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Abstract

Humans and other mammals are limited in their natural abilities to regenerate lost body parts. In
contrast, many salamanders are highly regenerative and can spontaneously replace lost limbs even
as adults. As salamander limbs are anatomically similar to human limbs, knowing how they
regenerate should provide important clues for regenerative medicine. Though interest in
understanding the mechanics of this process has never waivered, until recently, researchers have
been vexed by seemingly impenetrable logistics of working with these creatures at a molecular
level. Chief among the problems has been the very large salamander genomes, and not a single
salamander genome has been fully sequenced to date. Recently, the enormous gap in sequence
information has been bridged by approaches that leverage mRNA as the starting point. Together
with functional experimentation, this data is rapidly enabling researchers to finally uncover the
molecular mechanisms underpinning the incredible biological process of limb regeneration.
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Why use the axolotl?

The phenomenon of limb regeneration in salamanders has been a part of the formal scientific
canon for nearly 250 years [1], but salamanders are a large and diverse group. Most studies
have focused on either newts or axolotls or both. “Axolotl” is the common name for
Ambystoma mexicanum, a species of salamander native to a few lakes near Mexico City
(Figure 1A). They can be bred year-round in the lab with relative ease (Figure 1B). Axolotls
are neotenic, meaning they grow and become sexually mature without undergoing the final
stage of the canonical amphibian life cycle; they are permanently aquatic and outfitted with
external gills and other accouterments to support this lifestyle (Figure 1C; full axolotl
staging series in [2, 3]). The axolotl generation time, just under one year, is still much
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shorter than many other salamanders. In the past eleven years, both transgenesis [4] and
genome editing [5-8] have been successfully performed in axolotls in several laboratories.
Retroviral infection, which results in genomic integration, has also been demonstrated in
embryos and in larval and adult limbs [9, 10]. Localized genome editing has now been
developed, allowing for study of mutant cells /7 vivo without necessarily waiting for
homozygous loss-of-function mutants [10]. Genome engineering is poised to be the
definitive tool for doing bona fide loss-of-function genetics in axolotls and to finally allow
for direct attribution of wild-type gene function in the process of limb regeneration. Yet, this
“reverse genetic” strategy is only productive if sequence data exists for the genes of interest,
which is required for targeting. Additionally, without broad and unbiased screening of
tissue-specific and time-specific expression data, a targeted gene candidate approach would
still be required. Surely the limb development literature, as well as hints from diverse fields
related to regeneration (cellular reprogramming, stem cell biology, among others) would
provide starting points that could prove fruitful. However, transcriptomics and other mRNA-
based techniques offer to illuminate the identities of transcripts that might not otherwise be
considered. These newly-implicated transcripts might have orthologs in fully-sequenced
species, but some may not, and some may be unique to salamanders. Using the mRNA from
regenerating axolotl tissues as the experimental guide is a solid, unbiased approach to
discovering the mechanisms of limb regeneration. Below, we review the impact of
transcriptome studies towards revealing the genes that underlie the abilities of axolotls to
regenerate limbs.

Basics of Limb Regeneration

To appreciate the strides that have been made in elucidating the genetics of axolotl limb
regeneration, a brief orientation to the process at the gross anatomical level is helpful (Figure
2, Key Figure, reviewed in [11]). Following amputation, axolotls shed very little blood at the
site of injury. Within hours, the cut stump is ensheathed by a thin layer of epidermal cells,
which migrate from stump epidermis. They collect at the cut end and proliferate, forming a
wound epidermis. Wound epidermis is structurally and molecularly distinct from fully-
differentiated, intact epidermis [12]. In the days following re-epithelialization, progenitor
cells are activated within the tissues of the stump. The term activation encompasses both the
re-entry of progenitor cells into the cell cycle as well as the accumulation of these cells at
the tip of the stump, beneath the wound epidermis. Activated progenitor cells may originate
from stem cells or by dedifferentiation; the relative contribution of these two mechanisms
remains unclear and may differ across tissue types. Together, activated cells accumulated at
the tip of the stump make up the blastema. Blastema cells are highly proliferative and while
they are thought to be under the influence of factors generated by the overlying wound
epidermis, unidirectional signaling is not the whole story. Blastemas are said to behave as
autonomous units because they can be transplanted to receptive areas elsewhere on the body,
where they give rise to limbs [13]. Furthermore, positional information is encoded within
blastemas. For example, blastemas fated to produce only a foot do so even when
transplanted elsewhere, while full leg blastemas produce full legs when transplanted
elsewhere [13, 14]. While blastema cells appear rather similar to one another, and resemble
fibroblasts in their morphology, data from transplantation studies implies they are actually

Trends Genet. Author manuscript; available in PMC 2018 August 01.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnue Joyiny

1duosnuen Joyiny

Haas and Whited

Genomics

Page 3

heterogeneous in origin and potential [15, 16]. Once the blastema pool has reached a critical
size, the bulbous structure flattens out at the “palette” stage, future cartilage cells coalesce
and condense, and differentiation of the various tissue types takes place. Ultimately, the
newly-regenerated limb achieves a perfect form outwardly indistinguishable from the lost
limb. Importantly, limbs regenerate to the correct size regardless of the size or age of the
animal. The entire regenerated limb is functionally integrated at the site of the original
stump and with the entire body.

Though the axolotl has an enormous genome—estimated to be ~32 GB (original estimate
from A. tigrinum [17]; recent estimate in axolotl [18]) —it is a simple diploid with fourteen
pairs of chromosomes [19]. There is evidence that the extremely large genome is highly
repetitive and contains unusually long introns [20]. A linkage map has been produced [21]
and since updated [22]. While axolotls exhibit extensive conservation in synteny between
chickens and humans, homologous genome segments in axolotl are on average 51 and 14
times longer than their respective chicken and human counterparts [22]. This is an
interesting finding that, combined with the evidence of unusually long introns, suggests gene
regulatory elements may be spaced further apart in salamanders than in other vertebrates.
The enormous axolotl genome is thought to derive from an ancient episode of genome
expansion resulting from the activity of mobile elements, particularly gypsy and LINE 1/2
elements [18]. By leveraging the most modern technologies and techniques in sequencing
and assembly [23-27], obtaining a reference genome for axolotl may soon be tractable.
However, several critical issues remain to be resolved before the first full genome assembly
is likely to be created, such as sufficient read length and improved methods for handling
genomic complexity during assembly. Until then, transcriptomics will continue to provide
many of our best insights into the genetics of limb regeneration.

Importantly, there is no reason to believe that traditional genetic approaches will not succeed
in these animals. Two classical loss-of-function axolotl pigmentation mutants have recently
been mapped, white (a/d)) and albino (a/a,) [8]. For both, linkage mapping was used to
identify a small interval containing a handful of genes, and existing data from other systems
for the genes within these intervals was used to narrow to a single candidate. Sequencing
revealed predicted loss-of-function mutations in the mutant stocks, and both loci were
rescued using transgenesis. This study revealed that white stocks harbor a homozygous
mutation in endothelin 3, while albino stocks are mutant for #yrosinase [8]. Though the
cloning of these mutants were major efforts, as the genetic linkage map is improved for
axolotl, and genome editing and rescue strategies become more routine, the function of other
genes will likely be illuminated with these gold-standard techniques. Among the genes
awaiting this type of thorough analysis in the future are those directly controlling key
components of the limb regeneration process.

EST Projects and Microarrays for Uncovering Regeneration Transcripts

Before RNA-seq became a widely-available methodology (circa 2009), several expressed
sequence tag (EST) projects for axolotls yielded important sequence and expression
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information. This type of strategy converts mRNA from expressed genes into cDNA, clones
the cDNAs en masse to create a library, and then sequences into the cDNA inserts, reading
several hundreds of bases into the ends of the original transcripts. In 2004, 17,352 ESTs
were sequenced from two sources—mid-development, neural-tube-stage, embryos, and tail
blastemas from 6 days post-amputation [28]. This study assembled the ESTs into 6,377
contigs, with average length at 569 bp, which was estimated to represent perhaps 25% of
axolotl gene expression [28]. The authors estimated 19% of transcript contigs to be unique
to axolotl insofar as they did not match existing nucleotide or protein sequences then
available in public databases. Notably, with this technology, few of the recovered contigs
were likely to constitute full-length coding sequences or open reading frames (ORFs); here,
they estimated only 5.4% of the contigs to include the entire ORF. While regenerating limbs
were not included in the study, extensive overlap may exist between tail blastemas and limb
blastemas, hence this study was an important contribution even to limb regeneration efforts.
In that same year, a second axolotl EST project was reported comprising a more
comprehensive set of sample tissues (blastemas from limbs and tails, one stage of embryos,
brain, kidney, spleen, liver, heart, gills, and gonads) [29]. This study also sampled from the
closely-related tiger salamander (Ambystoma tigrinum, ~11 million years diverged from
axolotl lineage) [29].

Since these ground-breaking EST studies, several additional studies have employed
differential hybridization techniques to evaluate gene expression that may underlie
regenerative abilities. For example, the single four-days-post-amputation time point (very
early blastema) was chosen to compare to unamputated limbs in a “suppression subtractive
hybridization” screen performed in [30]. This screen yielded 279 sequence-able clones that
were likely specific to or highly enriched in early blastema. Of the sequenced clones, only
one was previously implicated in axolotl limb regeneration (mmp-3/10a), proving this was a
viable regeneration gene discovery tool for the time. Subtractive hybridization also led to the
identification of a cell-surface molecule, Prod1, critical for instructing the proximo-distal
polarity of the regenerating limb in newts, and it has subsequently been implicated in the
same process in axolotls [31, 32].

EST sequencing projects identified thousands of salamander transcripts including several
with implicated roles in regeneration. Harnessing these sequences provided further
opportunities for large-scale expression studies using microarray technologies. Microarrays
have the advantage of providing standardization as they can be commercially fabricated,
shared across labs, and processed and analyzed using a common protocol. They can be used
to probe any condition of interest. The main drawback is that expressed genes not
represented on the microarray will, of course, be lost to downstream analyses. Microarrays
have shed valuable light on the genes driving limb regeneration. They were successfully
employed to discover transcripts that differ in regenerating limbs versus those that fail to
regenerate due to denervation [33]. This approach is imperative for understanding how limbs
are dependent upon innervation for their successful regeneration, a fact that has been known
for 200+ years but still remains poorly understood [34, 35]. Microarrays were also useful for
delineating the gene expression relevant to the wound epidermis covering limb slated to
regenerate versus epidermis engaged in simple wound repair [36]. This analysis is important
because though limb regeneration does involve early wound healing, the wound healing it
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employs is necessarily different from that used to return the skin alone to homeostasis. They
may share some attributes, but to understand how regenerative wound epidermis influences
stump tissue dynamics, subtracting the transcripts engaged in the simpler healing closed task
is likely a useful strategy. Because mammals do not typically respond to amputations by
growing blastemas, and since blastemas are required for regeneration, understanding the
process of how salamanders convert an initial wound-healing response into blastema
production and regeneration will be essential.

Another microarray study was designed to uncover transcripts that are enriched in limbs
undergoing full regeneration as compared to limbs more simply healing lateral wounds that
are not undergoing full limb regeneration [37]. Furthermore, this study compared the gene
expression in these two cases to gene expression in developing limb buds — the initial tissue
outgrowths filled with limb progenitor cells that fuel the first development of the limb in
immature animals. They can therefore be considered analogous in their potential to
blastemas on amputated limbs. However, since limb buds arise programmatically during the
normal course of animal development and from a standard-sized starting point, they are
categorically different from blastemas. Blastemas, instead, arise from tissues that only
moments earlier were fully differentiated and engaged in functions such as movement,
structural support, and sensation. An animal can be challenged to regenerate a limb at any
point in its life and from any point along the proximo-distal axis of the original limb. This
study nicely resolved the waves of transcriptional activity corresponding to three major
phases of limb regeneration involving initial wound healing, subsequent blastema formation,
and finally limb redevelopment, identifying approximately a hundred significant genes with
functions associated with morphogenesis, organogenesis, and related roles. Future functional
experimentation will be required to explore the specific contributions of these genes to
regenerative processes. Some of the most tantalizing future work may reveal functional
differences between how limbs develop and how they regenerate. Unlocking these
differences could be crucial for stimulating regenerative responses in otherwise non-
regenerative contexts, such as in humans.

Recently, an extensive microarray study aimed at describing global transcriptional changes
over time in the local tissues following amputation was published [38]. This study examined
unamputated limbs and regenerating limbs over the course of the first 28 days of
regeneration post-amputation, with a 1-mm piece of tissue harvested from the tip of the
regenerating limbs. Its power lies in the total number of time points sampled (20) and the
number of biological replicates per time point (10), providing more granular resolution into
these early events than earlier studies. The time points sampled were overlaid with existing
morphological landmarks that develop in a stereotypical order during normal regeneration
and have been characterized at a histological level [39]. Targeted transcript expression values
were quantified at each time point and also compared to day 0 (unamputated), providing
both a view of how expression changes over the course of regeneration as well as how each
time point differs from the homeostatic state. This approach enabled identification of
transcriptional changes that may underpin the transitions that occur during the early stages
of the regenerative process. A further feature of the work is the deposition of all data at Sal-
Site (www.ambystoma.org). This platform allows for simple searching of genes of interest
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based on gene name, gene symbol, or probe ID (custom Affymetrix GeneChip Amby002;
~20,000 unique probes).

Transcriptomics

The era of transcriptomics has revolutionized gene discovery in axolotls (Table 1
summarizes key genes, many of which were identified by transcriptomics). RNA-seq makes
no presumptions about the identity of the transcripts at play except that they can be captured
in the purification protocol and subject to reverse transcription, adapter ligation, and
amplification. This more versatile method enables detection of a greater dynamic range for
expression values for all individual transcripts, capturing both sequence and expression data
simultaneously, all at single nucleotide resolution. The decision of how deeply to sequence
samples is left to the researcher. For example, if sequenced sufficiently deep, even very
lowly-expressed transcripts may be recoverable, and these may be predicted to control
fundamental aspects of limb development (for example, transcription factors). With RNA-
seq, the saturation effect that occurs with microarrays for very highly-expressed transcripts
does not exist; therefore, an accurate representation of the relative expression values for very
highly-expressed genes can be determined. Furthermore, recent advances in RNA-seq
technology permit application of the technique to very low inputs of RNA (including
individual cells), which now opens the door to further dissection of the specific tissues and
cells integral to limb regeneration where only minute quantities of RNA may be available for
study.

Similar to the microarray experiments described above [38], but with an RNA-seq approach,
another recent study profiled changes in gene expression over the course of limb
regeneration [40]. The main finding highlighted by the authors was an “oncogene burst,” the
enrichment of expression of genes with oncogenic activity in other organisms. Speculation
about the role of oncogenes and tumor suppressors in limb regeneration has been
longstanding (reviewed in [41]), so the hypothesis promoted by the authors piqued interest
in this debate again. This approach should benefit from future functional experimentation to
determine the extent to which activation of putative oncogenes drives aspects of limb
regeneration. 2016 saw the publication of the most comprehensive transcriptome assembly
for axolotl to date [42]. This work reported the gene expression over the full course of
axolotl embryogenesis. Many of the transcripts reconstructed may also be active in limb
regeneration, as embryos must expand progenitor pools, pattern fields of cells, and grow, and
these tasks need also occur in limb regeneration. Furthermore, core signaling pathways are
often used for multiple purposes by animals, so simply having sequence data for as many
genes as possible is an empowering resource for the field.

Recently, a novel axolotl de novo transcriptome has been produced that is both very
complete and quite comprehensive [10]. In this work, several tissues from within limbs,
including muscle, cartilage, and bone, were dissected and separately sequenced.
Additionally, deep sequencing of the mRNAs expressed by intact, unamputated limbs en
masse was performed on samples from four distinct locations along the proximo-distal axis
of the limbs so that transcription potentially relevant to positional memory could be
explored. For blastemas, the stage of regeneration representing the peak of blastema growth
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prior to differentiation was chosen, which in an adult is about 23 days post-amputation.
Blastemas arising from both proximal and distal amputations were sampled, which allowed
us to examine gene expression differences between blastemas fated to regenerate an entire
limb versus those fated to simply regenerate a hand/foot. Additional tissues sampled in this
analysis included blood vessels, heart, testes, and ovaries. A cohort of 151 genes whose
expression is highly enriched in both proximal and distal blastemas compared to every other
tissue sampled was identified. Among these included a handful of genes previously
implicated in limb regeneration, but also many genes that were not previously implicated,
and many without any known homologs among publicly available sequence data. A handful
of genes predicted to show highly enriched expression in particular tissues were further
experimentally validated. Perhaps the most exciting aspect of this work is that since axolotl
experimental techniques have caught up with data acquisition, we were able to perform
direct functional studies with newly identified genes of interest. For example, cirbp, the
axolotl ortholog of mammalian cold-inducible RNA binding protein, was found to be a
cytoprotective factor for blastema cells; diminishing the expression of c/rfp in blastemas
caused an increase in cell death. We also discovered a growth-promoting role for kazald1,
which is predicted to encode a secreted protein with a mammalian Kazal-type serine
peptidase inhibitor domain, an insulin growth factor binding domain, and an
immunoglobulin domain.

An interesting outcome of all of these studies has been the implication of transcripts
potentially unique to salamanders as being important for limb regeneration. For example,
~40% of these blastema-enriched transcripts have not been found to have a significant match
to known sequences [10]. This means that some subset of these unknown transcripts may be
innovations in the salamander lineage, and a subset may represent ancestral genes that have
been lost in other tetrapods or diverged to the point of being unrecognized. Although we can
predict ORFs and in some cases protein domains, gaining more informative insights is more
difficult without homologous gene information, and most all of these genes remain
unexplored at the functional level. Future experimentation should produce exciting findings
about whether these animals utilize some novel elements to enable their regenerative
prowess. If so, activities for these putative salamander-specific gene products in a
mammalian context should be considered.

Additionally, the field should further investigate the possibility that mammals have innate
roadblocks to regeneration that salamanders either have overcome or simply do not possess.
One identified example is the p16/ARF locus, which encodes two proteins that in mammals
act in concert with Rb as tumor suppressors, but are very likely absent in salamanders [43].
In the absence of both Rb and p16/ARF activity, differentiated mammalian myocytes can be
cued to re-enter the cell cycle and proliferate [43]. This work provides evidence that the
approach of removing possible regenerative roadblocks, based on what is known about
salamander genetics, is a viable way to improve regenerative responses in mammals. From
the existing gene expression data, new hypotheses about what genes might need to be
attenuated during regeneration can also be explored. For example, genes whose expression is
specifically downregulated during the initiation stages might normally be repressing cell
cycle re-entry (as in [44]) or dedifferentiation during homeostasis. Putative salamander
“regeneration antagonizers” with mammalian orthologs can be investigated in the loss-of-
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function context in mice and other models to test the prediction that removing them might
improve regeneration.

Concluding Remarks

Axolotls are a powerful model for peering into how a tetrapod limb can achieve full
regeneration. The tools required to identify the strongest candidate drivers of this process
and, importantly, to manipulate them and assess outcomes, have finally arrived. Through a
combination of microarray and RNA-seq approaches, the field now has a solid foundation of
transcriptional information on which to build. Several other approaches and extensions
should provide an even more comprehensive understanding of the molecular factors enabling
limb regeneration (See Outstanding Questions). Epigenetics is likely to play a role in cell
state changes and cellular memories during regeneration, and technologies to probe this
possibility now exist. Proteomic approaches will help answer questions concerning post-
transcriptional output. Future RNA-seq studies are also likely to uncover roles for non-
coding RNAs given the wide availability of strand-specific RNA-sequencing. RNA-seq at
the single-cell level is destined to yield unprecedented resolution into the transcriptional
changes that underly each phase of the regenerating limb, illuminating blastemal cell types,
state transitions, and yield insights into critical interactions between cell types within the
blastemal microenvironment. The next several years promise to be an extraordinarily
exciting time to continue investigating the fascinating question of how salamanders
regenerate limbs.
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Trends

The experimental toolset has now largely caught up to the interest in understanding limb
regeneration, finally allowing for precise experimentation at a cellular and molecular
level.

A huge amount of transcript data has emerged from which to gather clues about how limb
regeneration occurs.

Differential gene expression analysis has enabled the identification of transcripts that are
highly enriched, as well as highly repressed, in key tissues required for limb regeneration.
These are prime starting points for hypothesis generation and functional experimentation.

Several genes whose involvement would not have been predicted by candidate gene
approaches have now been implicated in limb regeneration, underscoring the need to take
unbiased approaches to gene discovery.

De novo transcriptomes and reference tissue sequence data are important new resources
for the field.

Trends Genet. Author manuscript; available in PMC 2018 August 01.




1duosnuepy Joyiny 1duosnuely Joyiny 1duosnue Joyiny

1duosnuen Joyiny

Haas and Whited

Page 14

Outstanding Questions

Avre all signals acting locally, or are some systemic controls important for limb
regeneration? Why do salamanders respond to amputation with blastema creation, while
mammals usually do not? How much of the required response is linked to genes possibly
unique to salamanders?

What is the relative contribution of stem cell activation versus dedifferentiation to
blastema formation?

What is the cellular make-up of the blastema, and how might cells keep track of their
lineages and potentials?

How do processes outside of transcription influence limb regeneration?

Do the principles of limb regeneration hold for other organs, and how do they manifest in
other organisms, both regenerative and non-regenerative?

What are the limits to axolotl limb regeneration, and how might these help refine
hypotheses about innate regenerative hurdles in mammals?

Can lessons learned from axolotl limb regeneration be translated into therapeutic
approaches for regenerative medicine?
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Figure 1. Axolotl basics and genome-modifying tools
(A) Shown is an adult axolotl of the white genotype. Note the large limbs. Forelimbs have

four digits, while hindlimbs have five digits. (B) Male and female axolotl in mating chamber
with eggs. (C) Axoltol life cycle with validated points for genomic modification
manipulations noted. Axolotl embryogenesis spans approximately 10-12 days; only some
stages are shown. Embryos develop within a transparent jelly coat, which must be removed
to permit injections. Two adults are shown. At left is the wild-type genotype whose skin is a
darkly-pigmented mottled brownish-black. At right is the w#hite mutant. Note that specimens
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are not drawn to scale. Techniques that modify the genome are noted at stages where the
techniques have been employed to date.
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Figure 2. Outline of cellular events during limb regeneration
(A) General progression from unamputated to fully regenerated. (1) Immediately following

amputation (within ~24 hours), a thin wound epidermis (magenta) forms across the cut
stump via migration of stump epidermal cells. Wound epidermis thickens as cells within it
proliferate. (2) A visible bump, called a blastema (blue), forms beneath the wound
epidermis. Blastema cells are derived from activated progenitor cells within various stump
tissues that migrate to the tip. (3) Blastema cells proliferate to expand the progenitor pool.
(4) The initial regeneration response resolves, cells begin to undergo differentiation, and the
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limb continues to grow to the appropriate size. (B) Early steps are shown in more detail in
inset. Architectures of tissues such as bone and muscle are locally deconstructed near the
amputation plane and are therefore shown as jagged. Newly-activated progenitor cells,
which give rise to future blastema cells, are depicted with bright green starburst outlines.
These cells are cued to re-enter the cell cycle and some fraction of them presumably migrate
to the space immediately below the wound epidermis. Blood cells, both red and white, are
intermingled with blastema cells. A “nascent blastema” is equivalent to very early-bud stage
blastema in other literature. Noted are: epidermis (), wound epidermis (we), dermis (d),
bone (b, medium gray), muscle (m, pink), nerves (nv, black). Migration of newly-activated
progenitor cells to the tip of the stump during blastema formation is implied by the green
arrows.
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