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Use of Microarray Datasets to 
generate Caco-2-dedicated 
Networks and to identify Reporter 
Genes of Specific Pathway Activity
Prashanna Balaji Venkatasubramanian1, Gamze Toydemir2, Nicole de Wit1, Edoardo Saccenti   3, 
Vitor A. P. Martins dos Santos3,4, Peter van Baarlen   5, Jerry M. Wells5, Maria Suarez-Diez   3 & 
Jurriaan J. Mes1

Intestinal epithelial cells, like Caco-2, are commonly used to study the interaction between food, 
other luminal factors and the host, often supported by microarray analysis to study the changes in 
gene expression as a result of the exposure. However, no compiled dataset for Caco-2 has ever been 
initiated and Caco-2-dedicated gene expression networks are barely available. Here, 341 Caco-2-specific 
microarray samples were collected from public databases and from in-house experiments pertaining 
to Caco-2 cells exposed to pathogens, probiotics and several food compounds. Using these datasets, a 
gene functional association network specific for Caco-2 was generated containing 8937 nodes 129711 
edges. Two in silico methods, a modified version of biclustering and the new Differential Expression 
Correlation Analysis, were developed to identify Caco-2-specific gene targets within a pathway of 
interest. These methods were subsequently applied to the AhR and Nrf2 signalling pathways and 
altered expression of the predicted target genes was validated by qPCR in Caco-2 cells exposed to 
coffee extracts, known to activate both AhR and Nrf2 pathways. The datasets and in silico method(s) 
to identify and predict responsive target genes can be used to more efficiently design experiments to 
study Caco-2/intestinal epithelial-relevant biological processes.

Biological networks are representational interactions between genes, proteins, and other biomolecules. Different 
kinds of biological networks (e.g protein-protein interaction or signalling networks) represent different features 
of a cell1. Such networks can be usefully exploited to gain key insights into biological systems2, 3. Exploration of 
tissue and cell type specific networks has demonstrated the effects of tissue specific regulation on the remodelling 
of biological networks4. Differential network analysis has also been used to compare topological characteristics 
of networks corresponding to normal or tumorous cells and to isolate characteristics of distinct cancer subtypes, 
which in turn has led to the prediction of cancer subtype-specific drug targets5. One important biological sys-
tem is the epithelial cells lining the small and large intestine. The role of diet and the response of host towards 
diet and its compounds is challenging to be studied in vivo due to the complexity of biological systems and 
inter-individual variability. Thus, a reductionist approach using the human Caco-2 intestinal epithelial cell line is 
a widely accepted laboratory model to understand the response of intestinal enterocytes exposed to nutrition and 
microbes6–8. Although Caco-2 cells were derived from a colon carcinoma, when cultured as confluent monolay-
ers for 2–3 weeks, they functionally resemble the enterocytes lining the small intestine9. Caco-2 cells have been 
used in numerous experiments to study effects of food products and compounds6, 7, 10–13, probiotics8, 14, patho-
gens15–17 and other studies18–20, using microarrays. Comparative proteomic analysis of Caco-2 cells and scrapings 
of the human intestinal epithelium support the usability of this in vitro model21, although Caco-2 cells appear to 
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over-express as well as under-express certain proteins which needs to be considered in the interpretation of in 
vitro data and translation of results to the in vivo situation21.

A compendium of Caco-2 gene expression profiles under a broad number of conditions can be instrumental 
in building dedicated network models describing gene interactions in human intestinal enterocytes and in pro-
viding new insights on their functioning. Although, gene profiles tuned for selected tissues22–24 are present, to 
the best of our knowledge, no broad compendium of Caco-2 microarray experiments has been initiated, limited 
data on metabolic networks is available25, 26 and no gene/protein association networks are available for Caco-2/
intestinal enterocytes. Another commonly faced problem is the identification of Genes Of Interest (GOI) in the 
pathways investigated for a specific cell type. Thus identification of candidate sets of GOI could help study the 
impact of treatments on specific pathways of interest in a given cell type.

Intestinal epithelial cells, apart from major functions like digestion and absorption of nutrients, minerals 
and water27, 28, play an important role in the exclusion or detoxification of xenobiotics and regulating oxida-
tive stresses. The AhR and Nrf2 pathways are involved in the metabolism of xenobiotics and protection against 
oxidative stress29, 30. AhR is an important regulator of Phase I and Phase II enzymes and other enzymes which 
metabolize compounds such as dioxins, polycyclic aromatic hydrocarbons, plant polyphenols and tryptophan 
photoproducts31. Nrf2 has been designated the “master regulator” of the adaptive response to oxidative stress29 
and regulates the expression of antioxidant proteins that protect against oxidative damage triggered by injury and 
inflammation.

In this study, we aim to i) exploit the knowledge accumulated in the publicly available datasets on Caco-2 
cells exposed to different treatments in order to generate a dedicated network model accounting for gene associ-
ations specific to intestinal enterocytes and ii) to develop workflows to reliably select genes for studying intestinal 
enterocyte-specific pathways. The proposed strategies were experimentally validated by focussing on GOI in the 
Nrf2 and AhR pathways using Caco-2 cells exposed to coffee to induce the gene responses within these pathways. 
The obtained networks are provided as supplementary files (Caco2_Network) and R scripts for the identifica-
tion of GOI are made available at http://semantics.systemsbiology.nl/index.php/download-page/ with a working 
example.

Results
Cell/Tissue-specific gene expression profiles aid the identification of reporter genes for specific 
pathway activity.  In this study, we develop strategies to generate dedicated gene network models for Caco-2 
and identify specific gene responses to nutrition related exposures. This was illustrated using Ahr and Nrf2 path-
ways. We have independently validated our results through a new experimental setup on which Caco-2 cells were 
exposed to coffee extracts, which have previously been shown to induce the Ahr and Nrf2 pathways32. Coffee 
extracts have a great chemical diversity and the components vary according to the cultivar, treatment, processing, 
storage and others33–36. We have tested induction of these pathways using four coffee types.

To identify reporter genes for the AhR and Nrf2 pathways, scientific literature was searched and we investi-
gated whether these genes were also responsive to oxidative stress in our Caco-2 model after exposure to TCDD 
(2,3,7,8-Tetrachlorodibenzo-p-dioxin) or coffee. 16 genes that are frequently used as indicators for AhR and Nrf2 
signalling, were selected from the literature (Table 1) for validation. Caco-2 cells were exposed to coffee extracts 
(Turkish coffee, Brasil Espirito, Java Preanger, Nescafe©) and TCDD and relative expression of the selected genes 
was measured by qPCR. Out of the 16 genes tested, 3 genes were not detectable (CT values ≥ 35) and 5 genes 
showed no differential expression (DE), a fold change threshold of 1.5 folds up or down in at least two of the coffee 
samples, indicating that 50% of the genes selected from literature are not useful for studying the activities of the 
AhR and Nrf2 pathways in enterocytes.

Compendium of Caco-2 experimental data supports cell-specific gene selection.  A data com-
pendium was generated using Affymetrix expression profiles of 341 arrays from 85 Caco-2 exposure experiments 
(Table 2). UPC filtering procedure was used to identify genes that are actively expressed in Caco-2 and 12849 
genes were identified to be expressed. These genes were then used to generate a cell-specific network dedicated to 
Caco-2 intestinal epithelial cells.

Supplementary Table S1 presents the comparison between network topological properties of the full interac-
tion network retrieved from STRING (converted to Entrez Ids) and the Caco-2 specific network. The same cut-off 
(≥700) related to the reliability of the interactions (STRING combined score) was selected for both networks. 
The Caco-2 network is composed of 8937 nodes and 129711 edges and can be explored using common network 
visualization tools such as Cytoscape37. Notice the differences in the number of nodes and edges between the two 
networks.

Out of the 16 genes that we previously selected based on literature, ABCC1, ABCG2 and TIPARP are removed 
from the network of functional associations. This indicates that in the overall network they are connected only to 
nodes that show no (active) expression in our compendium. However, even after this reduction, still large num-
ber of genes remain (77 nodes for Nrf2 pathway and 42 nodes for AhR pathway) to probe for each pathway and 
therefore we wanted to optimize our approach to identify GOI.

Biclustering analysis improves gene selection.  The biclustering method works based on identification 
of genes that are co-expressed with seed genes (i.e. genes well known to be responsive in Caco-2 cells to a specific 
perturbation). In order to identify Caco-2 responsive genes within the Nrf2 pathway, we used a full list of genes 
that are involved in this pathway (derived from generic IPA consensus pathway). SQSTM1, HMOX1, NRF2, 
ABCC1, DNAJB1 and ENC1 were selected as seed genes. The seed genes were used to identify co-expressed genes 
within the compendium of microarrays. The initial average correlation threshold for array selection was set at 
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0.75 (default value). In this way, only arrays that showed a high degree of correlation with the seed genes were 
included for GOI identification.

The biclustering analysis reduced the 341 arrays (the initial number of arrays) to 229 arrays and the following 
genes were obtained as GOI: CDC34, DNAJC4, GTR, ATF4, GSTA2 and GSTM4. Together with the seed genes 
this resulted in a total of 12 potential responsive genes for the Nrf2 pathway (Table 3). These genes had an average 
correlation of 0.79 in the arrays included in this analysis.

Similarly, CYP1A1, TIPARP, AHR, ARNT and PRKCA were chosen as seed genes for AhR pathway. Owing to 
the small number of seed genes, mean correlation threshold for array selection was set at a more stringent value of 
0.8. The biclustering analysis reduced the initial 341 arrays to 274 arrays and predicted GSTA2, GSTM4, MAPK8, 
MED1, NCOR2 and NFIA as GOI for the AhR pathway. This procedure reduced the number of potential respon-
sive genes to 11 for AhR pathway (Table 3), including seed genes.

We selected 14 genes for experimental verification using Caco-2 cells exposed to coffee extracts (Figs 1 and 2).  
Of these, 6 genes were specific to AhR pathway, 6 specific to Nrf2 pathway and 2 common to both pathways. 
Four of these genes have been predicted by the algorithm (“Biclustering” see Table 3). All 4 genes were found to 
be expressed in Caco-2 cells of which 3 showed substantial changes in expression (Fold Change > 1.5) between 
control and treatment (Figs 1 and 2).

Based on these results, we concluded that this strategy constitutes a useful addition to the literature data for 
gene selection. Selected genes extracted from the literature can be combined with the ones selected using the 
proposed approach. In those cases where literature provides an ample list of genes for experimental validation, 
our approach serves to further refine the selection of genes which are differentially expressed by Caco-2 cells in 
a chosen pathway.

Gene 
Name Pathway Reference

Significant change in expression (Fold 
Change larger/smaller than ±1.5)

SQSTM1 Nrf2 Jain et al., 201068 Yes

HMOX1 Nrf2 Bøhn et al., 201433 Yes

Nrf2 Nrf2 Bøhn et al., 201433 No

ABCC1 Nrf2 Adachi et al., 200769 No

ABCC2 Nrf2 Adachi et al., 200769 No

NQO1 Nrf2 Bøhn et al., 201433 Yes

ABCG2 Nrf2 Isshiki et al., 201170 No *

GSTP1 Nrf2 Steinkellner et al., 200571 Yes

ARNT AhR Ishikawa et al., 2014; 
Yeager et al., 200932, 72 No

AhR AhR Kalthoff et al., 201073 Yes

CYP1A1 AhR Ishikawa et al., 201432 Yes

TiPARP AhR Diani-Moore et al., 201074 Yes

UGT1A6 AhR Yeager et al., 200972 Yes

CYP1A2 AhR Ishikawa et al., 201432 Not detected

CYP1B1 AhR Ishikawa et al., 201432 Not detected

AHRR AhR Mimura et al., 2003; Abel 
et al., 201030, 31 Not detected

Table 1.  Expression changes upon coffee/xenobiotics exposure of initial set of genes selected based on existing 
literature. ‘*’Indicates genes found to be significantly differentially expressed (Fold change >±1.5) in Turkish 
Coffee only. Genes were considered to be responsive if they were expressed in at least two coffee samples.

Total Arrays 341

Total Experiments 88

From the lab of Jurriaan Mes 173

From Array Express 168

Type of Exposure

 Vegetables 9

 Fruits 20

 Fibres 22

 Probiotics 7

 Pathogens 11

 Others 6

 Food compounds 10

Table 2.  Summary of collected dataset.
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Differential Expression Correlation Analysis (DECA) further enhances gene selection.  An 
assessment of DECA algorithm was performed using 10 pathways from the KEGG database38 that are of interest 
to intestinal epithelia. For each pathway 10 runs were performed using three randomly selected genes from the 
pathways as seed genes. Genes known to be in the target pathways were found to be significantly better ranked 
than genes not in the pathway, as indicated by the enrichment p-values. On average ~9% of genes related to each 
pathway could be predicted as target genes on analysing the top 10% ranked genes using DECA algorithm. The 
performance of the algorithm varied according to the pathway from 6% to 15%. This result indicates that without 
any further literature considerations DECA is able to retrieve genes associated to the pathway. In this assessment 
seed genes were chosen at random, however careful selection of seed genes is required to obtain more reliable pre-
diction of target genes. As in the previous case, this approach would work best when combined with pre-existing 
knowledge. The results of the in silico assessment are provided in Supplementary Table S2.

Gene Name Pathway Seed Genes Found from
Significant change in expression 
(Fold Change more than ±1.5)

DNAJB1 Nrf2 Yes WGCNA —

SQSTM1 Nrf2 Yes Literature Yes

HMOX1 Nrf2 Yes Literature Yes

ENC1 Nrf2 Yes WGCNA No

Nrf2 Nrf2 Yes Literature No

ABCC1 Nrf2 Yes Literature No

CDC34 Nrf2 No Biclustering —

DNAJC4 Nrf2 No Biclustering —

GTR Nrf2 No Biclustering —

ATF4 Nrf2 No Biclustering Yes

GSTA2 Both No Biclustering Yes

GSTM4 Both No Biclustering Yes

MAPK8 AhR No Biclustering —

MED1 AhR No Biclustering —

NCOR2 AhR No Biclustering —

NFIA AhR No Biclustering No

ARNT AhR Yes WGCNA No

AhR AhR Yes Literature Yes

CYP1A1 AhR Yes Literature Yes

PRKCA AhR Yes WGCNA No

TiPARP AhR Yes Literature Yes

Table 3.  Expression changes upon coffee exposure of genes selected using the biclustering algorithm. ‘—’ 
Indicates genes that were not the target of experimental validation. Genes were considered to be responsive if 
they were differentially expressed in at least two coffee samples.

Figure 1.  qPCR results for AhR Pathway genes predicted using biclustering algorithm. The plot shows the 
relative gene expression level (control vs treatment) of several genes associated with AhR pathway. Results have 
been normalized to control (DMEM) values. Values and error bars represent average and standard deviation 
of three replicates. Dashed lines represent the fold change cut-off limits (1.5 for up regulation and 0.6 for down 
regulation). CYP1A1 is not shown here as it exceeds the plot limits. TC indicates Turkish coffee, BE indicates 
Brasil Espirito, JP indicates Java Preanger and NC indicates Nescafe©.

http://S2
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The DECA method was applied to find a global set of genes (amongst all genes expressed in Caco-2) associated 
with Nrf2 and AhR pathways which are responsive to altered pathway activity. SQSTM1, NQO1 and HMOX1, 
involved in the Nrf2 pathway were used as seed genes for the DECA algorithm. 2834 genes were found to have 
correlation values or significance fractions above the 0.6 threshold against each seed gene. The genes were ranked 
as mentioned in Materials and Methods section and top ranked genes were considered for further analysis. From 
this list, GCLM39, TXNRD140, SOX9 and KCTD541 were selected for further experimental validation via qPCR as 
there is some evidence of involvement in this pathway. In addition, BAG342 gene which did not belong to the top 
ranking genes was randomly chosen as a negative control (Table 4).

A similar approach was used to predict the GOI in the AhR pathway. Only two genes, CYP1A1 and TIPARP 
were chosen as the seed genes for the DECA algorithm which resulted in a list of 398 ranked genes. From this list, 
UGCG43, EREG44, RND3, CHMP1B were chosen for experimental verification as evidence from scientific litera-
ture associated few of them with the AhR pathway. ATP9A was randomly selected as a negative control (Table 4).

The above mentioned 10 genes along with a seed gene for each pathway were experimentally verified using 
qPCR analysis in Caco-2 cells exposed to coffee samples (Fig. 3). The results indicate that 75% of the selected 
GOI showed a substantial relative difference in expression (absolute fold change > 1.5) in all tested samples, 2 
genes (SOX9 and KCTD5) were differentially expressed upon exposure to two of the coffee extracts (Turkish and 
Nescafe, absolute fold change > 1.5) while the control genes showed no significant change in expression in most 
coffee extracts, as expected.

These results indicate that the DECA is a substantially improved strategy to identify GOI compared to other 
methods discussed in this paper and moreover does not require prior knowledge of the genes within the pathway 
except for the seed genes.

Discussion
Initially we focussed on developing an intestinal enterocyte-specific association network using expression data 
from Caco-2 cells exposed to different nutrients and stimuli. The network was constructed by selecting 12849 
genes (actively) expressed in Caco-2 based on UPC filtering. This is consistent with previous observations of 
1155926 and 14113 genes24 based on RNAseq data (Caco-2 cells grown under controls). Differences could be 
attributed to different selection procedures or experimental approaches. Additionally, the gene list and network 
provided in this paper are based on a compendium of transcriptomics data from exposure of Caco-2 cells to dif-
ferent nutrients and stimuli.

When applying our Caco-2-specific selection to STRING network the number of edges and nodes was 
reduced considerably (~50%). The number of connected components is reduced by over 60% and the local net-
work structure is preserved with similar values of clustering coefficient, which suggests a more compact net-
work, as expected for gene that are functionally closely related. The degree assortativity decreases indicating less 
redundancy on gene associations when the network is restricted to Caco-2. Incidentally STRING could support 
dedicated data analysis by enabling seamless tissue specific gene selection.

Biclustering simultaneously clusters both genes and samples to arrive at the identification of genes with similar 
expression profiles in a subset of the samples. Existing biclustering algorithms do not allow targeting a particular 
pathway45, 46, instead they generally try to find biclusters that cover either a broad range of genes or conditions. 
Similarly WGCNA based clustering does not focus on a particular pathway but looks for modules of co-expressed 
genes that may belong to more than one pathway. Here we present a biclustering approach, that represents a mod-
ification of that in van dam et al., that allows the user to select or pre-select the seed genes and thus a pathway47. 
Nevertheless, biclustering performed poorly as the identified GOI did not show significant DE, indicating little 
responsiveness of Caco-2 cells to coffee exposures.

Figure 2.  qPCR results for Nrf2 Pathway genes predicted using biclustering algorithm. The plot shows the 
relative gene expression level (control vs treatment) of several genes associated with Nrf2 pathway. The line 
represents the fold change cut-off limits (1.5 for up regulation and 0.6 for down regulation). TC indicates 
Turkish coffee, BE indicates Brasil Espirito, JP indicates Java Preanger and NC indicates Nescafe©.
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Therefore, DECA algorithm was used, resulting in a list of responsive gene candidates and a set of criteria to 
further rank them. From the ranked list, genes were selected for experimental verification in Caco-2 cells exposed 
to coffee and we found association with AhR and Nrf2 pathways. The verified genes were not in these pathways 
as defined in IPA. It might be that some of these genes have an indirect association to these pathways. The DECA 
ranking can be combined with existing knowledge, for instance, adding weight to genes on the basis of literature 
evidence. Of the 5 genes predicted for Nrf2 pathway, GCLM and TXNRD1 are previously known downstream 
gene targets of NRF239, 40. KCTD5 is likely to have an indirect interaction mediated by CUL341 and BAG3 (neg-
ative control gene) has been associated with Nrf2 pathway42 while we find that only Turkish coffee induces this 
gene. Similarly for the genes predicted for AhR pathway, UGCG is indirectly linked to AhR pathway via ARNT43 
and EREG is reported as a target gene for AHR44.

Seed genes play a critical role in predicting responsive genes in a certain pathway and should be carefully 
considered and accurately selected. As an example, Nrf2 gene was initially included among the seed genes for the 
biclustering algorithm. However, experimental verification showed transcript levels of this gene not to be respon-
sive to coffee exposure. It was later not used as seed gene for DECA algorithm and was replaced with NQO1. One 
optimal way to select seed genes is to select two or three highly differentially expressed genes (Fold Change > 3) 
associated to the pathway of interest from literature (eg. CYP1A1 and TIPARP for AhR pathway), verify their 
altered expression in response to activation or repression of the pathway and use these as seed genes.

Gene Name Pathway Type
Significant change in expression 
(Fold Change more than ± 1.5)

CYP1A1 AhR Seed Genes Yes

TIPARP AhR Seed Genes N/A

ATP9A AhR Predicted No

UGCG AhR Predicted Yes

CHMP1B AhR Predicted Yes

EREG AhR Predicted Yes

RND3 AhR Predicted Yes

SQSTM1 Nrf2 Seed Genes Yes

HMOX1 Nrf2 Seed Genes N/A

NQO1 Nrf2 Seed Genes N/A

BAG3 Nrf2 Predicted No *

SOX9 Nrf2 Predicted Yes *^

TXNRD Nrf2 Predicted Yes

GCLM Nrf2 Predicted Yes

KCTD5 Nrf2 Predicted Yes *^

Table 4.  Expression changes upon coffee exposure of genes identified using the DECA algorithm in AhR and 
Nrf2 pathways. ‘*’Indicates genes found to be significantly differentially expressed (Fold change > ± 1.5) in 
Turkish Coffee only. ‘^’Indicates genes found to be significantly differentially expressed (Fold change > ± 1.5) in 
Nescafe only. N/A indicates genes that were not the target of experimental validation. Genes were considered to 
be responsive if they were expressed in at least two coffee samples.

Figure 3.  qPCR results of both AhR and Nrf2 pathways provided together for genes predicted using DECA 
algorithm. The line represents the fold change cut-off limits (1.5 for up regulation and 0.6 for down regulation). 
CYP1A1 is not shown here as it exceeds the plot limits. TC indicates Turkish coffee, BE indicates Brasil Espirito, 
JP indicates Java Preanger and NC indicates Nescafe©.
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The biclustering algorithm requires a further selection of genes to be considered, the gene pool set. This selec-
tion was performed by aggregating non cell type specific pathway level information. On the other hand, DECA 
has no such constraint and the whole set of expressed genes are considered. Therefore DECA is our method of 
choice to identify GOI in pathways for which little information is available. One could also argue that, when 
combining such a large set of array data collected over different batches, batch correction techniques should 
be applied. However, here each experiment has its own control in the same batch. As a result batch effects and 
experimental effects might be confounded and usually applied correction methods such as ComBat and SVA are 
not effective48, 49. Instead, we have used a higher level integration approach, in which data from each study is com-
pared with the corresponding control. This way we bypass the need for additional batch corrections as we study 
only correlations between changes in gene expression.

In addition to predicting GOI, the compendium presented in this paper can be used for other purposes. For 
instance, a systematic categorization of the treatments based on expression profile, similar to the approach taken 
in Connectivity map50 and thus could select food components that have effects on certain genes and pathways. 
Such datasets can also be used to predict key regulators and/or gene hubs2. Additionally, the database can be 
expanded further by adding data from future experiments, even from technologies like RNAseq. The provided 
Caco-2 specific network also serves as a platform to understand future experiments. Gene expression data from a 
new experiment could be integrated with this network by using algorithms for network mining and active module 
identification3. The Caco-2 cell type specific network can also be used to develop networks associated to different 
conditions such as Caco-2 exposure to pathogens or pathogenic toxins, then these networks can be used to iden-
tify potential drug targets by applying statistical methods and identifying hub genes using similar strategies as the 
one successfully used in cancer research51. This paper can therefore be seen as a first important step to improve 
current analysis tools for Caco-2 and thereby elicit a better understanding of the interaction between our intesti-
nal epithelium and luminal (nutritional) compounds.

Conclusion
Caco-2 cell lines are increasingly used as model systems to study the interaction of food and other luminal factors 
with the intestinal system of the host, which is difficult to study in vivo. As the availability of experimental datasets 
will grow further we believe that this work is the first step in generation of a Caco-2 specific database and tissue 
specific research tools and strategies to extract more knowledge from these data. One of the research tools for 
which we make an important step is the dedicated protein-protein association network using gene expression 
data for Caco-2. The network provided in this paper could be the basis to be implemented in other software tools 
like IPA and STRING and can be further updated when more data become available in the future. The modified 
biclustering and DECA methods should additionally provide the necessary tools to extract genes of a desired 
pathways and can be applied, by the codes provided, to a similar dataset of any cell type of interest.

In the future, a comprehensive Caco-2 transcriptome database should include microarray data from other 
platforms such as Agilent, Illumina, etc but more importantly should include RNAseq data which will provide 
additional information on splice isoforms. We believe that such a cohesive database would provide finer results 
regarding the genes of interest in Caco-2 and can support the analysis and understanding of future Caco-2 cell 
based analysis. The dataset can additionally be used for building classifiers using genetic profiling and in finding 
therapeutic food solutions.

Materials and Methods
Data Processing.  Caco-2 microarray gene expression data were obtained from public repository, Array 
Express (www.ebi.ac.uk/arrayexpress) and from in-house experiments performed using Affymetrix© 1.1 ST array 
platform. In-house data was obtained by exposure of Caco-2 cells grown on transwells with different preparations 
of food-related compounds in experiments conducted over several years. Publicly available data was restricted to 
experiments on Affymetrix platform. Data and associated metadata were manually curated using the following 
inclusion criteria: i) experiments that did not induce genetic mutations, ii) experiments performed on Caco-2 
cell monolayers that were grown for at least seven days and iii) arrays probing for at least 17000 genes (annotated 
in Chip Definition Files), thereby leaving out old arrays. Based on these criteria 341 arrays were selected corre-
sponding to 22 experimental batches encompassing 85 different treatments (Table 2). GSE accession numbers of 
publicly available datasets and other relevant descriptions are given in Supplementary Table 3.

The consolidated data of 341 arrays were normalized using the SCAN algorithm before network construction 
and biclustering analysis, as this is a method that performs well for cross comparison52. RMA normalization was 
used for differential expression (DE) analysis, as it is considered as standard for this calculation53. All the normal-
ization procedures were performed using R Bioconductor packages SCAN.UPC54 and affy55. Microarray probes 
were matched to gene identifiers using the CDF array annotation (version 18) provided by the University of 
Michigan microarray© lab56. After both normalization procedures, a combined set of 21996 genes was obtained. 
All statistical programming were performed using statistical language R (version 3.2.3).

Identification of genes expressed in Caco-2 cells.  Universal exPression Code (UPC) was used to obtain 
a standardized score describing the active/inactive state of each gene in each array of our data compendium54.  
Genes with a UPC value greater than 0.5 in at least one array were considered to be expressed in Caco-2 cells and 
therefore used in the analysis. This step was applied to the matrix of 21996 genes and 341 arrays reducing it to a 
matrix of 12849 genes and 341 arrays. In this matrix there were some genes with some values missing, likely due 
to platform differences. Therefore, genes with missing values in more than half the total number of arrays (ie. 170 
arrays) were discarded. Remaining missing values were imputed using KNN algorithm from the ‘impute’ R package 
in refs 57 and 58 with default parameters. The final data matrix contained values for 10831 genes over 341 arrays.

http://www.ebi.ac.uk/arrayexpress
http://3
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Caco-2 cell specific network generation.  The database STRING (version 10)59 was used for the retrieval 
of high confidence human specific protein association and a combined score cut-off value of 700 was used as 
recommended by STRING. Nodes representing genes identified as not being expressed by Caco-2 cells were 
removed from the network. The network (in edgelist format) is available as supplementary file (Caco2_Network). 
Edgelist contains pairs of interacting genes (first two columns) and in this file genes are denoted by their Entrez 
Ids. The third column refers to the weight of each edge, which is however empty in the given file, as the edges have 
no weights. The networkx (python package) was used for network topological analysis60.

Biclustering Algorithm.  The Biclustering algorithm of cMonkey45 adapted by van Dam et al.47 was used 
to find biclusters (i.e. groups of co-expressed genes in a subset of conditions61, 62). In our implementation a 
pre-defined set of genes, called seed genes, together with additional genes from a second list called gene pool 
were used to find biclusters. Seed genes were selected using the following two approaches: i) from literature 
on Caco-2 expression in response to different types of coffee (SQSTM1, HMOX1, NRF2 and ABCC1 for the 
Nrf2 pathway and CYP1A1, TIPARP and AHR for AhR pathway). ii) from Weighted Gene Correlation Network 
Analysis63 (WGCNA). The WGCNA method partitions genes expressed in Caco-2 cell lines into groups enriched 
for topological overlap based on their expression profiles. These groups were then assessed for enrichment in 
genes belonging to the selected pathways using Ingenuity Pathways Analysis (IPA) (http://www.ingenuity.com, 
release March 2014). Genes assigned to the selected pathways in the enriched modules (FDR < 0.05) were further 
included in the seed gene list (DNAJB1 and ENC1 for Nrf2 pathway and ARNT and PRKCA for AhR pathway). 
To build the gene pool, genes expected to be in the pathway of interest were retrieved from pathway database IPA 
(Ahr and Nrf2 consensus pathway).The gene pool list contained 87 genes for Nrf2 pathway and 48 genes for AhR 
pathway.

Biclustering was performed using R implementing the iterative procedure depicted in Fig. 4. In the first step, 
the data compendium is explored to select arrays for which the seed genes show a high degree of mean pairwise 
correlation between each other. This selection is performed by iteratively removing one array from the list and 
comparing the average pairwise correlation between seed genes computed considering the full array list and 
the array list without the selected one. If removal of the considered array leads to an increase of this correlation, 
the array is permanently removed from the array list. This process is iterated until either the average correlation 
between seed genes is greater than or equal to a threshold value, CT = 0.75 or half of the initial arrays have been 
removed.

Once the reduced array set has been established, an additional iterative procedure to search for candidate 
genes is performed. In the initialisation step, a new list of genes is built containing the seed genes. Then a new 
gene is selected from the gene pool and the mean correlation between this new gene along with the genes in 
the current list is calculated. If such correlation value is greater than previous correlation value, the new gene is 
added. This procedure is iterated till no new genes remain. The full procedure of array reduction and gene addi-
tion is continued until a bicluster with the desired properties is obtained.

Differential Expression Correlation Analysis (DECA).  We implemented a new algorithm, Differential 
Expression Correlation Analysis (DECA) to find GOI using DE values from microarray datasets. The DECA algo-
rithm works by calculating correlation values between seed genes and other DE genes identified using the UPC 
algorithm. DE values were calculated for 85 experimental setups (3 of which could not be used as they lacked suf-
ficient replicates or controls) giving a total of 21996 genes. For each of these genes the treatments were compared 

Figure 4.  Flow diagram describing Biclustering algorithm. Seed genes are a predefined group of genes. The 
gene pool is the set of genes to be tested for inclusion in the bicluster. <C> indicates mean pairwise correlation, 
<C′> indicates new mean pairwise calculation.

http://www.ingenuity.com
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to their respective controls using Bioconductor package limma64. Following this, UPC filtering was applied and 
the DE matrix (a matrix containing the DE values with genes along the rows and experimental comparisons along 
the columns) was reduced to 12849 genes. Genes that were missing expression values for more than 56 conditions 
(roughly two third conditions) were excluded and then remaining missing data were imputed using KNN impute 
as mentioned above. This resulted in a matrix of DE values for 12462 genes and 85 conditions. All corresponding 
missing p-values were substituted with 1.

The next step in DECA is the selection of seed genes from literature. Seed genes were chosen in such a way that 
they showed strong and significant (absolute fold change ≥2 and p-value < 0.01) DE in stimulations associated 
to the chosen pathway (SQSTM1, NQO1 and HMOX1 for the Nrf2 pathway and CYP1A1 and TIPARP for AhR 
pathway).

The workflow of the procedure is described in Fig. 5 and implemented in R. Seed genes were then randomly 
considered one at a time. The DE matrix is reduced by the algorithm to contain only the comparisons in which 
the seed gene under consideration is found to have significant DE. Correlation values are calculated between the 
seed gene and each gene in the gene pool using the reduced DE matrix. The fraction of reduced comparisons in 
which each gene has significant DE (p-value < 0.01) is recorded and is termed significance fraction. Finally, cor-
relations and fractions for each seed gene, are combined in a matrix format and a selection criterion for absolute 
correlation values and significance fraction was set at 0.6. A list of genes that have either absolute correlation value 
or significance fraction above the threshold for any of the seed gene is selected. Subsequently, this new list of genes 
is ranked depending on their individual absolute correlation values and significance fraction for each seed gene, 
thereby providing 2n ranks (where n is the number of seed genes). A final rank was calculated by estimating the 
geometric mean of the 2n ranks for each gene.

All R scripts used in this paper are available at http://semantics.systemsbiology.nl/index.php/download-page/.

DECA comprehensive in silico assessment.  10 pathways were chosen at random for assessment of 
DECA algorithm. These pathways are ABC transporters pathway, Adherens junction pathway, Fat Absorption 
pathway, Gap junction pathway, Glycerolipid metabolism pathway Glycerophospholipid metabolism pathway, 
Nfk-β signalling pathway, p53 signalling pathway, PPAR signalling pathway and TLR signalling pathway. Some 
of these pathways are known to be associated with intestinal epithelia65–67. The genes associated to each of the 10 
pathways were selected form KEGG pathway database38. For each of these pathways, 3 seed genes were chosen 
at random. The chosen seed genes were ensured for significant differential expression in at least 15 experiments. 
The seed genes were then used in DECA and the resulting gene list was ranked as mentioned above. The number 
of genes present in the top 10% of the ranked list belonging to the pathway were calculated. In addition to this, 
a Welch two sample t-test was performed to assess if the average ranks of the pathway related genes had a better 
rank compared against the average ranks of the rest of the genes in the ranked list. The protocol was iterated 10 
times for each pathway. The results are provided in Supplementary Table S2.

Culturing & experimental exposure of Caco-2 cells.  The Caco-2 cells were cultured for 7 days until 
they reach confluence in DMEM (Dulbecco’s Modified Eagle Medium) (Control media) prior to exposure to 
coffee extracts (Turkish coffee [TC], Brasil Espirito [BE], Java Preanger [JP], Nescafe© [NC]) or TCDD. The 
RNA was harvested and primers were developed for qPCR. The detailed description of the protocol is provided 
in Supplementary Text F1.

Figure 5.  Flow diagram describing DECA (Differential Expression Correlation Analysis). Seed gene list refers 
to the starting gene selection. DE matrix is the input data matrix. The algorithm outputs a ranked list of genes 
which are highly correlated with the input genes.

http://semantics.systemsbiology.nl/index.php/download-page/
http://S2
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Data availability statement.  The sources of datasets analysed during the current study are listed in 
Supplementary Table S3. Datasets that are not publicly available are available from the corresponding author on 
reasonable request.
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