domain=pdf&date_stamp=2017-07-28
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0181992&domain=pdf&date_stamp=2017-07-28
https://doi.org/10.1371/journal.pone.0181992
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.17605/OSF.IO/BX76R
https://doi.org/10.17605/OSF.IO/BX76R
https://doi.org/10.5281/zenodo.437555
https://doi.org/10.5281/zenodo.437555
https://doi.org/10.5281/zenodo.437557
https://doi.org/10.5281/zenodo.437559
https://doi.org/10.5281/zenodo.437559
https://doi.org/10.5281/zenodo.437558

representation of song against which auditory signals are compared [3]. The disruption by

white noise of renditions of a syllable that were slightly above (or below) the syllable’s average

pitch showed that the apparently random natural variability in songbird motor output is used

to drive change in the song [4], and the AFP produces a corrective signal to bias song away

from those disruptions [5]. The song change is isolated to within roughly 10 milliseconds (ms)

of the stimulus, and the shape of the learned response can be predicted by a simple mechanism

[6]. The AFP transfers the error signal to the robust nucleus of the arcopallium (RA) using

NMDA-receptor–mediated glutamatergic transmission [7]. The course of song recovery after

applying such a pitch-shift paradigm showed that the caudal medial nidopallium is implicated

in memorising or recalling a recent song target, but in neither auditory processing nor directed

motor learning [8].

Despite the power and versatility of vocal feedback experiments, there is no standard sylla-

ble detector. Desiderata for such a detector include:

Accuracy: How often does the system produce false positives or false negatives?

Latency: The average delay between the target syllable being sung and the detection.

Jitter: The amount that latency changes from instance to instance of song. Our measure of jit-

ter is the standard deviation of latency.

Versatility: Is detection possible at “difficult” syllables?

Ease of use: How automated is the process of programming a detector?

Cost: What are the hardware and software requirements?

A variety of syllable-triggering systems have been used, but few have been documented or

characterised in detail. In 1999, detection was achieved by a group of IIR filters with hand-

tuned logical operators [9]. The system had a latency of 50 or 100 ms, and accuracy and jitter

were not reported. As access to computational resources has improved, approaches have

changed: in 2009, hand-tuned filters were implemented on a Tucker-Davis Technologies digi-

tal signal processor, bringing latency down to around 4 ms [5]. But as with other filter-bank

techniques, it is not strictly a syllable detector but rather a pitch and timbre detector—it cannot

identify a frequency sweep, or distinguish a short chirp from a long one—and thus requires

careful selection of target syllables. Furthermore, the method is neither inexpensive nor, based

on our experience with a similar technique, accurate. 2009 saw the application of a neural net-

work to a spectral image of song [3]. They reported a jitter of 4.3 ms, but further implementa-

tion and performance details are not available. In 2011, stable portions of syllables were

matched to spectral templates in 8-ms segments [7]. This detector achieved a jitter of 4.5 ms,

and false-negative and false-positive rates of up to 2% and 4% respectively. Hardware require-

ments and ease of use were not reported. In 2013, spectral images of template syllables were

compared to song using a correlation coefficient [10]. With a fast desktop (Intel i7 six-core)

running Linux and equipped with a National Instruments data acquisition card, it boasts a

hardware-only (not accounting for the time taken to compute a match with a syllable) latency

and jitter of just a few microseconds, and the detection computation they use should not much

increase that. They reported false-negative rates around 4% and 7% for zebra finches and Ben-

galese finches respectively, measured on a small dataset. In much other work, a syllable detec-

tor is alluded to, but not described.

We developed a standalone detector that learns to match moments in the song using a neu-

ral network applied to the song spectrogram, and outputs a TTL pulse (a brief 5-volt pulse) at

the chosen moment. The approach consists of three steps:

A fast and accurate zebra finch syllable detector

PLOS ONE | https://doi.org/10.1371/journal.pone.0181992 July 28, 2017 2 / 18

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0181992

1. Record and align a corpus of training songs. The technique has been published in [11]. As

few as 200 songs can yield acceptable results, but here we standardise on 1000-song training

sets.

2. Choose one or more instants in the song that should create a trigger event, and train a neu-

ral network to recognise them. This step is carried out offline. While any neural network

software would produce similar results, we used MATLAB 2015b’s neural network toolbox.

3. Once trained and saved, the neural network is used by a realtime detection programme that

listens to an audio signal and indicates detection of the target syllables via a TTL pulse. We

present three detection implementations, in MATLAB, LabVIEW, and Swift, that trade off

hardware requirements, ease of maintenance, and performance.

This method makes the following contributions:

• Fast: sub-millisecond latencies, with jitter around 2 ms.

• Accurate: false negative rates under 1% and false positive rates under 0.005% for a variety of

syllables.

• State-of-the-art performance with default parameters.

• Requires almost no programming experience.

• Runs on inexpensive hardware.

• Described in detail here, with reference implementations provided and benchmarked.

2 Materials and methods

2.1 Training a detector

We begin with a few hundred recordings of a given bird’s song, as well as calls, cage noise, and

other non-song audio data. Male zebra finch song is most highly stereotyped when a female is

present (“directed song”) and slightly more variable otherwise (“undirected”); we train and

test on undirected song since this is both more commonly studied and more challenging.

Recordings were made inside a sound-isolating chamber in which was mounted a recording

microphone (Audio-Technica AT803), using methods similar to those described in [12],

Chapter 2. The songs were time-aligned as described in [11].

We rely on two circular buffers:

Audio buffer: This contains the most recent audio samples, and is of the length required to

compute the Fast Fourier Transform (FFT)—usually 256 samples.

FFT buffer: The results of each new FFT are placed here. It contains the nfft most recent FFTs,

which will serve as inputs to the neural network (described below).

Audio is recorded at some sample rate 1/tsample (for example, 44.1 kHz), and new data are

appended to the circular audio buffer.

The spectrogram is computed at regular intervals—the useful range seems to be roughly

1–5 milliseconds, which we refer to as the frame interval tfft. At each frame, a spectrum is com-

puted from the most recent 256 audio samples in the audio buffer, and the result is appended

to the FFT buffer. For example, if tfft = 1 ms and the recording sample rate 1/tsample = 40 kHz,

then in order to compute a new FFT, 40000 � 0.001 = 40 new audio samples must be appended

to the audio buffer, the FFT is computed using the most recent 256 samples in that buffer, and

A fast and accurate zebra finch syllable detector

PLOS ONE | https://doi.org/10.1371/journal.pone.0181992 July 28, 2017 3 / 18

https://doi.org/10.1371/journal.pone.0181992

the result is appended to the FFT buffer. Over time, the successive spectra will look something

like Fig 1.

This results in time being discretised into chunks of length tfft. Because each Fourier trans-

form computation contains a small number nfft of new audio samples (in the example above,

40 new samples and 256 − 40 that have already been examined), we tried implementing the

Sliding Discrete Fourier transform (SDFT) [13]. This allows tfft = tsample. Practically, the oper-

ating system retrieves new audio samples from the hardware several at a time, so the full bene-

fit of the SDFT is difficult to see in practice. Furthermore, we found that FFT implementations

are sufficiently highly optimised that discretising time into chunks of tfft as we have done pro-

duced similar results with simpler software.

When using consumer audio hardware that operates best at 44.1 kHz, the requested frame

interval may not line up with the sample rate, so the actual frame interval may be different

from the intended. For example, at 44.1 kHz a 1-ms frame interval requires a new FFT every

44.1 samples. This must be rounded to 44 samples, resulting in tfft = b44.1e/44.1� 0.9977 ms.

One or more target moments during the song must be chosen. Our interface presents the

time-aligned spectrogram averaged over training songs, and requires manual input of the tar-

get times, t�. Then we assemble the training set from the song data, train the network, compute

optimal output unit thresholds, and save the network object and an audio test file.

2.1.1 Recognition region. The neural network’s inputs are the FFT values from a rectan-

gular region of the spectrogram covering a predefined range of frequency values F (for exam-

ple, 1–8 kHz) at some number of the most recent frames nfft. Any time t falls within frame τ(t),
and t − tfft falls within the previous frame, so the recognition region that the neural network

receives as input consists of the spectrogram values over F at τ(t) and those from the contigu-

ous set of recent frames: T = { τ(t), τ(t − tfft), τ(t − 2tfft). . . τ(t − nfft tfft)}. Time windows of

30–50 ms—the latter will yield nfft = |T| = b50 ms/tffte frames—of frequencies spanning

1–8 kHz generally work well.

Six examples of chosen target moments in the song, with recognition regions F = 1–8 kHz

and T = 30 ms, are shown in Fig 1.

2.1.2 Building the training set. The training set is created in a fashion typical for neural

networks: at each time frame t the rectangular |F| × |T| recognition region in the spectrogram

as of time t is reshaped into a vector ξt, which will have length |F||T| and contain the spectra in

F taken at all of the times in the set T: from τ(t − nffttfft) to τ(t). These vectors are placed into a

Fig 1. The spectrogram of the song of the bird “lny64”, used as an examplethroughout this paper. This

image was made by superposing the spectra of our 2818 aligned songs. Our example detection points, t�
1

. . . t�
6
,

are shown as red lines, with example recognition regions of 30 ms × 1–8 kHz marked as rectangles.

https://doi.org/10.1371/journal.pone.0181992.g001

A fast and accurate zebra finch syllable detector

PLOS ONE | https://doi.org/10.1371/journal.pone.0181992 July 28, 2017 4 / 18

https://doi.org/10.1371/journal.pone.0181992.g001
https://doi.org/10.1371/journal.pone.0181992

training matrix, X, such that each column ξt holds the contents of the recognition region—

containing multiple frames from the spectrogram—as of one value of t.
Training targets yt are vectors with one element for each desired detection syllable. That

element is, roughly, 1 if the input vector matches the target syllable (t = t�), 0 otherwise,

for each target syllable (of which there may be any number, although they increase training

time, and in our implementations the number of distinct output pulses is constrained by

hardware). Since the song alignment may not be perfect, and due to sample aliasing, a

strict binary target may ask the network to learn that, of two practically identical frames, one

should be a match and the other not. Thus it is preferable to spread the target in time, such

that at the target moment it is 1, and at neighbouring moments it is nonzero. We found that a

Gaussian smoothing kernel around the target time with a standard deviation of 2 ms serves

well.

With inputs well outside the space on which a neural network has been trained, its outputs

will be essentially random. In order to reduce the false positive rate it is necessary to provide

negative training examples that include silence, cage noise, wing flapping, non-song vocalisa-

tions, and perhaps songs from other birds. Although it will depend on the makeup of the non-

song data, we have found that training with as low as a 1:1 ratio of non-song to song—or

roughly 10 minutes of non-song audio—yields excellent results on most birds.

2.1.3 Normalisation. In order to present consistent and meaningful inputs to the neural

network and to maximise the effectiveness of the neural network’s training algorithm, we nor-

malise the incoming data stream so that changes in the song structure of the sound are empha-

sised over changes in volume.

The first normalisation step is designed to eliminate differences in amplitude due to

changes in the bird’s location and other variations in recording. Each recognition region vec-

tor ξt—during training, each column of the training matrix X—is normalised using MATLAB’s

zscore function x̂t ¼ ðxt � mxt
Þ=sxt

, so that the content of each window has mean mx̂t
¼ 0

and standard deviation sx̂ t
¼ 1.

The second step is designed to ensure that the neural network’s inputs have a range and dis-

tribution for which the training function can easily converge. Each element i of x̂ is normalised

across the entire training set—each row of X—in the same way: �x i ¼ ðx̂ i � mx̂ iÞ=sx̂ i , so that the

values of that point across the whole training set have mean m�x i ¼ 0 and standard deviation

s�x i ¼ 1. This is accomplished during training by setting MATLAB’s neural network

toolbox normalisation scheme to mapstd, and the scaling transform is saved as part of the

network object used by the realtime detector so that it may be applied to unseen data at

runtime.

These two normalisation steps provide a set of inputs that are more robust to outliers and

less likely to produce false positives during silence than other normalisation schemes, such as

linear or L2 normalisation.

2.1.4 Neural networks. While any learned classifier might suffice, we chose a two-layer

feedforward neural network. In brief, our network takes an input vector ξt—as described

above—and produces an output vector yt, and when any element of yt is above a threshold

(described below), the detector reports a detection event. The network uses two matrices of

weights, W0 and W1, and two vectors of biases, b0 and b1. The first takes the input ξt to an

intermediate stage—the “hidden layer” vector. To each element of this vector is applied a non-

linear squashing function such as tanh, and then the second weight matrix W1 is applied.

This produces output yt:

yt ¼W1 tanh ðW0xt þ b0Þ þ b1

A fast and accurate zebra finch syllable detector

PLOS ONE | https://doi.org/10.1371/journal.pone.0181992 July 28, 2017 5 / 18

https://doi.org/10.1371/journal.pone.0181992

During the network’s training phase, the elements of the matrices and bias vectors are learned

by back-propagation of errors over a training set. A more detailed explanation of neural net-

works may be found in [14].

Essentially, after training, the network is available in the form of the two matrices W0 and

W1 and the two vectors b0 and b1, and running the network consists of two matrix multiplica-

tions, two vector additions and the application of the squashing function.

2.1.5 Training the network. The network is trained using MATLAB’s neural network

toolbox, with Scaled Conjugate Gradient (trainscg). We tried a variety of feedforward neu-

ral network geometries, from simple 1-layer perceptrons to geometries with many hidden

nodes, as well as autoencoders. Perhaps surprisingly, even the former yields excellent results

on many syllables, but a 2-layer perceptron with a very small hidden layer—with a unit count

2-4 times the number of target syllables—was a good compromise between accuracy and train-

ing speed. For more variable songs, deep structure-preserving networks may be more appro-

priate, but they are slow to train and unnecessary for zebra finch song.

2.1.6 Computing optimal output thresholds. After the network is trained, outputs of the

network for any input are now available, and will be in (or, due to noisy inputs and imperfect

training, close to) the interval (0, 1). We must choose a threshold above which the output is

considered a positive detection. Finding the optimal threshold requires two choices. The first

is the relative cost of false negatives to false positives, Cn. The second is the acceptable time

interval: if the true event occurs at time t, and the detector triggers at any time t ± Δt, then it is

considered a correct detection. Then the optimal detection threshold is the number that mini-

mises [false positives] + Cn � [false negatives] over the training set, using the definitions of false

positives and negatives given in Section 2.3.1. Since large portions of the cost function are flat,

we use a brute-force linear search, which requires fractions of a second. For the results pre-

sented here, we have used Δt = 10 ms, and arbitrarily set Cn = 1.

2.1.7 De-bouncing. During runtime, the network may produce above-threshold

responses to nearby frames. Thus, after the first response, subsequent responses are suppressed

for 100 ms. However, for the accuracy measurements presented here, we used the un-de-

bounced network response.

2.1.8 Our parameter choices. We used an FFT of size 256; a Hamming window; and

chose a target spectrogram frame interval of tfft = 1.5 milliseconds, resulting in a true frame

interval of tfft = b1.5 � 44.1e/44.1� 1.4966 ms. We set the network’s input space to 50 ms long,

and to span frequencies from 1–8 kHz, which contains the fundamentals and several overtones

of most zebra finch vocalisations.

We found these parameters to work well across a variety of target syllables, but various

other parameter sets yield results similar to those presented here. Some of the parameters trade

off detection accuracy or temporal precision vs. training time. For example, decreasing the

frame interval generally decreases both latency and jitter, but also increases training time.

Sometimes the effects are syllable-specific: for example, using a 30-ms time window rather

than 50 ms speeds training while usually having a minimal effect on detector performance (as

is the case, for example, for all of the detection points for the bird “lny64”), but occasionally a

syllable will be seen for which extending the window to 80 ms is helpful.

2.2 Realtime detection

The architecture of the realtime detector requires that the most recent nfft spectrograms be fed

to the neural network every frame interval. Audio samples from the microphone are appended

to the circular audio buffer. Every tfft seconds a new spectrogram is calculated by applying the

Hamming window to the contents of the buffer, performing an FFT, and extracting the power.

A fast and accurate zebra finch syllable detector

PLOS ONE | https://doi.org/10.1371/journal.pone.0181992 July 28, 2017 6 / 18

https://doi.org/10.1371/journal.pone.0181992

Outputs of the spectrogram from the target frequency band are appended to the circular FFT

buffer. The spectrograms are sent to a static implementation of the previously trained neural

network.

We tested three implementations of the realtime detector. For all of these tests, we ran the

detector processes under the operating systems’ default schedulers and process priorities, run-

ning typical operating system daemon processes but no loads from user processes. The com-

puters had ample memory resources.

2.2.1 Swift. This detector uses the Swift programming language and Core Audio interface

included in Apple’s Mac OS X operating systems.

The Core Audio frameworks provide an adjustable hardware buffer size for reading from

and writing to audio hardware (different from our two circular buffers). Tuning this buffer

size provides a tradeoff between the jitter in the detection and the processor usage needed to

run the detector. We used buffer sizes ranging from 8 samples (0.18 ms at 44.1 kHz) to 32 sam-

ples (0.7 ms at 44.1 kHz) depending on the frame size used by the detector.

Vector operations—applying the Hamming window, the FFT, input normalisation, matrix

multiplication, and the neural network’s transfer functions—are performed using the Acceler-

ate framework (vDSP and vecLib), which use modern vector-oriented processor instructions

to perform calculations.

When the neural network detects a match, it instructs the computer to generate a TTL

pulse that can be used to trigger downstream hardware. This pulse can be either written to the

computer’s audio output buffer (again, in 8- to 32-sample chunks) or sent to a microcontroller

(Arduino) via a USB serial interface. Sending the trigger pulse via the serial interface and

microcontroller is noticeably faster (2.2 ms lower latency), likely due to the fact that the audio

buffer goes through hardware mixing and filtering prior to output.

The above code can be run on multiple channels of audio on consumer hardware (such as a

2014 Mac Mini) with little impact on CPU usage (<15%). Depending on the experimental

needs, latency can potentially be further decreased (at the expense of processor usage) by

adjusting the audio buffer sizes.

We ran the Swift detector on a Late 2014 Mac Mini with a Intel Core i5 processor at

2.6GHz with 16 gigabytes of RAM, running Mac OS X 10.11.

2.2.2 LabVIEW. This implementation requires special software and hardware: LabVIEW

from National Instruments—we used 2014 service pack 1—and a data acquisition card—we

use the National Instruments PCI-6251 card on a PC with an Intel Core i5-4590 processor at

3.7GHz (a relatively low-end machine) with 24 gigabytes of RAM, running Microsoft Win-

dows 8.1 Pro and Windows 10.

This implementation has several drawbacks: it requires expensive hardware and software

from National Instruments (a data acquisition card and LabVIEW), Windows (we use hard-

ware features of LabVIEW that are unavailable on MacOS or Linux), and due to the program-

ming language it is difficult to modify and debug—indeed, a persistent bug in our

implementation currently renders it substantially less accurate than the other detector imple-

mentations on some syllables. However, our test configuration proved itself capable of excel-

lent performance, and further gains should be possible if the implementation were retargeted

onto field-programmable gate array (FPGA) hardware—which would have the additional ben-

efit of providing deterministic “hard realtime” guarantees—or just run on a faster desktop

system.

2.2.3 MATLAB. This detector uses the built-in audio input and output hardware on a

compatible computer. We tested on a 2014 Mac Mini (the same machine used for the Swift

detector described above) and 2015 Mac Pro. The Mac Pro does not have an audio input jack,

so input was through an M-Audio MobilePre external USB audio interface. Despite the faster

A fast and accurate zebra finch syllable detector

PLOS ONE | https://doi.org/10.1371/journal.pone.0181992 July 28, 2017 7 / 18

https://doi.org/10.1371/journal.pone.0181992

processor, the latter system did not achieve higher performance than the former, due to USB

data transfer overhead.

Because of how MATLAB’s DSP toolbox interfaces with audio hardware, there is a double

buffer both reading from and writing to audio hardware. As a result, much of the code focuses

on a lightweight audio hardware interface, in order to have the smallest achievable audio

buffer. To help achieve this, the MATLAB implementation spreads data acquisition and pro-

cessing across two threads, due to the higher computational overhead of the interpreted pro-

gramming language.

The most versatile implementation, MATLAB runs on a variety of hardware and operating

systems, and is perhaps the easiest to modify. While it did not perform as well as the other

implementations, the convenience may outweigh the timing performance penalty for some

experiments. Key to minimising jitter is the size of the audio buffer: on a 2014 Mac Mini run-

ning MATLAB 2015b the smallest buffer size that did not result in read overruns was about

4 ms.

As with the Swift detector, it is also possible to modify the MATLAB implementation to

generate the TTL pulse from a microcontroller (Arduino) controlled via a serial over USB

interface. This eliminates the double buffer required when sending triggers via the audio inter-

face, reducing latency by close to half.

2.3 Quantification

We measure accuracy and characterise timing for 6 randomly chosen points in one bird’s song

(lny64), and present accuracy results for seven more birds (the detector’s timing does not

appreciably vary across birds). The results presented here are representative of real-world per-

formance in feedback experiments on many birds in our lab.

Data consisted of extracted, aligned songs, and additional song-length samples of non-song

(cage noise, calls, other birds’ song). These were divided into training and test sets. For all

birds, we used 1000 songs and 1000 non-song samples for training. The test set consisted of

the remaining songs and an equal number of non-songs. Table 1 lists the test dataset sizes and

target detection points. For lny64, we arbitrarily chose six linearly spaced target times. For

each of the other birds, we eyeballed one promising-looking detection point.

The MATLAB neural network toolbox further divides our “training” set into internal train-

ing, validation, and test sets. Because we do our own testing on a distinct data set, we

instructed the toolbox to use 80% of its input set for training, and the remaining 20% for vali-

dation, with no hold-out test data.

Table 1. For each bird, detectors were trained for the specified timepoints, using 1000 songs and 1000

non-song samples of the same length. The test set consisted of the remaining songs and an equal number

of non-songs.

Bird Test songs = Test non-songs Target time (ms)

lny64 1818 150:50:400

lny46 1000 195

lny42 1245 380

lny4rb 1000 250

lr12 2000 180

lr13 2000 300

lr28 3000 140

lr77 2000 320

https://doi.org/10.1371/journal.pone.0181992.t001

A fast and accurate zebra finch syllable detector

PLOS ONE | https://doi.org/10.1371/journal.pone.0181992 July 28, 2017 8 / 18

https://doi.org/10.1371/journal.pone.0181992.t001
https://doi.org/10.1371/journal.pone.0181992

Because the data set consists of temporally aligned songs, the moment at which detection

should occur during each song sample is available (albeit with minor variations due to the

alignment process used [11]). The detector can be checked by comparing its response to the

recorded training songs against these “canonical” detection events. To this end, besides the

trained network object, our learning code produces an audio file consisting of all of the train-

ing data on the left audio channel and a delta function at each aligned moment of target sylla-

ble presentation on the right channel. Thus, when played on any audio player, the left channel

may be provided as input to the detector, and the the detector’s output pulses may be com-

pared against the “ground truth” given by the canonical detection event provided by the right

channel.

2.3.1 Accuracy. We define the accuracy of the network based on its classification perfor-

mance per frame. In order to avoid the apparent problem of every non-detected non-matching

frame counting as a true negative, we also tried defining accuracy on a per-song basis, such

that a song-length sample without the target syllable counted as a single true negative. Com-

puting the optimal output thresholds on a per-frame rather than a per-song basis resulted in

higher thresholds and thus a slight reduction in both the false-positive and true-positive rates

(reversible by increasing Cn), while also providing a valid definition of the false-positive rate

for data streams that had not been segmented into song-sized chunks and thus allowing easy

interpretation of false-positive rates from calls, cage noise, etc.

The accuracy as defined above is used for computing the optimal thresholds above which

the network’s output should be interpreted as a match on the training data as described in Sec-

tion 2.1.6, for evaluation of the detectors on the training songs, and while live.

2.3.2 Timing. We evaluate the time taken from the complete presentation of each instance

of the target syllable to the firing of the detector’s TTL pulse. For example, if the target trigger

point is at 200 ms with respect to the corpus of aligned songs, and if the detection region is

30 ms long, then when the detector has seen the region from 170–200 ms, it should recognise

the syllable. If for a given presentation of the song the detector fires at 203 ms, we take the

latency on that trial to be 3 ms.

While playing the audio test file from any audio playback device, we used the TTL output

from the ground-truth channel of the audio output as the trigger pulse for an oscilloscope, and

compared it to the TTL pulse produced by the detector, which sees only the birdsong channel

of the audio file. For this purpose we used a pulse generator (Philips PM 5715, with a listed

latency of 50 ns, jitter of� 0.1% or 50 ps, whichever is greater) to widen the detector’s output

spike to a number much larger than the jitter (*100 ms). This obviates pulse length variability

in the output device by essentially discarding the falling edge of the output pulse. The oscillo-

scope is then set to averaging mode (128-trigger average) in order to collect timing data. The

canonical signal is the trigger at t = 0, and the average of the detector’s detection events will be

seen as a low-to-high transition with form approximating the cumulative probability distribu-

tion function (CDF) of the detector’s output in response to the chosen song event, with indi-

vidual detection events visible as steps in this curve.

We define latency as the time between the training target (during our tests, this is indicated

by the canonical signal in the test file) and the corresponding detection event. It is a helpful

number, but not a critical one; due to the stereotyped song of the zebra finch, a detector with

high but constant latency can often be trained to trigger at a point somewhat before the true

moment of interest (for example, if triggering should occur at the very beginning of a syllable,

the detector may be trained to recognise the previous syllable and the gap thereafter). Usually

the variability in latency is the more important number. We define jitter as the standard devia-

tion of detection latency, measured over the test songs.

A fast and accurate zebra finch syllable detector

PLOS ONE | https://doi.org/10.1371/journal.pone.0181992 July 28, 2017 9 / 18

https://doi.org/10.1371/journal.pone.0181992

When measuring timing, it is useful to compare against a theoretical optimal, in order to

control for any imprecision in the song extraction and alignment of our real data inherent in

the method we use (described in [11]). We propose two measures thereof:

First we test the “ideal” latency and jitter in the time shift used in calculating new columns

of the spectrogram. By passing a recorded audio sequence into the detector offline, and assum-

ing no input or output latency, we compare how many additional audio samples beyond the

syllable are needed before the spectrogram can match the inputs needed to trigger the neural

network. This latency reflects the FFT size used for calculating the spectrogram, the FFT time

shift between columns in the spectrogram, and the width of the Gaussian smoothing kernel

applied to the ground truth data when training the neural network, but ignores computation

times, audio buffers, and other operating system overhead.

Next we use a “δ-syllable” consisting of a δ function in the time domain, and train the net-

work to trigger 5 ms after this pulse. This song is fed into the live detector. The results for this

measurement show the latency and jitter inherent in the complete detector including audio

read and write buffers, classifier computation, and FFT time shift aliasing, but excluding

imprecision in the song alignment as well as detection timing effects due to differences

between instances of the bird’s song.

Finally, we measure latency on real bird song aligned as in [11]. This extracts and aligns the

centres of the sampled songs, and the canonical signal is given with respect to that alignment.

These timing measurements reflect not only detector performance, but also the variability of

the bird’s song.

2.4 Ethics

All procedures were approved by the Institutional Animal Care and Use Committee of Boston

University (protocol number 14-029).

3 Results

Fig 1 shows a typical song. The image is produced by averaging the aligned spectrograms for

the bird lny64. Six target trigger points are shown for this song, at 150, 200, 250, 300, 350, and

400 milliseconds after the beginning of the aligned samples, as indicated by the red lines. In

discussion, we will refer to these six as t�
1

. . . t�
6

respectively. To avoid overlap in the graphic,

the rectangles show a shorter recognition window than our standard: here 30 ms, but still

spanning 1–8 kHz, for each target time in the song.

The first two triggers, t�
1

at 150 ms and t�
2

at 200 ms, are far from pure tones, but are closer

to bandpass-filtered white noise. They would be difficult for a harmonic-stack filter bank to

detect, and especially to pinpoint in time. t�
3

(250 ms) and t�
6

(400 ms) are rich in overtones

and contain downward slides with changing timbres. t�
4

(300 ms) occurs near the beginning of

a more typical harmonic stack amenable to a variety of recognition techniques, although con-

sistently detecting a point partway through the syllable demands a detector that can use multi-

ple time steps. t�
5

(350 ms) shows a steady pitch followed by a complex changing tone

structure.

An example of the detector’s output for three of these syllables is shown in Fig 2. The total

audio energy of each song is shown as a single grayscale row. By sorting according to time of

each syllable’s detection, the rest of the song is shown in the context of the timing for that

moment. This gives an intuition of the timing variability within each song and across songs

(which is responsible for a small amount of our measured jitter, but note that few of the songs

are significantly time-shifted).

A fast and accurate zebra finch syllable detector

PLOS ONE | https://doi.org/10.1371/journal.pone.0181992 July 28, 2017 10 / 18

https://doi.org/10.1371/journal.pone.0181992

3.1 Accuracy

We allowed our training software to allocate our default of 4 hidden units per syllable, and

computed a new FFT every 1.5 ms. Because our timing test files are designed for our stereo

playback software, allowing only one channel for the ground-truth pulse, we trained one detec-

tor for each syllable for the following results. In order to eliminate the large number of vari-

ables involved in microphone, cage, playback and re-digitising, we evaluated the neural

network’s accuracy directly on the digitised recording. When training and runtime data are

gathered on the same hardware setup, this is the digital signal that the detector will see.

Accuracies are shown in Fig 3 (accuracies for the synthetic δ-function songs were always

100%). For each test syllable we trained 100 different networks, which differ from each other

both in the random initialisation of network weights and in the random subset of the song-

and-nonsong corpus that was used for training. Each network’s accuracy is shown as a single

Fig 2. Each plot shows one network output unit’s responses to all 2818 presentations of lny64’s song

shown in Fig 1. We show only the syllables t�
1
, t�

4
, and t�

6
, and we do not show the non-response to

presentation of non-song. The horizontal axis is time relative to the beginning of the aligned song, and the

vertical axis is an index for the 2818 individual song presentations. The grey shading shows the audio

amplitude of song Y at time T. Detection events on training songs are shown in cyan, with detections of

unseen test songs in red. To provide an intuition of intra-song variability, songs have been stably sorted by the

time of detection events; thus, each of the three detection graphs shows the songs in a different order.

https://doi.org/10.1371/journal.pone.0181992.g002

A fast and accurate zebra finch syllable detector

PLOS ONE | https://doi.org/10.1371/journal.pone.0181992 July 28, 2017 11 / 18

https://doi.org/10.1371/journal.pone.0181992.g002
https://doi.org/10.1371/journal.pone.0181992

point in each chart in Fig 3, and the means are shown in Table 2. Evidently some syllables are

easier to identify reliably than others (for example, for lny64, t�
3

(250 ms) and t�
6

(400 ms) are

occasionally confused due to their similar appearance, as could be guessed from Fig 1); thus, if

the experimental design permits, it can be worthwhile to choose an easily identifiable syllable.

Furthermore, as can be seen from Fig 3, for difficult syllables the training process occasionally

Fig 3. Accuracy variability over 100 different training runs for each of the test detection points. Each dot shows the

test-set accuracy for an independently trained detector. Because the horizontal positions have been randomised slightly so

as not to occlude same-valued measurements, test syllable is also indicated by colour. The means are given in Table 2.

https://doi.org/10.1371/journal.pone.0181992.g003

Table 2. Mean values for the detection accuracies shown in Fig 3.

Bird Target time (ms) % True positives % False positives

lny64 150 ½t�
1
� 99.66 0.0026

200 ½t�
2
� 99.75 0.00052

250 ½t�
3
� 99.79 0.00051

300 ½t�
4
� 99.70 0.00077

350 ½t�
5
� 99.73 0.00022

400 ½t�
6
� 99.52 0.0010

lny42 380 99.09 0.0011

lny46 140 99.11 0.0036

lny4rb 250 99.37 0.0026

lr12 180 99.52 0.0033

lr13 300 99.83 0.0013

lr28 140 99.73 0.0028

lr77 320 99.58 0.0028

https://doi.org/10.1371/journal.pone.0181992.t002

A fast and accurate zebra finch syllable detector

PLOS ONE | https://doi.org/10.1371/journal.pone.0181992 July 28, 2017 12 / 18

https://doi.org/10.1371/journal.pone.0181992.g003
https://doi.org/10.1371/journal.pone.0181992.t002
https://doi.org/10.1371/journal.pone.0181992

yields a network that performs unusually poorly. It is easy to spot these networks by their per-

formance either as measured as part of the training process or on the test audio file, perhaps

taking the best of a few training runs.

We repeated the above experiment using only 2 hidden units per syllable. Training under

this condition is much faster, but the mean true positive rate per syllable decreases by an aver-

age of 18% across our test syllables, and the mean false positive rate increases by roughly 23%.

Changing the FFT interval to 2 ms significantly reduces the computational requirement

during learning. For most syllables, results were identical, but some syllables are slightly easier

to detect and some slightly more difficult, with no significant difference on average.

3.2 Timing

We evaluate variability in timing performance across three variables: FFT frame interval; sylla-

ble choice; and detector implementation.

3.2.1 FFT frame interval. Detector latency and jitter depend on the FFT frame rate. Our

1.5-ms–frame default is a compromise: shorter frames increase the precision of timing, but

also increase computational requirements both during training and at runtime. Fig 4 shows

how these numbers vary over a useful range of frame rates on our ideal detector, the Swift

detector with serial output, and for the LabVIEW detector, for both the δ-syllable and for

lny64’s song at t�
4
.

3.2.2 Syllable choice. Syllable choice impacts detector performance, but despite the vari-

ety of syllables shown here, performance was stable across syllables. Fig 5 shows measured

timing data for lny64’s test syllables for the Swift+serial detector compared to the ideal, with

tfft = 1.5 ms. Given the variety of the test syllables, the variability is surprisingly low, and is

summarised in Table 3.

The negative latency is due to the way in which the network responds to the song through

time: as the recognition region looks increasingly similar to the trained match, the network’s

evaluation of similarity rises, and will generally cross the triggering threshold before it reaches

its maximum value. A heuristic as simple as triggering at an apparent turning point after cross-

ing the threshold might improve timing consistency at the expense of latency, but we did not

test this.

Fig 4. Timing varies as the FFT frame interval changes. Here we show results for the ideal detector and

the LabVIEW and Swift+serial implementations, for the constructed δ-syllable and for trigger t�
4

of lny64’s

song. The lines show latency; error bars are standard deviation (jitter). Points have been shifted horizontally

slightly for clarity; original positions are [0.5 1 1.5 2 4] ms.

https://doi.org/10.1371/journal.pone.0181992.g004

A fast and accurate zebra finch syllable detector

PLOS ONE | https://doi.org/10.1371/journal.pone.0181992 July 28, 2017 13 / 18

https://doi.org/10.1371/journal.pone.0181992.g004
https://doi.org/10.1371/journal.pone.0181992

3.2.3 Detector implementations. We compared latency and jitter across our different

detector implementations for the δ-syllable and lny64’s t�
4
, again with tfft = 1.5 ms. Results are

shown in Table 4 and Fig 6. Fig 7 gives a more detailed view of what the timing curves look

like for the five implementations of our detector on lny64’s t�
4
.

4 Discussion

This syllable detector is appropriate for zebra finch song, and although our tests were carried

out on songs from that species, it is also likely to work well for Bengalese finches due to their

similarly stereotyped syllables. It offers the following benefits:

Fig 5. Timing data for lny64’s 6 test syllables, for the ideal and the Swift+serial detectors, with an FFT

frame rate of 1.5 ms. Point centres show latency; error bars show jitter.

https://doi.org/10.1371/journal.pone.0181992.g005

Table 3. Latency and jitter variability (95% confidence) for lny64’s six test syllables.

Detector Latency Jitter

Ideal −0.8 ± 0.3 ms 2.1 ± 0.1 ms

Swift+serial 0.0 ± 0.6 ms 2.0 ± 0.1 ms

https://doi.org/10.1371/journal.pone.0181992.t003

Table 4. Latency and jitter for each of our detector implementations on the synthetic δ-syllable and on syllable t�
4

from lny64.

Detector δ-syllable lny64: t�
4

Latency (ms) Jitter (ms) Latency (ms) Jitter (ms)

Ideal 0.66 0.38 -1.0 2.0

LabVIEW 1.5 0.69 -0.18 2.4

Swift+serial 0.88 1.6 -0.075 2.0

Swift+audio 5.9 2.6 1.2 4.9

MATLAB+serial 8.1 2.3 3.8 2.0

MATLAB+audio 13 5.9 8.4 5.9

https://doi.org/10.1371/journal.pone.0181992.t004

A fast and accurate zebra finch syllable detector

PLOS ONE | https://doi.org/10.1371/journal.pone.0181992 July 28, 2017 14 / 18

https://doi.org/10.1371/journal.pone.0181992.g005
https://doi.org/10.1371/journal.pone.0181992.t003
https://doi.org/10.1371/journal.pone.0181992.t004
https://doi.org/10.1371/journal.pone.0181992

• The detector is accurate. False negative and false positive rates can be well under 1% and

0.005% respectively, and trading these two numbers off against each other is through a single

relative-cost parameter.

• Latency is generally under a millisecond, with jitter around 2 ms.

• Works on a wide range of target syllables using the default values described here, generally

eliminating the need for hand-tuning.

• Runs fast enough for syllable-modification experiments on inexpensive consumer-grade

hardware, although we recommend that the training phase be run on a fast desktop system

with 32 GB of RAM.

• A single detector can generate different target pulses for multiple syllables at almost no addi-

tional computational cost during runtime, although training time will increase.

Although there are differences, the Swift+serial detector and the LabVIEW implementation

are roughly comparable in performance. We prefer the Swift implementation due to its lower

hardware and software requirements and the difficulty of debugging LabVIEW programmes.

With serial output, MATLAB’s performance is good, although its buffer handling is sensitive

to system load.

Fig 6. The different detectors for the constructed δ-syllable and for lny64’s song at t�
4
. Point centres

show latency; error bars show jitter.

https://doi.org/10.1371/journal.pone.0181992.g006

A fast and accurate zebra finch syllable detector

PLOS ONE | https://doi.org/10.1371/journal.pone.0181992 July 28, 2017 15 / 18

https://doi.org/10.1371/journal.pone.0181992.g006
https://doi.org/10.1371/journal.pone.0181992

The songs presented here were recorded with fixed microphones mounted inside the cages.

We found that higher accuracy is achieved when a microphone is instead mounted on the

bird’s head, which maintains volume and reduces changes in timbre as the bird moves.

A common experimental paradigm requires detecting the frequency of syllables. Many

pitch detection techniques rely on the spectrum, which incurs no additional computational

cost here since it is already available. For example, [8] achieved good results with the Har-

monic Product Spectrum algorithm [15].

In order to monitor syllable duration, the beginning and end of a syllable may be detected

by looking at the ratio of total energy in the singing frequency band to the total energy, over

some small time window. Any syllable thus identified that also contains a trigger event may be

monitored for duration. Alternatively, the network can be trained to recognise both the begin-

ning and the end of the syllable of interest.

In feedback experiments such as frequency- or duration-shifting, vocal output changes over

the course of the experiment. The neural network excels at identifying syllables close to its

training set, so as vocal output changes the detector may not recognise a match. If the detector

must be robust to this shift, it may be retrained as often as necessary as the bird learns, or data

consisting of synthetically pitch-shifted or duration-shifted target syllables over the recogni-

tion region may be added to the training set. We will test these approaches in future work.

Supporting information

S1 Appendix A. Online resources. Where to find the datasets and software introduced in this

paper, with an overview of how to install and use the packages.

(PDF)

Fig 7. Raw timing curves for all detectors measured during detection of lny64’s t�
4

using 1.5-ms

frames. We extract the trigger events from each curve, from which we obtain the mean—latency—and

standard deviation—jitter.

https://doi.org/10.1371/journal.pone.0181992.g007

A fast and accurate zebra finch syllable detector

PLOS ONE | https://doi.org/10.1371/journal.pone.0181992 July 28, 2017 16 / 18

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0181992.s001
https://doi.org/10.1371/journal.pone.0181992.g007
https://doi.org/10.1371/journal.pone.0181992

Acknowledgments

We would like to thank Winthrop F. Gillis, William A. Liberti, and Sanne Moorman for their

improvements to the draft.

Author Contributions

Conceptualization: BP TJG.

Data curation: BP LNP JEM.

Formal analysis: BP LNP JEM.

Funding acquisition: TJG.

Investigation: BP LNP.

Methodology: BP LNP JEM TJG.

Project administration: BP TJG.

Resources: TJG.

Software: BP LNP JEM.

Supervision: TJG.

Validation: BP LNP.

Visualization: BP LNP.

Writing – original draft: BP.

Writing – review & editing: BP LNP.

References
1. Kao MH, Doupe AJ, Brainard MS. Contributions of an avian basal ganglia–forebrain circuit to real-time

modulation of song. Letters to Nature. 2005 February; 433:638–643. Available from: http://www.nature.

com/nature/journal/v433/n7026/abs/nature03127.html.

2. Wang CZH, Herbst JA, Keller GB, Hahnloser RHR. Rapid Interhemispheric Switching during Vocal Pro-

duction in a Songbird. PLOS Biology. 2008 October; 6(10). Available from: http://journals.plos.org/

plosbiology/article?id=10.1371/journal.pbio.0060250.

3. Keller GB, Hahnloser RHR. Neural processing of auditory feedback during vocal practice in a songbird.

Nature. 2009 January; 457:187–190. Available from: http://www.nature.com/nature/journal/v457/

n7226/abs/nature07467.html. PMID: 19005471

4. Tumer EC, Brainard MS. Performance variability enables adaptive plasticity of’crystallized’ adult bird-

song. Nature. 2007 December; 450:1240–1244. Available from: http://www.nature.com/nature/journal/

v450/n7173/abs/nature06390.html. PMID: 18097411

5. Andalman AS, Fee MS. A basal ganglia-forebrain circuit in the songbird biases motor output to avoid

vocal errors. Proceedings of the National Academy of Sciences of the United States of America. 2009

July; 106(30):12518–12523. Available from: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2709669/.

https://doi.org/10.1073/pnas.0903214106 PMID: 19597157

6. Charlesworth JD, Tumer EC, Warren TL, Brainard MS. Learning the microstructure of successful

behavior. Nature Neuroscience. 2011; 14(3):373–380. Available from: http://www.ncbi.nlm.nih.gov/

pmc/articles/PMC3045469/. https://doi.org/10.1038/nn.2748 PMID: 21278732

7. Warren TL, Tumer EC, Charlesworth JD, Brainard MS. Mechanisms and time course of vocal learning

and consolidation in the adult songbird. Journal of Neurophysiology. 2011 October; 106(4):1806–1821.

Available from: http://jn.physiology.org/content/106/4/1806.full. PMID: 21734110

8. Canopoli A, Herbst JA, Hahnloser RHR. A Higher Sensory Brain Region Is Involved in Reversing Rein-

forcement-Induced Vocal Changes in a Songbird. The Journal of Neuroscience. 2014; 34(20):

7018–7026. Available from: http://www.jneurosci.org/content/34/20/7018.full. PMID: 24828654

A fast and accurate zebra finch syllable detector

PLOS ONE | https://doi.org/10.1371/journal.pone.0181992 July 28, 2017 17 / 18

http://www.nature.com/nature/journal/v433/n7026/abs/nature03127.html
http://www.nature.com/nature/journal/v433/n7026/abs/nature03127.html
http://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.0060250
http://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.0060250
http://www.nature.com/nature/journal/v457/n7226/abs/nature07467.html
http://www.nature.com/nature/journal/v457/n7226/abs/nature07467.html
http://www.ncbi.nlm.nih.gov/pubmed/19005471
http://www.nature.com/nature/journal/v450/n7173/abs/nature06390.html
http://www.nature.com/nature/journal/v450/n7173/abs/nature06390.html
http://www.ncbi.nlm.nih.gov/pubmed/18097411
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2709669/
https://doi.org/10.1073/pnas.0903214106
http://www.ncbi.nlm.nih.gov/pubmed/19597157
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3045469/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3045469/
https://doi.org/10.1038/nn.2748
http://www.ncbi.nlm.nih.gov/pubmed/21278732
http://jn.physiology.org/content/106/4/1806.full
http://www.ncbi.nlm.nih.gov/pubmed/21734110
http://www.jneurosci.org/content/34/20/7018.full
http://www.ncbi.nlm.nih.gov/pubmed/24828654
https://doi.org/10.1371/journal.pone.0181992

9. Leonardo A, Konishi M. Decrystallization of adult birdsong by perturbation of auditory feedback. Nature.

1999 June; 399:466–470. Available from: http://www.nature.com/nature/journal/v399/n6735/abs/

399466a0.html. PMID: 10365958

10. Skocik M, Kozhevnikov A. Real-time system for studies of the effects of acoustic feedback on animal

vocalizations. Frontiers in Neural Circuits. 2013 January; 6(111). Available from: http://www.ncbi.nlm.

nih.gov/pmc/articles/PMC3539774/. https://doi.org/10.3389/fncir.2012.00111 PMID: 23316137

11. Poole B, Markowitz JE, Gardner TJ. The Song Must Go On: Resilience of the Songbird Vocal Motor

Pathway. PLOS One. 2012 June; 7(6). Available from: http://journals.plos.org/plosone/article?id=10.

1371/journal.pone.0038173. https://doi.org/10.1371/journal.pone.0038173

12. Tchernichovski O. Sound Analysis Pro User Manual; 2011. Available from: http://soundanalysispro.

com/manual-1.

13. Jacobsen E, Lyons R. The sliding DFT. IEEE Signal Processing Magazine. 2003 Mar; 20(2):74–80.

Available from: http://www.cmlab.csie.ntu.edu.tw/DSPCourse/reference/Sliding%20DFT.pdf. https://

doi.org/10.1109/MSP.2003.1184347

14. Hertz JA, Krogh AS, Palmer RG. Introduction to the Theory of Neural Computation. Perseus Books;

1991.

15. Noll AM. Pitch determination of human speech by the harmonic product spectrum, the harmonic sum

spectrum, and a maximum likelihood estimate. In: Proceedings of the symposium on computer process-

ing in communications. vol. 19; 1970. p. 779–797.

A fast and accurate zebra finch syllable detector

PLOS ONE | https://doi.org/10.1371/journal.pone.0181992 July 28, 2017 18 / 18

http://www.nature.com/nature/journal/v399/n6735/abs/399466a0.html
http://www.nature.com/nature/journal/v399/n6735/abs/399466a0.html
http://www.ncbi.nlm.nih.gov/pubmed/10365958
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3539774/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3539774/
https://doi.org/10.3389/fncir.2012.00111
http://www.ncbi.nlm.nih.gov/pubmed/23316137
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0038173
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0038173
https://doi.org/10.1371/journal.pone.0038173
http://soundanalysispro.com/manual-1
http://soundanalysispro.com/manual-1
http://www.cmlab.csie.ntu.edu.tw/DSPCourse/reference/Sliding%20DFT.pdf
https://doi.org/10.1109/MSP.2003.1184347
https://doi.org/10.1109/MSP.2003.1184347
https://doi.org/10.1371/journal.pone.0181992

