Skip to main content
. 2017 Jul 18;11(7):e0005729. doi: 10.1371/journal.pntd.0005729

Table 2. Tweets are a useful tool for estimating Dengue activity at country level.

Comparison between the selected model and other models with combinations of the variables: tweets, Dengue cases and temporal structures; using AIC, explained deviance and mean relative error as estimation capacity indicators.

Explanatory Variables Model
(Dengue ~ Negative Binomial (μt, k))
AIC Deviance Explained Mean relative error *
Tweets + temporal structure
+ Dengue cases (three weeks lag)
log(μt) = ƒ1(Tweetst) + Dent-3 + ƒ2(weekt) + eyeart + β0 3805.44 93.8 0.344
Tweets + temporal structure
(SELECTED MODEL)
log(μt) = ƒ1(Tweetst) + ƒ2(weekt) + eyeart + β0 3805.52 93.7 0.345
Temporal structure
+ Dengue cases (three weeks lag)
log(μt) = ƒ(weekt) + eyeart + Dent-3 + β0 3917.47 88.5 0.442
Temporal structure only log(μt) = ƒ(weekt) + eyeart + β0 3948.18 86.6 0.510
Tweets
+ Dengue cases (three weeks lag)
log(μt) = ƒ(Tweetst) + Dent-3 + β0 4027.69 79.3 0.694
Tweets only log(μt) = ƒ(Tweetst) + β0 4103.40 69.7 0.954
Dengue cases (three weeks lag) only log(μt) = ƒ(Den t-3) + β0 4113.61 67.8 0.707

* mean absolute relative difference between predicted Dengue cases and observed cases