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Abstract

Background—Proper mitochondrial function is essential to maintain normal cellular 

bioenergetics and ionic homeostasis. In instances of severe tissue damage, such as traumatic brain 

and spinal cord injury, mitochondria become damaged and unregulated leading to cell death. The 

relatively unexplored field of mitochondrial transplantation following neurotrauma is based on the 

theory that replacing damaged mitochondria with exogenous respiratory-competent mitochondria 

can restore overall tissue bioenergetics.

New Method—We optimized techniques in vitro to prepare suspensions of isolated mitochondria 

for transplantation in vivo. Mitochondria isolated from cell culture were genetically labeled with 

turbo-green fluorescent protein (tGFP) for imaging and tracking purposes in vitro and in vivo.

Results—We used time-lapse confocal imaging to reveal the incorporation of exogenous 

fluorescently-tagged mitochondria into PC-12 cells after brief co-incubation. Further, we show 

that mitochondria can be injected into the spinal cord with immunohistochemical evidence of host 

cellular uptake within 24 hours.

Comparison to Existing Methods—Our methods utilize transgenic fluorescent labeling of 

mitochondria for a nontoxic and photostable alternative to other labeling methods. Substrate 

addition to isolated mitochondria helped to restore state III respiration at room temperature prior 

to transplantation. These experiments delineate refined methods to use transgenic cell lines for the 

purpose of isolating well coupled mitochondria that have a permanent fluorescent label that allows 

real time tracking of transplanted mitochondria in vitro, as well as imaging in situ.

Conclusions—These techniques lay the foundation for testing the potential therapeutic effects 

of mitochondrial transplantation following spinal cord injury and other animal models of 

neurotrauma.
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1. Introduction

Mitochondria are widely referred to as the powerhouse of the cell. They sustain life by 

providing the cell with energy in the form of adenosine triphosphate (ATP) via a process 

known as oxidative phosphorylation, and are crucial regulators of calcium buffering and 

apoptosis (Nunnari & Suomalainen 2012). Since mitochondria are vital to maintain normal 

cellular functions, their dysfunction can have widespread and devastating effects. 

Mitochondrial dysfunction has long been associated with neuronal trauma and ischemia/

reperfusion damage to central nervous system tissues (Azbill et al 1997, Fiskum 2000, 

Sullivan et al 2005, Visavadiya et al 2015). Promising pharmacotherapies have been 

developed to target mitochondrial dysfunction using antioxidants (Bains & Hall 2012, 

Gilgun-Sherki et al 2002, Jin et al 2014, Patel et al 2014, Smith et al 2008), electron 

transport system (ETS) uncouplers (Cunha et al 2011, Jin et al 2004, Patel et al 2009b, 

Rodriguez-Jimnez et al 2012, Sullivan et al 2004), and alternative biofuels (Patel et al 2010, 

Petruzzella et al 1992) to feed into the electron transport system. In the burgeoning field of 

organelle transplantation, a novel paradigm has emerged to transplant exogenous, well-

coupled mitochondria to replace those that are nonfunctional. As evidenced with earlier 

experiments, not only can this approach supplement the original pool of mitochondria with 

more endogenous antioxidant systems and improve energy producing capabilities, but it can 

also replace those mitochondria that are too damaged to function (Islam et al 2012, Katrangi 

et al 2007, Masuzawa et al 2013).

Mitochondrial transplantation has been shown to have beneficial effects in different injury 

models in vitro using co-incubation methods (Chang et al 2013b, Clark & Shay 1982, Elliott 

et al 2012, Katrangi et al 2007), direct injection techniques (King & Attardi 1988) or co-

cultured cell delivery approaches (Cselenyak et al 2010, Plotnikov et al 2008, Spees et al 

2006, Wang & Gerdes 2015, Yang & Koob 2012); as well as in vivo using direct injections 

(Masuzawa et al 2013) or cell-to-cell transfer (Islam et al 2012). In the emerging field of 

mitochondrial medicine (for reviews see (Armstrong 2007, Luft 1994), mitochondrial 

transplantation has a unique set of caveats that require careful consideration. Multiple labs 

have shown that exogenous mitochondria can be integrated into host cells (Chang et al 

2013b, Clark & Shay 1982, Cselenyak et al 2010, Islam et al 2012, Katrangi et al 2007, 

Kitani et al 2014a, Masuzawa et al 2013, Pacak et al 2015, Spees et al 2006). Relevant to the 

current study, verification of mitochondrial incorporation into host tissues has been 

performed using various techniques including quantifying transplanted mitochondrial DNA 

(Islam et al 2012, Spees et al 2006, Yang & Koob 2012) or visualizing mitochondria with 

transgenic labeling or post-isolation fluorescence tagging (Chang et al 2013b, Clark & Shay 

1982, Kitani et al 2014a, Lin et al 2013, Masuzawa et al 2013, McCully et al 2009, 

Plotnikov et al 2008). More recently, it has been reported that mitochondrial particles are 

transferred from astrocytes into nearby damaged neurons after ischemic stroke in mice, 

resulting in neuroprotection (Hayakawa et al 2016). This group also showed that injecting 
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isolated mitochondria particles labeled with MitoTracker Red CMXRos into the mouse brain 

allows for tracking of mitochondria in distinct cell types in the CNS in situ.

Using fluorescent mitochondrial labels does not come without its caveats. Different 

mitochondrial dyes have been utilized when tracking mitochondria in vitro (Chang et al 

2013b, McCully et al 2009, Plotnikov et al 2008). Transgenic labeling of mitochondria in 
vitro provides a stable alternative to labeling with more photosensitive MitoTracker dyes 

(Rizzuto et al 1996, Shitara et al 2001). While MitoTracker Green FM is a dye whose 

fluorescence intensity is altered with changing membrane potentials (Keij et al 2000), it is 

reported that the MitoTracker dyes can inhibit mitochondrial respiration (Buckman et al 

2001). The latter group reported that upon mitochondrial damage, such as uncoupling using 

FCCP, MitoTracker dyes were released into the cell cytoplasm, indicating that these dyes are 

not irreversibly bound to the mitochondria. MitoTracker Green FM is reported to be 

cytotoxic in Hela cells even at low concentrations of 250 nM (Han et al 2013), and 

MitoTracker Red CMXRos is toxic to human 143B osteosarcoma cells (Minamikawa et al 

1999). CMXRos is a photosensitizer that causes chemical damage when subjected to laser 

scanning, such as used in confocal imaging.

In order to address the fidelity of using fluorescent trackers to label exogenous mitochondria 

without leakage of the label, we investigated the use of transgenically-labeled mitochondria 

isolated from cell culture compared to traditionally labeled MitoTracker mitochondria to 

ascertain which could provide a non-toxic, indelible tag that allows for long-term 

visualization of transplanted mitochondria in vitro. After we established optimal isolation 

protocols to obtain well-coupled and easily identifiable mitochondria for characterizing 

transplantation into cell cultures, we further addressed technical hurdles for transplanting 

mitochondria in vivo. In summary, we show successful passive transplantation of exogenous, 

transgenically labeled mitochondria both into PC-12 cells in vitro and within various host 

cells in the rat spinal cord in situ. This sets the stage to apply these techniques to injured 

spinal cord tissue to discern cell type incorporation and the effects of mitochondrial 

transplantation on overall bioenergetics and tissue sparing.

2. Materials and Methods

2.1 Transgenic Labeling of PC-12 Cells

The section of the plasmid vector pTurbo-GFP-mito (evrogen cat # FP517 Farmingdale, 

NY) containing the sequence coding for both the turbo green fluorescent protein (tGFP) and 

the mitochondrial targeting sequence was removed and inserted into a pIRESpuro3 vector. 

Briefly, the restriction enzymes NheI-HF and NotI-HF were used to digest both vectors. 

NheI cuts the pTurbo-GFP-mito vector at the 591 position, and NotI cuts at the 1406 

position. Within these cuts are the mitochondrial targeting sequence and the turbo-GFP 

coding sequence. This insert was then gel purified and ligated with the PIRESpuro3 vector 

using a rapid DNA ligation kit (Roche). The resulting plasmid contained CMV promoter, the 

mitochondrial targeting sequence, tGFP coding sequence, and puromycin resistance 

sequence. OneShotStbl3 E. coli (Invitrogen cat no C7373-03 Carlsbad, CA) were then 

transformed with the resulting plasmid. Briefly, the plasmid was diluted to 1ng/μL and used 

according to manufacturer protocol for E. coli transformation. One colony from the resulting 
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plate was then selected for plasmid DNA purification using a Miniprep kit (Qiagen 27106 

Valencia, CA) according to manufacturer’s protocol. PC-12 Adh (ATCC CRL-1721.1 

Manassas, VA) cells used in these experiments were grown at 37°C with 95% air, 5% CO2 in 

complete growth media consisting of F-12K Medium (ATCC cat # 30-2004 Manassas, VA) 

with 2.5% fetal bovine serum (Atlanta Biologicals # S1111OH, Atlanta, GA), 15% horse 

serum (Gibco # 26050-070), and 1.1% penicillin streptomycin (Corning # 30-002-CI, 

Tewksbury, MA). Cells were passaged every 3–4 days. Transfection was carried out using 

LipoJet In Vitro DNA and siRNA Transfection kit (SignaGen Laboratories Rockville, MD) 

according to manufacturer’s protocol for transfecting adherent cells. At 24 hours after 

transfection, selective media (3ug/mL puromycin in complete media) was applied to the 

cells. Cells were stably transfected by continual growth in selective media for the remainder 

of the studies.

2.2 Mitochondrial Isolation from Cell Culture

Isolation of mitochondria from cell culture was carried out by using techniques for isolating 

mitochondria from spinal cords (Patel et al 2014), with modifications for removing PC-12 

Adh cells from culture plates and homogenization with additional nitrogen bomb steps to 

ensure cellular disruption. Briefly, cells were removed from 15cm culture plates at 95% 

confluence by trypsinization (0.25% Trypsin EDTA) or manual cell scraping, as described 

for experiments comparing cell removal techniques. Cells were concentrated by 

centrifugation at 500 × g for 5 min at 4°C and resuspended in 2 mL isolation buffer (215 

mM mannitol, 75 mM sucrose, 0.1% BSA, 20 mM HEPES, pH adjusted to 7.2 with KOH) 

containing 1 mM ethylene glycol tetraacetic acid (EGTA). The solution was centrifuged at 

1.8 rcf for 3min, 4°C. The resulting pellet was then resuspended and mechanically 

homogenized using a drill press with 10 gentle passes of the pestle into and out of the 

solution. The cells were then nitrogen bombed at 1500 psi, 10 min, 4°C to further release 

mitochondria from cells and increase yield. Mechanical homogenization was then repeated 

before the solution was again centrifuged at 1.8 rcf, 3 min, 4°C. The supernatant containing 

mitochondria was removed and saved in an Eppendorf tube to be combined at later step. To 

further increase mitochondrial yield, the pellet was resuspended in isolation buffer, and 

mechanical homogenization and nitrogen bombing steps were repeated. The solution was 

again centrifuged at 1.8 rcf, 3 min, 4°C, after which the supernatant containing mitochondria 

was saved and the pellet was again resuspended and underwent mechanical homogenization, 

nitrogen bombing, and centrifugation at 1.8rcf for 3min, 4°C. Finally, the 3 resulting 

supernatant portions that had been saved from previous steps were centrifuged at 13,000 rcf 

for 10 min at 4°C, and the pellets were then resuspended in isolation buffer, combined into 

one sample, and purified using ficoll gradient (7.5%/10%) centrifugation at 32,000 rpm for 

30 min, 4°C. After centrifugation, mitochondria remain in a pellet at the bottom of the tube. 

Importantly, we found that there is an inconspicuous layer of non-mitochondrial particles 

lying on top of the pellet that must be aspirated gently prior to removing the rest of the 

supernatant. The purified mitochondrial pellet was resuspended 600μL isolation buffer 

without EGTA and centrifuged at 10,000 rcf, 10 min, 4°C resulting in the final pellet which 

was then resuspended in 20 μL isolation buffer without EGTA. 2 μL of this was used in the 

Pierce BCA protein assay kit (Thermo Scientific cat# 23227 Rockford, IL) with the Biotek 
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Synergy HT plate reader (Winooski, VT) measuring absorbance at 560 nm to determine 

mitochondrial protein concentration.

2.3 MitoTracker Green Labeling and Filter Testing

Mitochondria were isolated from naïve, unlabeled PC-12 Adh cell cultures (see 2.2). After 

centrifugation at 10,000 rcf, 10min, 4°C, the mitochondria were labeled with MitoTracker 

Green FM (MTG, Invitrogen cat# M7514) according to manufacturer’s protocol. Briefly, 

mitochondria were incubated with 1 uM MTG for 5 min at room temperature, covered from 

light. The solution was centrifuged at 10,000 rcf, 10 min, 4°C to wash any remaining 

unbound MTG. The mitochondrial pellet was then resuspended in isolation buffer with 

EGTA, drawn into a 1mL syringe, slowly passed through a 0.2 μm pore Nalgene filter 

(Thermo Scientific cat # 723-2520) placed at the end of the syringe, and then seeded onto 35 

mm plates containing unlabeled PC-12 Adh cells. The cells were placed in a 37°C incubator 

for 1 hour, after which they were imaged using a Nikon confocal microscope (see 2.8). In 

tandem, a filter test was performed on isolated tGFP mitochondria, which were drawn into a 

separate syringe, passed through a filter and seeded onto naïve cells for imaging.

2.4 Transmission Electron Microscopy

For transmission electron microscopy (TEM), tGFP-labeled mitochondria were isolated as 

described above. After 10,000 rcf centrifugation, the mitochondrial pellet was fixed in 3% 

glutaraldehyde in sodium cacodylate buffer overnight at 4°C. The pellet was then rinsed in 

0.2M sodium cacodylate buffer 3 times for 5 minutes each at 4°C. The pellet was then 

placed in 2% osmium tetroxide for 1 hour at 4°C, followed by washing in distilled water 5 

times for 5 min each at 4°C. The pellet was then placed in 2% uranyl acetate overnight at 

4°C. The sample was rinsed in distilled water 5 times for 5 min each at room temperature, 

followed by sequential ethyl alcohol dehydrations in 30, 50, 70, and 90% EtOH for 10 min 

each at room temperature. This was followed by three washes in 100% EtOH for 15 min 

each wash at room temperature. The pellet was then washed in resin (23.1% ERL 4221 (3,4-

Epoxycyclohexylmethyl-3′,4′-epoxycyclohexane carboxylate) Electron Microscopy 

Sciences Hatfield PA), 18.5% DER (Diglycidyl ether of polypropylene glycol, Electron 

Microscopy Sciences Hatfield PA), 57.7% NSA (Nonenyl succinic anhydride, Electron 

Microscopy Sciences Hatfield PA), 0.69% DMAE (Dimethylaminoethanol, Electron 

Microscopy Sciences Hatfield PA) 3 times, each for 1 hour at room temperature with gentle 

spinning. The pellet was then cut into smaller sections, placed in fresh resin in molded 

blocks, and incubated at 60°F for 48 hours. The blocks were then trimmed and cut at 90 nm 

thickness using Ultracut UCT (Leica Microsystems, Buffalo Grove IL). The sections were 

placed onto copper grids and allowed to dry at room temp, covered to protect from dust 

accumulation, overnight. The mounted grids were then processed using lead citrate. Briefly, 

each grid was placed on top of a drop of 0.5% aqueous lead citrate at room temperature in a 

petri dish containing sodium hydroxide pellets to absorb carbon dioxide. The grids were left 

on the droplet for 3 minutes, then moved to a new droplet of distilled water, in turn 

“washing” the grid. The grid was then moved to a fresh droplet of water every 5 min, for a 

total of 5 washes. The grid was then dabbed with a Kimwipe to remove the excess water and 

allowed to dry. Grids were then imaged at 60kV on a Philips TECNAI 12 BT transmission 
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electron microscope. The images captured represent the inner portion of the mitochondria 

pellet.

2.5 Assaying Respiration of Isolated Mitochondria

Mitochondria, whether labeled or not, were assayed for oxygen consumption rates (OCR) 

immediately after isolation using the Seahorse Bioscience XFe Flux Analyzer as described 

previously (Sauerbeck et al 2011, Patel et al 2014). Briefly, isolated mitochondria were 

applied into cell plate cartridges that were then centrifuged to concentrate mitochondria to 

the bottom of each well. Then, automatically 5mM pyruvate/2.5 mM malate/1mM adenosine 

diphosphate (ADP), 1μg/uL oligomycin, 3 μM carbonilcyanide p-

trifluoromethoxyphenylhydrazone (FCCP), and 100nM rotenone/10mM succinate were 

sequentially added to each well. Oxygen levels were measured after each substrate/inhibitor 

addition over time to obtain OCR in each instance of manipulating different complexes of 

the electron transport system.

2.6 Co-incubation of PC-12 Cells with Transgenically-Labeled tGFP Mitochondria

Transgenically-labeled tGFP mitochondria were isolated from cell culture and then applied 

to confluent naïve (unlabeled) PC-12 Adh cells. tGFP mitochondria were isolated as 

described above (section 2.2) and diluted to desired concentrations using complete media at 

37°C. Naïve PC-12 cells were plated 24 hours prior in 35mm dishes (MatTek corp. Part no. 

P35GC-1.5-14-C Ashland, MA) with glass coverslip bottoms for imaging purposes. The 

media on naïve PC-12 cells was replaced with mitochondrial-supplemented media at 

concentrations of 5, 10, or 20 μg per 2mL of media, which was left on the cells for 1 or 2 

hours dependent on the experimental design at 37°C on a gently rocking platform. The 

mitochondria-enriched media was then aspirated and the cells were rinsed once, followed by 

replacement with fresh complete media at 37°C and imaging.

2.7 Imaging of PC-12 Adh Cells After Mitochondrial Transplantation

Cells were evaluated using a confocal Nikon Ti-e inverted microscope (Nikon Instruments 

Melville NY) for high magnification and live imaging purposes or an American Microscopy 

Group (AMG) Evos fluorescent microscope for low magnification images to verify 

transfection efficiency of tGFP. For live imaging, the cell plates were placed in an incubation 

chamber situated above an inverted laser, set to 5% CO2 and 37°C. Cells were imaged using 

wavelengths for tGFP using excitation laser 488-20 nm (Nikon) or using the green 

fluorescent protein (GFP) filter cube (EVOS).

2.8 Quantification of tGFP Transplantation in vitro

tGFP-labeled mitochondria at three different dosages (5ug, 10ug or 20ug) were applied to 

and incubated with unlabeled PC-12 Adh cells (Passage 31, 80% confluent in 35 mm dish) 

for 2 hours before washing and imaging (section 2.7). In each of 3 separate experimental 

runs performed on separate days, each dosage was applied to 3 different culture dishes, and 

4 random non-overlapping fields of view in each dish were captured using Nikon confocal 

microscopy representing the region of interest (ROI). These images were taken on live, non-

fixed cells. After capturing the ROI, the image was thresholded above background 
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fluorescence, and quantification of the number of green fluorescent objects was calculated 

using Nikon NIS software (Nikon Instruments).

2.9 Microinjection of tGFP Mitochondria in vivo

Adult female Sprague Dawley rats (250g, Harlan, n=13) underwent a T12 laminectomy to 

expose the L1/L2 spinal level (Patel et al 2012). Isolated tGFP mitochondria were injected 

into the mediolateral gray matter at 4 circumferential sites of the spinal cord separated by 

2mM in the rostral caudal direction using a glass micropipette needle (World Precision 

Instruments, Sarasota, FL cat no. 4878) pulled and beveled to a 20–30 μm inner diameter 

pore opening. One cohort of naïve animals was used to determine tGFP co-localization with 

other mitochondrial markers (n=2). Each injection site consisted of 750 nL of 12.5μg tGFP 

mitochondria suspended in vehicle (isolation buffer with 5mM pyruvate, 2.5 mM malate and 

10mM succinate); hence a total of 50μg tGFP mitochondria in 3μL vehicle was injected per 

cord. Animals survived 24 hours after injections and then spinal cords were processed for 

histological assessment. A separate cohort of animals was used to determine cell-type co-

localization after spinal cord injury (n=11). Each injection site consisted of 750 nL of either 

vehicle (n=3) (isolation buffer with 5mM pyruvate, 2.5 mM malate and 10mM succinate) or 

25μg tGFP mitochondria (n=8) suspended in vehicle; hence a total of 100μg tGFP 

mitochondria in 3μL vehicle was injected per cord. Animals survived 24 (n=6) or 48 (n=5) 

hours after injections and then spinal cords were processed for histological assessments.

2.10 Immunohistochemistry and Image Analysis

At 24 hours after injections animals were overdosed with 0.2 mL Fatal-Plus solution 

(Vortech Pharma Ltd., Dearborn, MI) followed by transcardial perfusion first with 0.1M 

PBS, then 4% paraformaldehyde in PBS. A 1.5cm segment of spinal cord centered on 

theL1/L2 injection sites was dissected, cryoprotected in 20% sucrose/PBS, embedded in 

gum tragacanth, cryopreserved, and serially cryosectioned coronally at 25μM, keeping every 

section as we have reported (Patel et al 2010, Rabchevsky et al 2002). Antibodies used for 

fluorescent imaging and co-localization comparisons included rabbit anti-tGFP (0.13μg/mL, 

Evrogen # Ab513), mouse anti-COXIV (2μL/mL, Cell Signal #11967), mouse anti-

TOMM20 (5μg/mL, abcam # ab56783), mouse anti-RECA1 (5μg/mL, abcam # ab9774), 

mouse anti-Ox42 (5μg/mL, abcam # ab78457), goat anti-rabbit 488 (4μg/mL, Invitrogen # 

A11008), goat anti-mouse Biotin (7.5μg/mL, Vector # BA-9200), and Streptavidin Texas red 

(3.3μg/mL, Vector # SA-5006). Images were obtained using Nikon Eclipse Ti Confocal 

microscope and NIS elements software (Nikon Instruments).

2.11 Statistical Analyses

Mander’s overlap analyses were carried out using NIS software (Nikon Instruments), in 

which the percentage of overlap between pixels which were both TRITC + and FITC + was 

calculated within the injection site ROI in tissue sections. Changes in OCR and respiratory 

control ratio (RCR) were analyzed using a one-way analysis of variance (ANOVA) for each 

respiration state. For passage OCR comparisons, we first found no differences within the 

groups of the passage OCR using one way ANOVA. Because there were no differences, the 

passages were combined to do a broad comparison between treatment groups. The treatment 

groups (naïve vs tGFP) were then compared using Student’s T test. Dose-response 
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incorporation studies in vitro were analyzed using a one-way ANOVA with Tukey’s multiple 

comparisons. All analyses were performed using Graphpad Prism 6 (Graphpad Software, 

Inc., La Jolla, CA). Significance was set to p < 0.05.

3. Results

3.1 Transgenic Labeling with pTurboGFP-mito Vector

The pTurboGFP-mito vector encodes tGFP as a fusion protein with the mitochondrial 

targeting sequence of subunit VIII of cytochrome c oxidase complex. When transfected into 

PC-12 cells, this plasmid targets the protein to the inner mitochondrial membrane (Matz et al 

1999, Rizzuto et al 1995, Rizzuto et al 1989). By exploiting the puromycin resistance 

cassette of the vector, puromycin was used to select for and amplify cells that expressed 

tGFP (Figure 1).

3.2 Transmission Electron Microscopy (TEM)

The morphological features of tGFP-labeled mitochondria under TEM showed typical 

healthy structures such as prominent cristae and intact outer and inner mitochondrial 

membranes (Figure 2), as we have reported (Patel et al 2009a). Verifying the structural 

integrity of the labeled mitochondria to be transplanted is important, but to ensure that 

isolated tGFP mitochondria were functioning properly we assessed their respiration rates to 

confirm the integrity of the electron transport system; notably in comparison to mitochondria 

labeled with a fluorescent dye.

3.3 Comparing Fidelity of Mitochondrial Labels

There are concerns about both the fidelity of MTG to irreversibly label targeted 

mitochondria and the potential to affect the function of isolated mitochondria (Buckman et 

al 2001). To compare the fidelity of the MTG label versus the transgenic tGFP label, we 

performed an experiment in which labeled, isolated mitochondria were gently pushed 

through a 0.2 μM filter which does not allow the mitochondria (0.4 – 1 μM) to pass through, 

but does allow for unbound MTG or tGFP to pass through. We found that while the filtered 

MTG/mitochondria solution resulted in positive green fluorescence labeling of naive cells 

(Figure 3A), there was no fluorescent labeling with the filtered tGFP/mitochondria solution 

(Figure 3B). This indicates that using MTG in mitochondria transplantation experiments 

may render ambiguous results since the dye can label endogenous mitochondria as well. 

Therefore, transgenic labeling of mitochondria in cultured cells affords an alternative 

method of labeling mitochondria in an indelible manner.

3.4 Testing Respiration of Isolated, Transgenically-Labeled Mitochondria

Prior to comparing transgenic versus MTG labeling of mitochondria on bioenergetic 

integrity, we tested transgenically labeled tGFP mitochondria for functionality to ensure the 

integrity of the electron transport chain. We first compared mitochondria isolated from cells 

at various passage numbers to ensure that there were no alterations in mitochondrial 

functionality with age or cell passage numbers. Simultaneously, respiration rates of tGFP-

labeled mitochondria were also compared to respiration rates of naïve, unlabeled PC-12 

mitochondria (Figure 4). Isolated mitochondria were assayed using the Seahorse Bioscience 
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Flux Analyzer to determine the OCR and RCR, as described in Section 2.5. Mitochondrial 

respiration rates at the different states gives insight into the function of different complexes 

of the mitochondrial electron transport system. The following methods are published in our 

lab (Patel et al., 2014). For further reference, Brand and Nicholls have published a review of 

mitochondrial assessment techniques and theories (Brand & Nicholls 2011). Briefly- 

addition of pyruvate, malate, and ADP creates movement of electrons through the electron 

transport system, creating ATP and consuming oxygen in the process. OCR at this point is 

referred to as State III respiration- it includes the flow of electrons through the electron 

transport chain from complex I through complex IV, including coupling to the ATP synthase 

complex to give a complete picture of the electron transport system integrity. This is a 

measurement of oxygen consumption that corresponds to ATP production. Oligomycin is 

then added, resulting in State IV respiration- where the ATP synthase complex is inhibited 

so that any oxygen consumption is caused by leakage of electrons from the electron 

transport chain. Subsequent addition of FCCP, a protonophore, causes collapse of the 

membrane potential across the inner mitochondrial membrane, and uncouples the ATP 

synthase complex from the electron transport chain. Referred to as State V.1 respiration, 

proton pumping across the membrane is at a maximal rate, and is reflected by a high rate of 

oxygen consumption. Final addition of rotenone (a complex I inhibitor) and succinate 

(feeding electrons into complex II) elicits State V.2 respiration. Oxygen consumption in this 

state is caused by electrons entering the electron transport chain through complex II. The 

ratio of State III divided by State IV respiration gives the RCR- a ratiometric measurement 

that is indicative of mitochondrial integrity as it incorporates respiration from both the 

entirety of the electron transport chain as well as leakage of electrons. For example, 

respiratory competent mitochondria with low leakage will have a high OCR after pyruvate, 

malate, and ADP addition, but a very low OCR following addition of oligomycin, thus 

resulting in a higher RCR value.

There were no passage-dependent differences in respiration rates within cell lines, indicating 

that the passage generation of the cells did not significantly affect respiration; though there 

was a trend for decreased state III and V.1 OCR with increased passages of the tGFP 

mitochondria group. Therefore, group passage OCR values were collapsed to compare 

differences between naïve and tGFP mitochondria at each state. Results showed significant 

decreases in respiration when comparing tGFP to naive groups (State III- P < 0.0001; State 

V.1- P <0.0001) (Figure 4), indicating that tGFP mitochondria respire at lower rates than 

naïve mitochondria, perhaps producing less ATP. Additionally, tGFP mitochondria from 

lower passage numbers had significantly higher RCR values (F (2, 6) = 8.388, P=0.0183). 

While this is important to note, it is not yet known what optimal respiration rates are for 

mitochondria to be transplanted since ATP production may be different among cell types. 

Therefore, in subsequent experiments we utilized tGFP mitochondria from low passage 

numbers.

Respiration rates of tGFP-labeled mitochondria were then compared to MTG-labeled 

mitochondria. Results show that regardless of the label, there were no significant differences 

in OCR at any state (State III- F (2, 6) = 3.652, P= 0.0917; State IV- F (2, 6) = 3.098, P= 

0.1190; State V.1- F (2, 6) = 2.010, P= 0.2147; State V.2- F (2, 6) = 1.277, P= 0.3450), or 

RCR values among groups (F (2, 6) = 0.1853, P= 0.8355) (Figure 5). The electron transport 
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system does not appear hindered by either the MTG or tGFP label as the RCR for each 

group was above 5. While tGFP mitochondria were found again to respire at an overall 

lower rates, they remained well-coupled. It should be noted that, per manufacturer’s 

protocol, MTG is reconstituted in DMSO to a final concentration of 1% DMSO in solution, 

which may have effects on the lipid membrane of mitochondria causing partial 

mitochondrial ETS uncoupling and increased OCR.

After isolating well-coupled transgenically-labeled mitochondria from cell culture, we 

optimized techniques for increasing both bioenergetics and mitochondrial yield. In order to 

perform in vivo transplantation experiments, a sufficient yield of respiratory-competent 

mitochondria is needed to elicit responses following their supplementation. Using isolation 

methods with or without ficoll, we have found that we can obtain a higher yield of crude 

mitochondria versus purified mitochondria. However, when the health of cell culture-derived 

mitochondria in the crude vs purified fractions was tested, we found that purified 

mitochondria give much higher respiration rates (data not shown). Our initial use of trypsin 

as a means to permeabilize the cell membranes and release mitochondria resulted in a higher 

yield of mitochondria. Importantly, however, we found in preliminary studies that intraspinal 

transplantation of mitochondria isolated with trypsin caused tissue damage due to residual 

trypsin remaining in the pellet (data not shown), even after washing and centrifugation. 

Therefore, while the isolated mitochondria appear well-coupled, trace amounts of trypsin in 

the suspension can be detrimental to tissues in vivo. Therefore, subsequent studies using 

mitochondria derived from cell culture were isolated using manual scraping with the ficoll 

purification step.

During in vivo transplantation experiments, isolated mitochondria may be exposed to room 

temperature (RT) for up to 30 minutes while in the microinjection needle. An experiment 

was performed on tGFP mitochondria to test the effects of temperature and substrate 

supplementation on respiration (Figure 6). The mitochondria were resuspended in isolation 

buffer and either left at RT or on ice for 30 minutes, and either with or without substrate 

supplementation (5mM pyruvate/malate and 10mM succinate).

tGFP mitochondria that were kept on ice in centrifuge tubes had higher respiration rates 

compared to tGFP mitochondria left at RT. State III OCR changed significantly (F (3, 8) = 

7.407, P= 0.0107) and post hoc analysis revealed significantly decreased OCR in samples 

that were left at RT without substrates compared to those on ice, with or without substrates. 

Addition of 5mM pyruvate malate and 10mM succinate substrates to mitochondria held at 

RT helped maintain State III OCR near mitochondria on ice. Alternatively, while there were 

no differences in State IV (F (3, 8) = 2.561, P= 0.1279), State V.2 (F (3, 8) = 2.059, P= 

0.1842), or RCR (F (3, 8) = 0.5777, P= 0.6458) among the groups, State V.1 OCR was 

significantly decreased (F (3, 8) = 22.79, P=0.0003) in all samples compared those on ice.

3.5 tGFP Mitochondrial Transplantation in vitro

We tested whether isolated transgenically-labeled tGFP mitochondria could be incorporated 

into PC-12 cells by co-incubation. The tGFP mitochondria were isolated from cell culture 

and 10μg was mixed with 2mL fresh complete media and added to 35 mm culture dishes that 
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were 80% confluent with naïve PC-12 cells. After one hour, cells were live-imaged and 

showed positive tGFP labeling within somas (Figure 7).

We next applied increasing concentrations of tGFP mitochondria to naïve PC-12 cells. After 

two hours of co-incubation, the cells were washed of any remaining extracellular 

mitochondria and live-imaged (Figure 8A). Upon visualization, there appeared to be much 

more instances of tGFP labeling in the higher dosage groups, with no labeling in the control 

group (Figure 8A). These differences in fluorescence were compared to assess the dose-

dependent incorporation of tGFP mitochondria. Regions of interest (Figure 8B) were chosen 

and the captured images were then thresholded to a non-transplanted plate to remove non-

specific background fluorescence for quantification. Our results showed that there was a 

significant dose-dependent difference between different groups. Post-hoc analysis showed a 

significantly higher amount of tGFP immunofluorescence within PC-12 Adh cells 

administered 20μg tGFP mitochondria compared to naive (F (3, 8) = 5.430, P= 0.0248), with 

decreasing amounts of fluorescence in the lower dosage groups (Figure 8C).

To further confirm that mitochondria were successfully incorporated into cultured cells, 

time-lapse experiments were performed. After 10 μg of isolated tGFP-labeled mitochondria 

were incubated with naïve PC-12 cells for 2 hours as described earlier, the cells were imaged 

over a 12 hour period during which positive intracellular tGFP fluorescence was evident 

(Figure 9). Remarkably, cells could be seen replicating during this time, segregating 

transplanted mitochondria between daughter cells (see also supplemental video 1).

3.6 In vivo Transplantation

Using the optimal isolation methods, mitochondrial transplantation was performed in vivo to 

determine if transgenically-labeled, cell culture-derived exogenous mitochondria can be 

incorporated into living spinal cord tissues. Briefly, tGFP mitochondria were isolated and 

injected into the medial lateral gray matter of the rat spinal cord at the L1/L2 spinal level. At 

24 hr after transplantation, animals were euthanized and spinal cords processed for 

histology. An anti-tGFP antibody was used in tandem with antibodies specific to 

mitochondrial proteins (Figure 10) or macrophages and endothelial cells to determine cell 

type co-localization (Figure 11).

COXIV antibody targets the inner mitochondrial membrane, while TOMM20 antibody 

targets the outer mitochondrial membrane. When visualized with tGFP which also localizes 

to the inner membrane, COX IV co-localization indicates that the tGFP signal is indeed 

mitochondria. Further, the exogenous mitochondria appear intact as the tGFP tag localizes to 

the inner membrane and TOMM20 labels the outer membrane; positive co-localization 

indicates grafted mitochondria with both inner and outer membranes intact (Figure 10). 

When quantifying the co-localization of the tGFP positive and Texas Red positive pixels in 

the injection region (indicated by white boxes), the Mander’s overlap value for tGFP and 

COXIV was 0.843 and for tGFP and TOMM20 was 0.855. This indicates that within the 

region of injection, the tGFP mitochondria are co-localized with mitochondrial markers.

Positive signal overlap (yellow) of green (tGFP) signal within cell membranes (red) indicate 

co-localization. Exogenous tGFP mitochondria were found to be within both microglia/
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macrophages and endothelial cells of the spinal cord at both 24 and 48 hours after injection 

(Figure 11). There may be a cell-specific mode for mitochondrial incorporation. For 

example, there is much evidence of punctate tGFP+ signal within the cell membrane of 

macrophages (Fig. 11 A and B), though it is not known if the mitochondria underwent 

phagocytosis or whether they were passively incorporated into the cytoplasm. Additionally, 

tGFP mitochondria were found within endothelial cells at both time points (Fig. 11 C and 

D). There was positive tGFP signal directly associated with the membranes of some 

endothelial cells that appeared perinuclear, which may indicate the mitochondria are being 

taken into perivascular pericytes (Figure 11 C, tGFP+ signal closely associated with 

endothelial membrane). Further studies will utilize markers for pericytes to determine if 

exogenous mitochondria are being taken into these cells, and we will comprehensively 

characterize cell-type incorporation over time.

4. Discussion

The results of our feasibility study demonstrate that transgenically-labeled tGFP 

mitochondria are a viable option for visually tracking transplanted mitochondria both in 
vitro and in situ. It is possible to label the inner mitochondrial membrane of cultured cells 

with tGFP with high transfection efficiency and isolated mitochondria have intact inner and 

outer mitochondrial membranes, as well as dense cristae as seen in TEM images. We also 

found that supplementation of isolated mitochondria with pyruvate malate and succinate is 

beneficial for maintaining State III respiration at room temperature for prolonged periods of 

time often required for transplantation procedures in vivo. Further, we demonstrate that the 

transgenic tGFP label is an indelible marker of transplanted mitochondria, and contrary to 

previous studies (Katrangi et al 2007), we found that MTG did not stay irreversibly bound to 

exogenous mitochondria; this may result in host labeling and inaccurate conclusions of 

successful transplantation. Others have also found MTG fluorescence intensity to be at least 

partially dependent upon membrane potential (Keij et al 2000).

The bioenergetics of mitochondria isolated from cultured cells did not change across 

multiple passages, but there was an overall decreased respiration rate of transgenically-

labeled mitochondria when compared to unlabeled mitochondria. This may be partially 

contributed to the stable transfection attained by puromycin selection. While the transgenic 

cells have a puromycin resistance sequence, they grew more slowly than naive cells at the 

same passage numbers. We noted that the cell doubling time for unlabeled cells is about 24 

hours, whereas the doubling time for transgenic cells was closer to 72 hours. We did not note 

any higher levels of die-off or cell death while the transgenic cells were under selection. At 

lower cell passage generations, the isolated mitochondria remained well-coupled with 

comparable RCR to naïve mitochondria. In contrast, MTG-labeled mitochondria showed 

higher respiration than tGFP-labeled mitochondria, although this increase was not 

significant. Importantly, naïve, MTG-labeled and tGFP-labeled mitochondria had healthy 

RCRs indicating that the electron transport chain is well coupled to the ATP synthase 

complex. Differences in respiration of MTG labeled mitochondria vs naive unlabeled 

mitochondria has been documented (Buckman et al 2001), where it was concluded that 

MTG alters ETC activity such as uncoupling the ETC from ATP synthesis.
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Use of transgenically-labeled mitochondria opens the possibilities for cell type co-

localization/double labeling and tracking experiments to evaluate incorporation of 

exogenous mitochondria distinguishable from host cells. Transgenic labeling of 

mitochondria in vitro can supply a pool of stably transfected mitochondria that affords the 

opportunity to visualize the movement and integration of exogenous mitochondria within 

host cells and/or tissues. This can be especially important in future studies to determine the 

fusion and fission properties of exogenous mitochondria in the context of their successful 

integration into the host mitochondrial networks after transplantation. Further, this labeling 

strategy could be useful for visualizing mitochondria in paradigms of transplantation after 

cytotoxic insult to cultured cells to determine beneficial effects afforded by mitochondrial 

supplementation.

Upon co-incubation of tGFP mitochondria with naïve PC-12 cells, we showed that 

exogenous mitochondria were taken into cells within hours and could be seen moving within 

cells. This reflects previous reports that supplemented mitochondria, labeled in various 

manners, are taken into cultured cells upon co-incubation (Chang et al 2013a, Clark & Shay 

1982, Katrangi et al 2007, Kitani et al 2014b). Our results showed concentration-dependent 

tGFP mitochondria incorporation into naïve cells, and time lapse imaging over 12 hours 

after co-incubation showed tGFP mitochondria moving within cells. We also performed in 
vivo transplantation to test incorporation in spinal cord tissues in situ. Co-labeling of 

TOMM20 and COXIV showed that the tGFP+ signals represent exogenous mitochondria, 

and subsequent immunohistochemistry indicated that transplanted tGFP mitochondria were 

co-localized predominantly with both microglia/macrophages and endothelial cells. Further 

analyses are quantifying the incorporation propensity into these cells, as well as other cell 

types of the spinal cord including neurons, oligodendrocytes, and astrocytes.

Mitochondrial uptake into cells similar to our results has been reported, but it is yet 

unknown what the mechanism of incorporation is- whether the process is passive or active, 

as multiple studies have found evidence for different mechanisms not always supporting 

each other. For instance, some have shown that different cell lines are more likely than 

others to incorporate exogenous mitochondria upon co-incubation, which was theorized to 

be due to differential endocytic properties of cell types (Clark & Shay 1982). Others have 

shown xenogenic transfer of exogenous mitochondria in culture upon co-incubation 

(Katrangi et al 2007). It has been posited alternatively that mitochondria cannot be taken into 

recipient cells via passive endocytosis (Pacak et al 2015). This group utilized chemicals to 

block different methods of internalization and found that only cytochalasin D, which blocks 

actin polymerization, inhibited mitochondrial uptake. They also blocked clathrin-dependent 

endocytosis, tunneling nanotubes, and macropinocytosis, but found none of these inhibited 

mitochondrial uptake. However, others reports that macropinocytosis is necessary for 

mitochondrial internalization utilizing the same blocker of macropinocytosis the Pacak study 

used (Kitani et al 2014b). Different cell types were used in the two studies, which may 

support the findings of Clark and Shay (1982) that cell types can behave differently. While 

these studies all support that exogenous mitochondria can be taken into host cells in culture, 

there is not yet consensus on mechanisms by which this happens.
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In summary, by using transgenic mitochondrial labeling and time-lapse imaging, it is 

possible to visualize mitochondrial uptake into cells in real time in vitro, allowing further 

investigation into the exact mechanisms of incorporation. Importantly, we present data 

showing that transgenic labeling is indelible without affecting mitochondrial integrity so that 

they may be effectively tracked and visualized after transplantation in both cultured cells and 

tissues in situ. We found the transgenic tGFP tag 1) permanently labels mitochondria with 

no evidence of dissociation, 2) does not affect mitochondrial integrity, and 3) is easily 

identified using both fluorescent microscopy alone or with enhanced antibody labeling. Our 

transgenically-labelled mitochondria did have lower overall respiration rates compared to 

unlabeled mitochondria, which is a caveat that must be considered for future transplantation 

experiments. Depending upon the purpose of the experiment, there is a caveat that using 

tGFP mitochondria may respire more slowly, but they have a reliable marker for 

visualization. Ongoing studies are characterizing cell-type and propensity for incorporation 

of exogenous tGFP mitochondria over time in naïve and injured spinal cords, including 

neurons, oligodendrocytes, astrocytes, microglia/macrophages, and endothelial cells. Future 

analyses will determine the functionality of mitochondria after transplantation following 

spinal cord injury. The question will then be asked what effects exogenous mitochondria 

may have on tissues in vivo where there is a complex environment including different cell 

types, potential immune responses, as well as further technical hurdles to consider. With the 

refinements we have made in the isolation protocols for transplantation, we can begin to 

address these uncertainties.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

Mitochondria of PC-12 cells can be genetically labeled with a fluorescent tag.

This tag does not significantly compromise the respiratory health of the 

mitochondria.

Substrate addition helps to maintain mitochondrial health at room temperature.

Exogenous labeled mitochondria are taken into cells in culture following co-

incubation.

Exogenous labeled mitochondria can incorporate into host cells in the rat spinal 

cord.
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Figure 1. 
tGFP transfected PC-12 Adh cells. Representative images show PC-12 cells expressing tGFP 

fluorescent protein under (A) bright-field or (B) Green Fluorescent Protein filters. Cells 

were under constant selection using puromycin (passage 19). High transfection efficiency is 

evident, though it should be noted that there are varying degrees of signal intensity. (C) High 

magnification of a tGFP transfected cell showing perinuclear mitochondrial networks 

throughout the cytoplasm. Images A and B were taken on AMG scope, scale bar = 50μM. 

Image C taken on Nikon confocal Ti-e microscope using 488nm excitation laser, scale bar= 

10μM.
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Figure 2. 
TEM shows that the tGFP-labeled mitochondria have dense cristae (yellow arrows) and 

intact membranes (white arrows), indicative of healthy mitochondria. B is a higher 

magnification of boxed insert shown in A. Scale bars = 1 um (A), 200 nm (B).
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Figure 3. 
MTG label dissociates from mitochondria, leading to non-specific labeling. A. MTG 

labeling (green) of PC-12 cells after MTG mitochondria solution passage through 0.02 um 

filter. B. Absence of tGFP fluorescence after passing the tGFP mitochondria solution 

through 0.02um filter, indicating no leakage of the label. Scale bars= 50μM.
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Figure 4. 
Oxygen Consumption Rates (OCR) of isolated tGFP-labeled mitochondria or naïve non-

labeled mitochondria at different passage generations. One way ANOVA was performed for 

each state of respiration within treatment groups. With no significant differences among 

passage number OCR values using a one way ANOVA, the groups were collapsed (indicated 

by the horizontal bars) and compared using Student’s T tests to determine overall group 

effects. RCR were analyzed using a one way ANOVA for each cell group, with Tukey’s 

multiple comparisons. Bars are means ± SEM. *p<0.0001 tGFP vs Naïve; #p<0.05 vs tGFP 

P19. n= 3/group performed in triplicate.
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Figure 5. 
tGFP and MTG mitochondria have comparable RCR. Mitochondria were isolated from 

either transgenic tGFP PC-12 cells or naïve PC-12 cells that were then labeled using MTG, 

then assayed for respiration using the Seahorse Flux Analyzer. Bars are means ± SEM. (1-

way ANOVA for each state) n=3/group, performed in triplicate.

Gollihue et al. Page 23

J Neurosci Methods. Author manuscript; available in PMC 2018 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 6. 
Mitochondrial respiration changes with temperature and substrate addition. Mitochondrial 

respiration was highest when left on ice, with State III and V.1 decreasing significantly at 

room temperature (RT). Addition of substrates (subs) at RT helped maintain State III 

respiration. Bars are means ± SEM. *p<0.05 vs Ice; #p<0.05 vs Ice + subs (1-way ANOVA 

for each state, Tukey’s multiple comparison) n=3/group in triplicate.
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Figure 7. 
Transplanted tGFP mitochondria are taken into naïve PC-12 Adh cells. After 10 μg tGFP 

mitochondria were incubated with unlabeled PC-12 cells for one hour, live-imaging showed 

positive tGFP labeling within soma. The bottom panel shows the X plane, and the right 

panel shows the Y plane. Cross hairs indicate one instance of punctate tGFP mitochondria 

within a cell. Image was taken using Nikon Ti confocal microscope. Scale bar = 25 μm.
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Figure 8. 
tGFP mitochondria are taken up by PC-12 Adh cells in a dose-dependent manner. A. 
Representative DIC/FITC images of individual regions of interest (ROI) in cell cultures from 

each dosage showing varying amounts of tGFP mitochondria within cells. B. Schematic 

depiction of four random non-overlapping ROIs chosen per plate analyzed for each dosage, 

replicated in three plates. C. Quantification of ROI densities of tGFP for each dosage 

administered showed that the 20μg transplant group had the highest number of mitochondria 

taken up. Bars are means ± SEM. *p <0.05 vs control group using one-way ANOVA with 

Tukey’s multiple comparisons. n=3/dosage performed in triplicate, scale bar = 50μM, 

applies to all images.
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Figure 9. 
Movement of exogenous tGFP mitochondria within PC-12 cells. After 10 μg tGFP 

mitochondria was added to naïve PC-12 cells and incubated at 37°C on a gently rolling 

platform for 2 hours, they were washed off and replaced with complete media before time 

lapse images were taken over a 12-hour period. Images represent beginning of imaging (A) 

separated by 100 minutes for each time frame (B–F). Mitochondria can be visualized 

moving within cells (yellow arrow). As a cell divides (white asterisk on mother cell in A and 

B, then on each daughter cell in C–F, with division occurring at white line in C), 

transplanted mitochondria can be seen throughout the division process, and are retained in 

the daughter cells (white arrow). Images were taken using Nikon Ti confocal microscope. 

Scale bar = 20μM.
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Figure 10. 
tGFP labeled mitochondria injected into the spinal cord co-localize with mitochondrial 

markers. tGFP mitochondria were isolated from PC-12 cells and injected into the rat spinal 

cord. Antibodies against tGFP and the inner (A) (COXIV) and outer (B) (TOMM20) 

mitochondrial membranes show that the injected green fluorescence is intact mitochondria. 

Images taken on Nikon Ti confocal microscope. White boxes indicate region of injection and 

co-localization analyses. Scale bar= 100μM.
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Figure 11. 
Exogenous tGFP mitochondria are incorporated into different cell types in situ. tGFP 

mitochondria were injected into the naïve spinal cord. Representative z-stack images were 

taken from spinal cords at the 24 (A, C) or 48 hour (B,D) time points after injection. OX42 

= microglia/macrophages, RECA = endothelial cells. Scale bars = 10μM. Images were taken 

with Nikon Ti confocal microscope.
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