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Abstract

Objective—To determine the relationship between brain abnormalities on newborn MRI and 

neurodevelopmental impairment at 7 years of age in very preterm children.

Study design—223 VP infants (<30 weeks’ gestation or <1250 g) born at Melbourne’s Royal 

Women’s Hospital had a brain MRI scan at term equivalent age. Scans were scored using a 

standardized system that assessed structural abnormality of cerebral white matter (CWM), cortical 

gray matter (CGM), deep gray matter (DGM), and cerebellum (CBL). Children were assessed at 7 

years on measures of general intelligence, motor functioning, academic achievement, and 

behavior.
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Results—186 VP children (83%) had both an MRI at term equivalent age and a 7-year follow-up 

assessment. Higher global brain, CWM, and DGM abnormality scores were related to poorer IQ 

(p’s < .01), spelling (p’s < .05), math computation (p’s < .01), and motor function (p’s < .001). 

Higher CBL abnormality scores were related to poorer IQ (p = .001), math computation (p = .018) 

and motor outcomes (p = .001). Perinatal, neonatal and social confounders had little effect on the 

relationships between the MRI abnormality scores and outcomes. Moderate-severe global 

abnormality on newborn MRI was associated with a reduction in IQ (−6.9 points), math 

computation (−7.1 points), and motor (−1.9 points) scores independent of the other potential 

confounders.

Conclusions—Structured evaluation of brain MRI at term equivalent is predictive of outcome at 

7-years of age, independent of clinical and social factors.
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Approximately 10% of very preterm children (VP; <32 weeks’ gestation) develop significant 

impairments, such as cerebral palsy, while an additional 50% develop cognitive, motor, 

academic or behavioral problems.(1) Perinatal factors related to adverse outcomes in VP 

children include lower gestational age (GA),(2) bronchopulmonary dysplasia,(3) infection,

(4) intrauterine growth restriction,(5) moderate to severe brain injury on cranial ultrasound, 

(6) postnatal corticosteroid use,(7) and surgery as a newborn.(8) Despite the association of 

these clinical factors with adverse outcome, it remains challenging to predict impairment in 

individuals. A better understanding of the underlying nature of cerebral injury and altered 

brain development in VP infants may assist in identification of neurodevelopmental risk.

Magnetic resonance imaging (MRI) in the newborn period has improved awareness of brain 

injury and aberrant brain growth in VP infants(9–11) and may enhance the ability to predict 

neurodevelopmental outcomes. Common features on structural MRI in VP infants at term 

equivalent age include loss of white matter with enlarged lateral ventricles, signal 

abnormality in the white matter, delayed myelination, thinning of the corpus callosum, 

delayed cortical folding, and larger extracerebral space.(12, 13) We have reported that 

quantitative scoring of these abnormalities was related to cognitive and motor delay at 24 

months, even after taking into account other medical risk factors.(14) Others have reported 

the associations of white matter abnormalities to cognitive, language, and motor deficits in 

older children using similar scoring systems.(15, 16) For a more comprehensive evaluation 

of the nature of brain abnormalities in the VP infant, we developed a new scoring system(17) 

that included an evaluation of the cerebellum and deep gray matter, which are both 

vulnerable to injury following VP birth. In addition, brain growth and ventricular size are 

measured, rather than subjectively assessed.

The current study aimed to determine the relationship between this more expanded objective 

scoring of structural brain abnormalities and neurodevelopmental outcome at 7 years of age 

in VP children. We hypothesized that newborn MRI abnormalities, including those relating 

to the deep gray matter (DGM) and cerebellum (CBL), would be associated with adverse 

school-aged outcomes independent of the effect of other prognostic perinatal variables.
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METHODS

Participants comprised children born <30 weeks’ gestational age (GA) or <1250 g birth 

weight between July 2001 and December 2003 from the Royal Women’s Hospital in 

Melbourne, Australia. Two hundred and twenty-seven VP infants without a congenital 

abnormality known to affect development were originally recruited (67% recruitment rate); 

two infants later died, and two were later excluded due to a subsequent diagnosis of a 

congenital abnormality, leaving 223 VP infants.

All infants had a brain MRI as close as possible to their expected due date; those who had 

their scan between 38 and 42 weeks’ postmenstrual age were included in this study (n=211), 

of whom 186 (88%) were reviewed at age 7 years (9 withdrew, 10 declined 7-year 

assessment, 3 could not be contacted, and 3 had emigrated).

The study was approved by the Human Research Ethics Committees of the Royal Women’s 

Hospital and the Royal Children’s Hospital in Melbourne, Australia. Written informed 

consent was obtained from parents prior to data collection. Information on this follow-up 

study have been published previously.(18–21)

MRI

Infants were scanned without sedation in a 1.5-T General Electric MRI scanner (Signa LX 

Echospeed System; General Electric, Fairfield, Connecticut). Infants underwent T1-weighted 

(0.8- to 1.6-mm coronal slices; flip angle 45°; repetition time 35 ms; echo time 9 ms; field of 

view 21 × 15 cm2; matrix 256 × 192), and T2/proton density-weighted (1.7- to 3-mm 

coronal slices with axial and sagittal reconstructions at 3mm slices; repetition time 4000 ms; 

echo time 60/160 ms; field of view 22 × 16 cm2; matrix 256 × 192, interpolated to 512 × 

512) sequences.

A standardized scoring system was used to assess the presence and severity of abnormalities 

in cerebral white matter (CWM), cortical gray matter (CGM), DGM, and CBL.(17) The 

system extends that described by Inder et al(12) by adding scales for assessing DGM and 

CBL, and integrates quantitative biometrics. The CWM scale (range 0–17) is the sum of six 

subscales assessing the presence and severity of cystic lesions, signal abnormality, 

myelination delay, thinning of the corpus callosum, lateral ventricle dilatation, and volume 

reduction. Scores <3 were categorized as normal, 3–4 were categorized as mild abnormality, 

and >4 were categorized as moderate to severe abnormality. The CGM scale (range 0–9) is 

the sum of three subscales assessing signal abnormality, delayed gyral maturation, and 

increased extracerebral space. The DGM and CBL scales (range from 0–7) have two 

subscales assessing signal abnormality and volume reduction. For the CGM, DGM, and 

CBL abnormality scales, scores of 0 were categorized as normal, 1 as mild abnormality, and 

>1 as moderate to severe abnormality. A global brain abnormality score (range 0–40) is 

generated by summing the CWM, CGM, DGM, and CBL scales. For the global brain scale, 

scores <4 were categorized as normal, 4–7 as mild abnormality, and >7 as moderate to 

severe abnormality. Scans were reviewed by an experienced neonatal neurologist 

independent of knowledge of long-term outcomes, with excellent inter-rater and intra-rater 

reliabilities (ICC > 0.90).(17)
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Neurodevelopmental Assessment

At 7 years’ corrected age, general intelligence, academic achievement, motor functioning, 

and behavior were assessed. General intellectual functioning was assessed using the Full 

Scale IQ (FSIQ) of the Wechsler Abbreviated Scale of Intelligence (WASI).(22) Word 

reading, spelling, and math computation were assessed with the Wide Range Achievement 

Test (WRAT-4).(23) Motor skills were assessed using the Movement Assessment Battery for 

Children (MABC2).(24) Parents rated their child’s behavior using the Strengths and 

Difficulties Questionnaire (SDQ).(25) The total difficulty score of the SDQ was used as an 

estimate of behavioral problems, with a higher score reflecting greater behavioral difficulty 

(range: 0–40). Age standardized scores are reported for the WASI (Mean=100, SD=15), 

WRAT4 (Mean=100, SD=15) and MABC2 (Mean=10, SD=3) based on the child’s corrected 

age to avoid bias in cognitive test scores.(26) The SDQ does not provide age standardized 

scores, and raw scores are reported. Children who did not complete the test because it was 

too difficult were assigned a score that was 3 SD below the normative mean for that test (or 

above 1 SD for the SDQ). Assessments were performed by trained assessors who had no 

knowledge of the child’s medical history or newborn MRI.

Outcome Risk Factors

Perinatal data were obtained from chart review and socio-demographic information was 

obtained from a caregiver questionnaire. Birth factors include antenatal corticosteroid 

exposure, multiple birth, sex, GA, and birth weight standardized for GA and sex (birth 

weight Z-score).(27) Neonatal factors included grade 3 or 4 intraventricular hemorrhage 

(IVH), cystic periventricular leukomalacia (PVL), bronchopulmonary dysplasia (BPD; 

defined as the requirement for oxygen at 36 weeks’ postmenstrual age), postnatal 

corticosteroid exposure, infection (either proven sepsis or necrotizing enterocolitis (NEC)

(28), and surgery in the newborn period. Social factors were assessed at age 7 years using a 

composite measure(29) assessing family structure, education of the primary caregiver, 

occupation and employment status of the primary income earner, language spoken at home, 

and maternal age when the child was born. Scores were categorized into lower (≤2) and 

higher (>2) social risk based on the median score of 2.

Statistical Analyses

Data were analyzed using Stata 14.(30) The relationships between newborn MRI scores and 

7 year outcomes were examined by linear regression fitted using Generalized Estimating 

Equations (GEEs) with an exchangeable correlation structure and robust standard errors to 

allow for correlations between twins/triplets in the study.(31, 32) To investigate the effects of 

MRI scores independent of other perinatal, neonatal and social predictors, potential 

confounders of child outcomes were added to the regression models.

The association between MRI abnormality categories (normal, mild, moderate-severe) and 

neurodevelopmental outcome were also examined using linear regression fitted using GEEs 

with and without adjustment for other perinatal, neonatal and social predictors. Finally, the 

independent contribution of moderate-severe abnormality for the global scale was assessed 

with the other perinatal, neonatal and social predictors, again using multivariable regression.
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There was no adjustment for multiple testing, but we acknowledge the many comparisons 

presented and have interpreted our findings by focusing on overall patterns and magnitude of 

differences, rather than on individual p-values.(33)

RESULTS

The neonatal characteristics of the 186 children are presented in Table 1. The characteristics 

of the 186 infants included in the study did not differ from the 25 not followed up at 7 years 

(Table 2; Online only). On newborn MRI, 68% of infants had at least a mild abnormality on 

the global score, while for the other scales the rate of any abnormality ranged from 40% 

(CGM) to 64% (CBL) (Table 1).

On univariable analysis, higher abnormality scores for all MR variables were related to 

poorer IQ, reading, spelling, math computation, and motor function, but the evidence was 

stronger for some relationships and only weak for others (Table 3, unadjusted). There was 

little evidence that MRI abnormality scores were related to behavior. On multivariable 

analysis (Table 3, adjusted results), perinatal, neonatal and social confounders had little 

effect on the relationships between the MRI abnormality scores and outcomes; the estimated 

regression coefficients and 95% CIs were minimally affected and the evidence remained 

strong for most associations that were present on the univariable analyses (Table 3).

In general, the outcomes were worse with increasing severity of brain abnormality (Table 4). 

On the global brain abnormality scale, neurodevelopmental outcome did not differ greatly 

between children in the normal and mild abnormality groups, but those with moderate-

severe abnormality exhibited substantially poorer IQ, math, and motor skills. For the DGM 

abnormality scale, the differences between the normal and mild abnormality groups were 

wider on academic measures and motor functioning than for other abnormality scales, but 

the moderate-severe abnormality group had the poorest outcomes. The major finding on the 

CBL abnormality scale was for motor outcome, with poorer performance observed in the 

moderate-severe abnormality group. The abnormality groups on the CGM scale did not 

differ on long-term neurodevelopment measures. After adjusted for confounding variables, 

strong evidence persisted for i) poorer performance in IQ, math computation, and motor 

function with worse global abnormality scores, ii) poorer motor performance with worse 

CWM abnormality scores, iii) poorer IQ, spelling, math, and motor function with worse 

DGM abnormality scores, and iv) poorer motor performance with worse CBL abnormality 

scores.

Moderate-severe global abnormality on newborn MRI was one of four perinatal and neonatal 

factors that were independently associated with neurodevelopment at 7 years, with the others 

being birthweight Z-score <−2 SD, postnatal corticosteroids, and newborn surgery (Table 5). 

Birth weight Z-score <−2 SD was independently associated with spelling and math, but this 

applied to only 16 children. Postnatal corticosteroids were independently associated with 

poorer IQ, spelling, and math, but were administered to only 14 children. Newborn surgery 

was associated with motor outcome only. Moderate-severe global abnormality on newborn 

MRI (48 children) was independently associated with an almost 0.5 SD reduction in IQ and 

math, and a greater than 0.6 SD reduction in motor outcome. In contrast, neither grade 3–4 
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IVH nor cystic PVL were independently associated with any 7-year outcomes. Higher social 

risk was associated only with lower IQ.

DISCUSSION

Our findings demonstrate that in children born very preterm abnormalities on newborn MRI 

are related to adverse neurodevelopmental outcomes at 7 years beyond the effect of other 

perinatal and neonatal variables. This highlights three key points: 1) brain abnormalities that 

develop by term equivalent gestational age have a lasting impact on cognitive, motor, and 

academic abilities; 2) MRI is useful for identifying abnormalities of importance in the 

preterm infant; and 3) a systematic, structural scoring system has advantages for the 

evaluation of structural MRI studies in this population. We previously reported that newborn 

MRI abnormalities, white matter abnormalities, predicted cognitive and motor development 

at age two years.(14) Although predicting early developmental delay is important, predicting 

longer-term outcomes is more challenging and important. Studies have demonstrated that 

white matter abnormalities on newborn MRI are related to IQ, language, executive function, 

and motor skills in pre-school and school-aged preterm children.(15, 16, 20, 34) However, 

these studies focused predominantly on the integrity of white matter and used a subjective 

MRI scoring system. The current study adds to these previous studies by utilizing a more 

comprehensive and objective scoring system.(17) Furthermore, our scoring system assesses 

the integrity of the D G M and CBL, which is relevant due to the sensitivity of these 

structures to injury following preterm birth,(11, 35) and their role in cognition, motor 

function, and behavior.(36–39) Neuronal loss and gliosis have been reported within the basal 

ganglia, thalamus and cerebellum in VP infants, especially in infants with white matter 

injury.(40) Deep gray abnormalities were identified in 56% of our sample, which were 

associated with lower IQ, reading, spelling, math, and motor outcomes, even after 

adjustment for perinatal, neonatal and social factors. Cerebellar abnormalities were also 

common (64%), and remained associated with poorer motor outcome, after considering 

potential confounders.

Preterm brain injury is a complex amalgam of cerebral injury and associated derangement 

with secondary trophic and maturational effects.(11) Multifaceted gray and white matter 

lesions reflect acquired insults, altered developmental trajectories, and reparative phenomena 

in various combinations. Given complex interactions between brain regions, alterations in 

the volume of a area may reflect primary injury to that area and/or be secondary to de-

afferentation caused by white matter injury, particularly for regions with widespread 

connections such as the deep nuclear gray matter and cerebellum.(11) By virtue of these 

connections, alterations in CBL and DGM volume may essentially reflect overall injury to 

the white matter and cortex. Conversely, primary injury to the CBL may result in subsequent 

underdevelopment of the cerebral cortex due to reciprocal connections with cortex.(41) In 

the present study, DGM abnormality was particularly predictive of adverse 

neurodevelopmental outcome. The basal ganglia and thalamus are brain relay structures 

known to modulate a range of motor, cognitive, and sensory functions,(37, 39) and are 

vulnerable to preterm birth because of their marked developmental trajectory in the third 

trimester.(42) Previous studies have also reported smaller basal ganglia and thalamic 
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volumes in VP children,(43–45) and an association between DGM volume and cognitive 

(43, 46) and motor (47, 48) functioning.

Surprisingly, CGM abnormality was not associated with the long-term outcomes examined, 

despite being significantly related to both cognitive and motor development at 24 months of 

age.(14) It could be that this pattern of abnormality, which is subjective in nature, may 

reflect a developmental lag rather than irreversible cortical injury. Alternatively, early CGM 

abnormality may be related to specific outcomes not examined in this paper, such as 

attention or executive function.(18)

A global brain MRI abnormality score, as used in this study, may provide the most accurate 

reflection of the overall neural consequences of preterm birth, and therefore, be more 

predictive of later neurodevelopmental impairment. Indeed, the global abnormality score 

was independently associated with all outcomes assessed except behavior. In contrast to 

infants with no or mild abnormality, infants with moderate to severe abnormality on this 

global scale (n=48; 26%) performed 0.5 to 0.6 SD lower on tests of IQ, math, and motor 

function after controlling for confounders. Although postnatal corticosteroids and birth 

weight Z-score <−2 SD were also independent predictors of neurodevelopmental outcome at 

7-years, less than 10% of children had these risk factors. The global MRI scale was also 

more strongly associated with 7-year outcome than higher social risk. However, it is feasible 

that the influence of social risk may increase with age.(49) In summary, global abnormality 

on newborn MRI may help identify VP children who are most in need of early intervention.

Major IVH and PVL have been noted in the past to be strongly associated with adverse 

outcome.(50) The small number of subjects in our sample with IVH (n=7) and PVL (n=7), 

and hence low statistical power, may explain why these clinical factors were not 

independently related to 7-year outcomes. However, our findings do emphasize that more 

subtle abnormalities observed on newborn MRI are much more common than these severe 

brain ultrasound findings,(51) and suggest that newborn MRI provides important additional 

information to traditional prognostic variables.

This cohort was born between 2001 and 2003, and replication of this study in the current era 

is required, given ongoing advances in MRI technology and management of VP infants. We 

achieved excellent retention in this prospective, longitudinal study, and those lost to follow-

up were similar in perinatal characteristics, increasing our confidence that we did not 

systematically fail to follow up higher-risk children. Another strength is that the MRI 

scoring system used can be applied in most settings with access to newborn MRI facilities 

and does not require advanced computer analysis. In contrast, advanced quantitative 

techniques such as cortical morphometry, shape analysis, tractography, and structural and 

functional connectivity are research applications, although they may become available to 

clinicians in the future. In this study, we focused on general functional domains such as IQ, 

academic, motor skills, and behavior, but further research is needed on more specific 

outcome domains. Although this is a large study of newborn MRI scanning with data on 

school-age outcomes, our sample size does limit power to identify subtle effects. 

Furthermore, we did not adjust for multiple comparisons as this was an exploratory study; 

instead we focused on patterns and strengths of associations rather than individual p-values.
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This study confirms that newborn MRI identifies brain abnormalities in CWM, DGM, and 

CBL that have long-term impact on neurodevelopmental outcomes, independent of perinatal 

and social risk factors. Thus, quantitative evaluation of structural MRI obtained at term 

equivalent age provides valuable information for clinicians. Because discussion of 

neurodevelopmental prognosis with families prior to NICU discharge is standard of care, 

and brain abnormality on MRI is the strongest neonatal predictor of long-term outcome, 

prognostic discussions with families should be informed about MRI findings alongside other 

clinical indicators. For research, newborn MRI could be applied as a surrogate, shortterm 

outcome measure for neuroprotection studies while awaiting long-term follow-up data.
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CGM cortical gray matter
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DGM deep gray matter
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IVH intraventricular hemorrhage
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MRI magnetic resonance imaging
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VP very preterm
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Table 1

Characteristics of the VP cohort (n=186)

Variable Summary

Antenatal corticosteroids, % (n) 87 (164)

Multiple birth, % (n) 45 (83)

Gestational age (weeks), mean (SD) 27.5 (1.9)

Birth weight (g), mean (SD) 973 (220)

Birth weight Z-score, mean (SD) −0.54 (0.94)

Male, % (n) 52 (96)

Grade 3–4 intraventricular hemorrhage, % (n) 4 (7)

Cystic periventricular leukomalacia, % (n) 4 (7)

Bronchopulmonary dysplasia, % (n) a 33 (61)

Postnatal corticosteroids, % (n) 8 (14)

Infection (proven sepsis or necrotizing enterocolitis), % (n) 35 (66)

Surgery in newborn period, % (n) 18 (34)

Gestational age (weeks) at MRI, mean (SD) 40 (1.05)

Social risk at age 7 years, median (IQR) 2 (1,3)

Newborn MRI scales

Global, median (IQR) (possible range 0–40) 5 (3,8)

 Normal (<4), % (n) 32 (60)

 Mild abnormality (4–7), % (n) 42 (78)

 Moderate/severe abnormality (>7), % (n) 26 (48)

Cerebral white matter, median (IQR) (possible range 0–17) 3 (1, 4)

 Normal (<2), % (n) 45 (83)

 Mild abnormality (3–4), % (n) 36 (67)

 Moderate/severe abnormality (>5), % (n) 19 (36)

Cortical gray matter, median (IQR) (possible range 0–9) 0 (0,1)

 Normal (0), % (n) 60 (111)

 Mild abnormality (1), % (n) 22 (41)

 Moderate/severe abnormality (>1), % (n) 18 (34)

Deep gray matter, median (IQR) (possible range 0–7) 1 (0,1)

 Normal (0), % (n) 44 (81)

 Mild abnormality (1), % (n) 32 (60)

 Moderate/severe abnormality (>1), % (n) 24 (45)

Cerebellar, median (IQR) (possible range 0–7) 1 (0,2)

 Normal (0), % (n) 36 (67)

 Mild abnormality (1), % (n) 38 (70)

 Moderate/severe abnormality (>1), % (n) 26 (49)

7-year Neurodevelopmental outcomes
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Variable Summary

Full scale IQ (n = 186), Mean (SD) 96 (15)

Word Reading (n = 182), Mean (SD) 98 (20)

Spelling (n = 182), Mean (SD) 98 (20)

Math computation (n = 182), Mean (SD) 89 (18)

Motor (n = 182), Mean (SD) 7.9 (3.8)

Behavior (n = 170), Mean (SD) 10.5 (6.4)

a
Missing in 1 child);

SD = standard deviation; IQR = inter-quartile range (25th – 75th centiles. Percentages of those with available data.
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Table 2

Online only. Neonatal characteristics of participants and non-participants.

Variable Participants
(n = 186)

Non-participants
(n = 25)

p

Multiple birth, % (n) 45 (83) 36 (9) .41

Gestational age (weeks), mean (SD) 27.5 (1.9) 27.8 (1.8) .49

Birth weight (g), mean (SD) 972.7 (219.9) 973.9 (258.1) .97

Birth weight Z–score, mean (SD) −0.5 (0.9) −0.7 (1.0) .49

Male, % (n) 52 (96) 36 (9) .14

Grade 3–4 intraventricular hemorrhage, % (n) 4 (7) 4 (1) .95

Cystic periventricular leukomalcacia, % (n) 4 (7) 4 (1) .95

Bronchopulmonary dysplasia, % (n) a 33 (61) 20 (5) .20

Postnatal corticosteroids, % (n) a 8 (14) 12 (3) .45

Infection (proven sepsis/necrotizing enterocolitis), % (n) 35 (66) 44 (11) .41

Gestational age (weeks) at MRI, mean (SD) 40 (1.05) 40 (1.15) .79

Global MRI score, median (IQR) 5 (3, 8) 5 (4, 9) .62

Cerebral white matter MRI score, median (IQR) 3 (1, 4) 3 (2, 4.5) .23

Cortical gray matter MRI score, median (IQR) 0 (0, 1) 0 (0, 1) .72

Deep gray matter MRI score, median (IQR) 1 (0, 1) 1 (0, 2) .77

Cerebellar MRI score, median (IQR) 1 (0, 2) 1 (0, 1) .34

a
Missing in 1 child;

SD = standard deviation; IQR = inter-quartile range (25th – 75th centiles); percentages of those with available data; p values reflect results from 
chi2/t-tests as appropriate.
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