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Summary

Translating sensory information into perceptual decisions is a core challenge faced by the brain. 

This ability is understood to rely on weighting sensory evidence in order to form mental templates 

of the critical differences between objects. Learning is shown to optimize these templates for 

efficient task performance [1–4], but the neural mechanisms underlying this improvement remain 

unknown. Here, we identify the mechanisms that the brain uses to implement templates for 

perceptual decisions through experience. We trained observers to discriminate visual forms that 

were randomly perturbed by noise. To characterize the internal stimulus template that observers 

learn when performing this task, we adopted a classification image approach (e.g., [5–7]) for the 

analysis of both behavioral and fMRI data. By reverse correlating behavioral and multivoxel 

pattern responses with noisy stimulus trials, we identified the critical image parts that determine 

the observers’ choice. Observers learned to integrate information across locations and weight the 

discriminative image parts. Training enhanced shape processing in the lateral occipital area, which 

was shown to reflect size-invariant representations of informative image parts. Our findings 

demonstrate that learning optimizes mental templates for perceptual decisions by tuning the 

representation of informative image parts in higher ventral cortex.

Introduction

Extracting Classification Images from Behavioral and fMRI Data

We tested the ability of observers (n = 9) to discriminate between two classes of polygons 

(Figure 1A, class I or class II). Although these stimuli are simpler than familiar objects, they 

are advantageous in several respects. First, to investigate learning, we chose a novel, rather 

than a familiar, stimulus space. Second, to ensure that observers discriminated global shapes 

rather than local differences between stimuli, we parametrically manipulated the stimuli with 

linear morphing and rotated them in the image plane across trials. Third, we used positional 
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noise, which has been shown to support the efficient extraction of classification images from 

smaller samples than needed when luminance noise is used [1]; therefore, this is an ideal 

method for extracting classification images from a limited number of fMRI trials.

To identify the specific stimulus components that determine the observer’s choice (i.e., the 

discriminative features), we reverse correlated behavioral choices and fMRI signals with 

noisy stimulus trials. This approach has been used widely in psychophysics (for reviews, see 

[5, 6]); however, its application to neuroimaging has been limited by noisy single-trial fMRI 

signals and the small number of samples that can be acquired during fMRI scans [8, 9]. To 

overcome these limitations, we developed a new method that uses reverse correlation in 

conjunction with multivoxel pattern analysis. We calculated decision templates on the basis 

of the choices made by a linear support vector machine (SVM) classifier that decodes the 

stimulus class from the fMRI data measured on individual stimulus trials. Thus, we 

combined the power of SVM stimulus decoding to uncover neuronal preferences [10] with 

reverse correlation classification images in order to reveal discriminative image features that 

are enhanced through learning.

To directly test the link between human behavior and fMRI data, we compared human 

performance and behaviorally relevant fMRI responses to an ideal observer. To extract 

behaviorally relevant fMRI signals, we trained a linear classifier to predict the observers’ 

choice. After this, we regressed both behavioral responses and behaviorally relevant fMRI 

signals to the input stimuli and computed the classification images. To avoid circularity and 

evaluate whether behavioral performance and neural representations become more efficient 

with learning, we correlated behavioral and fMRI classification images to an ideal observer 

rather than to each other.

Behavioral and fMRI Classification Images

To ensure that observers learned to classify the two polygon classes, we trained them with 

auditory feedback (minimum three sessions, 900–1,100 trials per session), resulting in 

improved performance, as quantified by a 32.2% reduction in class discrimination thresholds 

(F(1,8) = 58.44, p < 0.01). Importantly, this improvement was reflected in the participants’ 

use of particular portions of the image when making their decisions. Classification images 

based on the observers’ performance after training showed marked differences between 

image parts associated with the two stimulus classes (Figure 2A). In contrast, we did not 

observe any consistent image parts associated with the two stimulus classes before training, 

ensuring that the classification images reflected the perceived differences between classes 

rather than local image differences between stimuli.

Having characterized the behavioral decision template, we used fMRI to determine where in 

the visual cortex this template is implemented. Given the known role of the ventral visual 

pathway in shape processing, we chose to study this pathway in detail with the use of high-

resolution fMRI recordings. Our results show that classification images in the lateral 

occipital area (LO), but not in early visual areas, revealed image parts that were perceptually 

distinct between the two stimulus classes (Figure 2B, Figure S1 available online). 

Importantly, there was little information about this perceptual template before training, 

ensuring that fMRI classification templates reflect the perceived classes rather than stimulus 
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examples. Comparing classification images derived from behavioral and fMRI data showed 

that similar image parts became more discriminable between the two stimulus classes after 

training, suggesting a correspondence between behavioral and fMRI templates.

Quantifying Behavioral and fMRI Decision Template

To quantify behavioral and fMRI decision templates, we compared human and SVM 

classifier performance to an ideal observer model (i.e., the maximum performance that was 

possible for this stimulus discrimination task). We used a radial decomposition of the shapes 

(Figure 1B) and computed the distance between classes for each image location on the basis 

of the behavioral and fMRI data.

To assess whether decision templates became closer to the ideal after training, we correlated 

behavioral and fMRI class distances to ideal class distances for each participant before and 

after training. This analysis showed that human performance (Figure 3A) and fMRI 

activation patterns (Figure 3B) in higher ventral areas became closer to ideal performance 

after the observers had learned the stimulus classes. Importantly, we did not observe 

significant correlations before training, ensuring that our fMRI activation patterns reflect 

perceptual templates (i.e., representations of discriminative image parts between classes) 

rather than differential neural selectivity to local image features before observers became 

familiar with the stimulus classes. That is, linear regression analysis on the behavioral and 

ideal class distances showed that both the correlation (t(8) = 8.39, p < 0.01) and the slope 

(t(8) = 8.86, p < 0.01) values were enhanced significantly after training (Figure 3A).

Furthermore, correlation (t(8) = 3.59, p < 0.001) and slope (t(8) = 3.68, p < 0.001) values 

between fMRI and ideal class distances increased significantly after training in LO, 

suggesting that learning enhanced the representation of the perceived differences between 

classes (Figure 3B). In contrast, we did not observe any significant changes after training in 

early (correlation: F(1,8) = 3.43, p = 0.1; slope: F(1,8) = 4.01, p = 0.08) or ventral (correlation: 

F(1,8) = 1.49, p = 0.26; slope: F(1,8) = 1.69, p = 0.23) visual areas. This result in early visual 

areas was expected, given that the stimulus manipulations we employed (i.e., stimulus 

rotation across trials) prevented the learning of local image positions.

Is it possible that the learning-dependent improvement we observed in fMRI classification 

images in accordance with behavior was due to the fact that the classifier was trained on 

behaviorally relevant fMRI signals? To control for this, we trained the classifier on the 

choices of the ideal observer that contained all information about the stimulus space. This 

analysis (Figure S2A) resulted in similar correlation patterns, as shown in Figure 3B, 

suggesting that our results could not be confounded by classifier choice. This link between 

behavioral responses and fMRI activation patterns in higher ventral areas was further 

supported by enhanced trial-by-trial correlation after training between observer choices and 

classifier predictions (Figure S2B). Additional control analyses (for details, see the 

Supplemental Information) showed that our results could not be confounded by univariate 

signal differences across brain areas, motor responses, or eye movements.

Altogether, these results suggest that perceptual templates of shapes are implemented in 

higher ventral cortex. As well as being robust to local image rotations across trials, we found 

Kuai et al. Page 3

Curr Biol. Author manuscript; available in PMC 2017 July 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



that these templates were also tolerant to stimulus size changes. In particular, after training, 

we tested observers’ performance for stimuli that were presented at different sizes (1.5× or 

2× larger) from the trained stimuli. We showed that behavioral and fMRI classification 

images for stimuli of trained and untrained size were highly similar. Specifically, there were 

no significant differences (R: t(6) = −0.07, p = 0.95; slope: t(6) = −0.42, p = 0.69) between 

the correlations of behavioral and ideal class distances for stimuli of trained and untrained 

size. This was also true for the correlation (F(1,6) < 1, p = 0.59) and slope (F(1,6) < 1, p = 

0.48) values of fMRI and ideal class distances between stimuli of trained and untrained size 

in ventral visual areas. Although transfer of learning across image changes is highly debated 

[11, 12], our findings provide evidence that learning tunes representations of discriminative 

image parts in higher ventral cortex that are tolerant to image changes rather than specific 

local image positions.

Identifying Discriminative Image Parts

The optimal strategy for discriminating between the two stimulus classes is to take into 

account all image locations. Our results so far show that, after training, observers adopted 

this strategy using all informative image locations. To quantify this effect, we selected the 

three most informative image parts that corresponded to shape corners differing between the 

two stimulus classes (Figure 1B); that is, local maxima and minima from the stimulus 

distance metric description with the highest distance between classes.

Our results showed increased behavioral class distances after training (F(1,8) = 151.43, p = 

0.001) for these informative image parts (Figure 4A), suggesting that the training enhanced 

the observers’ ability to integrate information across discriminative parts. It is unlikely that 

spatial correlations across image locations could drive observer performance, given that 

noise samples were independently assigned to each stimulus location. However, to control 

for this possibility, we tested the performance of the ideal observer when information was 

provided only for each of the three informative image parts separately (i.e., the stimuli 

remained the same but different weights were applied across image locations). We found that 

no other image parts could be recovered reliably in the classification images when 

information was provided about one image part only (Figure S3). This analysis provides 

evidence that image locations are independent from each other, suggesting that the optimal 

strategy is to integrate information across them.

Analysis of the fMRI data (Figure 4B) showed that representations of these informative 

image parts are enhanced after training in LO rather than earlier visual areas. In particular, 

class distances increased significantly for informative image parts after training in LO (F(1,8) 

= 9.67, p < 0.01) but not earlier visual areas (V1: F(1,8) = 1.83, p = 0.21; V2: F(1,8) = 0.22, p 

= 0.65; V3v: F(1,8) = 3.3, p = 0.11; hV4: F(1,8) = 0.3, p = 0.6). Interestingly, the results based 

on behavioral and LO class distances indicate that observers may weight part three more 

than parts one and two, suggesting a stronger effect of training for weaker discriminative 

signals between stimulus classes.

Is it possible that the learning-dependent changes we observed in LO were simply due to 

higher classification accuracies in ventral areas after, rather than before, training? To control 

for this possibility, we conducted two additional analyses. First, we randomly selected 60% 
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of the fMRI trials (given that mean classifier performance was 61% and ranged from 51% to 

71% in LO), assigned correct labels to only these trials, and trained the classifier (using all 

correct and incorrect trials) to predict the stimulus class using an independent data set. This 

analysis showed no changes in the classification images in LO with training. Second, 

performing the class distance analysis on data from participants with classification accuracy 

higher than chance did not show any significant differences before and after training in early 

and ventral visual areas (see the Supplemental Information). Altogether, these analyses 

suggest that our findings could not be simply accounted for by differences in overall 

classification accuracies before and after training.

Discussion

Combining classification image approaches with multivariate fMRI analysis, we provide 

evidence for the mechanisms that the brain uses to optimize mental templates for perceptual 

decisions through experience. We demonstrate that higher ventral areas (LO) implement 

decision templates by integrating information across image locations and representing 

informative image parts in a size-invariant manner.

These findings advance our understanding of the brain mechanisms that optimize the neural 

code for efficient perceptual decisions in three main respects. First, previous behavioral 

studies have proposed that learning enhances perceptual efficiency by retuning the decision 

template [1–4]. Although fMRI analysis methods have successfully demonstrated changes in 

the overall activation magnitude (i.e., increased or decreased activations for trained stimuli) 

with learning (e.g., [13–17]), they have been less sensitive in distinguishing preferences of 

neural populations for distinct visual shapes. As a result, the link between enhanced 

perceptual efficiency due to learning and selectivity changes in brain patterns that support 

perceptual decisions remains unexplored.

Previous imaging studies (for review, see [18]) have speculated that decreased fMRI 

activations following training may be due to the enhanced tuning of small neural populations 

that encode behaviorally relevant information, resulting in enhanced performance. Only 

recently, with the use of multivoxel pattern classification methods, have we been able to link 

behavioral improvement after training to enhanced fMRI selectivity [19]. However, this 

multivariate analysis alone does not allow us to identify the informative image regions that 

support perceptual decisions. Our approach—comparing human and fMRI classifier 

performance to an ideal observer—provides the first neuroimaging evidence that learning 

does not simply modulate overall activity magnitude but tunes the representation of 

informative image parts in the higher ventral cortex in order to support efficient shape 

discrimination.

Second, previous imaging studies using pattern classification approaches for the analysis of 

electroencephalography and fMRI data [8, 9] have shown that behaviorally relevant features 

(e.g., face features) are represented in visual areas selective for their processing. However, 

these studies did not test the role of learning in shaping decision templates given that 

familiar stimuli were used. We purposefully chose a novel stimulus space for investigating 

the role of learning in optimizing decision templates and simple, but carefully controlled, 
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stimuli that are suitable for studying processing along the ventral visual stream. Our findings 

demonstrate that learning tunes the representation of image parts in higher ventral areas. Our 

approach combining reverse correlation with pattern classifiers could be extended further to 

extract classification images from fMRI signals in higher temporal areas related to more 

complex naturalistic stimuli. Given that these more anterior portions of the ventral hierarchy 

are understood to take their inputs from more posterior regions, we would expect similar 

effects in these regions for more complex objects, as we demonstrate here for posterior 

occipitotemporal regions with simple shapes.

Finally, the high-resolution imaging adopted in our study afforded us the signal quality 

necessary to reveal multivoxel patterns that represent fine image parts, but it restricted brain 

coverage to the posterior occipitotemporal cortex (i.e., no significant activations were 

observed for our stimuli anterior to LO). Previous work has also implicated frontoparietal 

circuits in flexible perceptual decisions [20, 21]. Given the complex nature of the BOLD 

signal, it is possible that the fMRI selectivity that we observed for informative image parts in 

higher ventral areas is enhanced by feedback from frontoparietal circuits that may reweight 

sensory signals in visual areas [22]. It is also important to note that—despite the enhanced 

sensitivity of our methodology—multivoxel pattern classification approaches reveal neural 

preferences at the scale of large neural populations rather than the tuning of individual 

neurons. Therefore, understanding the cortical circuits that support adaptive brain processes 

for perceptual decisions requires further whole-brain connectivity studies combining 

advanced imaging and neurophysiological techniques.

Experimental Procedures

Stimuli

Two classes of shapes (pentagons) were generated by manipulating the location of the 

pentagon lines that differed in their lengths. We added positional noise to all stimuli that 

were produced by radially shifting the position of each polygon dot on the basis of a 

Gaussian distribution (mean = 0, SD = 0.4°). Previous work has shown that the human 

classification images derived with positional noise are independent of the signal strength 

[23, 24]. To assess this, we tested the observers’ ability to classify zero signal stimuli (i.e., 

random dot stimuli). After training, classification images for these stimuli were very similar 

to those obtained in our main experiment, suggesting that the classification images we 

observed are independent of signal strength.

Design

Observers participated in a pretraining fMRI session, three to five behavioral training 

sessions (900–1,100 trials per session, depending on participant availability), and two 

posttraining fMRI sessions (see the Supplemental Information). The study was approved by 

the University of Birmingham Ethics Committee.

Classification Image Analysis

We calculated behavioral and fMRI classification images after rotating and resizing each 

stimulus image to a standard orientation and size. We used the noise fields (i.e., noise 
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perturbations across trials) to compute classification images. We subtracted the average of 

noise fields over all trials for which the observers responded class I from the average of 

noise fields over all trials for which the observers responded class II (see the Supplemental 

Information).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Stimuli and Image-Based Description

(A) Sample pentagon-like stimuli comprising 30 equally spaced Gaussian dots with SD = 

0.1°. Two classes of shapes were generated by varying the location of the pentagon lines that 

differed in their length. The top panel shows the stimulus space generated by linear 

morphing between class I and II polygons (stimuli are shown as a function of the percent of 

class II). The bottom panel shows example stimuli with position noise, as presented in the 

experiment.

(B) Radial image decomposition. The class distance for each of 30 image parts (i.e., 12° 

large image regions centered on the position of each of the 30 Gaussian dots defining the 

shape contour) was computed by subtracting the mean distance of class I (red lines) from the 

mean distance of class II stimuli (blue lines). Positive values indicate larger distances for 

class I stimuli, whereas negative values indicate larger distances for class II stimuli. We 

identified three most informative image patches (120°, 210°, and 240°) with the highest 

class distances. White stimulus regions signify no differences between stimulus classes.
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Figure 2. 
Classification Images

(A) Behavioral classification images before and after training averaged across participants.

(B) fMRI classification images for V1 and LO before and after training averaged across 

participants (see Figure S1 for all areas). Red indicates image locations associated with a 

class I decision, whereas blue indicates image locations associated with a class II decision.
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Figure 3. 
Comparison of Behavioral, fMRI, and Ideal Class Distances

(A and B) Correlations of behavioral (A) and fMRI (B) class distances with the ideal class 

distance for each of the 21 informative image parts. fMRI signals were derived from training 

the SVM classifier on the basis of the choices of the human observers (Figures 3 and S2B) 

or the ideal observer (Figure S2A) with the classifier’s performance. Correlations were 

performed for each participant before and after training. Mean R coefficient and slope values 

across participants are plotted. Error bars indicate the SEM. Because of noisy BOLD 

signals, these values are lower for fMRI than behavioral data.
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Figure 4. 
Class Distances before and after Training

(A and B) Behavioral (A) and fMRI (B) class distances are shown at three image locations 

with maximum and minimum class distance (see Figure 1B) before (open diamonds) and 

after (filled circles) training. Class distances were normalized by setting minimum and 

maximum values to 0 and 1, respectively. Error bars indicate SEM across participants. A 

control analysis (Figure S3) provides evidence that spatial correlations across image 

locations could not drive observer performance.
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