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Abstract. Increasing global population, urbanization and industrialization are increasing the rate of conversion of
arable land into wasteland. Supplying food to an ever-increasing population is one of the biggest challenges that ag-
riculturalists and plant scientists are currently confronting. Environmental stresses make this situation even graver.
Despite the induction of several tolerance mechanisms, sensitive plants often fail to survive under environmental ex-
tremes. New technological approaches are imperative. Conventional breeding methods have a limited potential to
improve plant genomes against environmental stress. Recently, genetic engineering has contributed enormously to
the development of genetically modified varieties of different crops such as cotton, maize, rice, canola and soybean.
The identification of stress-responsive genes and their subsequent introgression or overexpression within sensitive
crop species are now being widely carried out by plant scientists. Engineering of important tolerance pathways, like
antioxidant enzymes, osmolyte accumulation, membrane-localized transporters for efficient compartmentation of
deleterious ions and accumulation of essential elements and resistance against pests or pathogens is also an area
that has been intensively researched. In this review, the role of biotechnology and its successes, prospects and chal-
lenges in developing stress-tolerant crop cultivars are discussed.
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Introduction

In plant biology, the transgenic approach has emerged
as an important tool to adapt crops to rapidly changing
environmental conditions. The use of transgenic crops
has increased considerably over the past decade. The pri-
mary step before proceeding with transgenics is the

identification of genes serving as key regulators of differ-
ent metabolic pathways, including osmolyte synthesis,
ion homeostasis through selective ion uptake, antioxi-
dant defence system and other frontline defence path-
ways (Ahmad et al. 2012).
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Genome editing has revolutionized plant biotechnology
by providing plant scientists with the option of selection or
incorporation of genes of interest into desired species or
cultivars (Tzfira et al. 2012). A particular stress alters the
expression of specific genes in a species-dependent fash-
ion. It causes differences in the efficiency of signal percep-
tion and subsequent transcriptional alterations leading to
elicitation of a specific response and adaptation and fi-
nally enhanced stress tolerance. The microarray hybridiza-
tion technique (employing cDNAs or oligonucleotides) is
the main technique used to isolate a set of desired genes.
Recently, rice microarrays using oligonucleotides (22 000
oligoarray) have been produced based on full-length
cDNA information through the Rice Genome Program
of Japan. A number of companies such as Axon
Instruments, Inc., Amersham Biosciences, MWG Biotech
AG, Genetic Analysis Technology Consortium, Clontech
Laboratories, Azign Bioscience A/S, Mergen Ltd.,
Invitrogen, Promega, QIAGEN, Stratagene and QIAGEN
Operon are providing these arrays. The services provided
by Agilent Company Ltd. are now being used to evaluate
and understand responses to abiotic stresses in rice
through transcriptomic studies (Ban and Moriguchi 2010).
Limitations in terms of the availability of sophisticated
cost-intensive apparatus and materials are common in
many countries’ laboratories (Ban and Moriguchi 2010).

Suppression Subtraction Hybridization (SSH) is an ex-
tremely powerful and widely used technique for separat-
ing cDNA or genomic DNA (Ban and Moriguchi 2010; Ding
et al. 2014; Ma et al. 2017). Transgenes are introduced
into plants by biological or physical methods. Successful
and efficient transformation demands specific criteria to
be met including regeneration capacity and competence
of target tissues, efficient DNA delivery method and
precautions for avoiding somaclonal variations and steril-
ity. Several techniques fulfil these requirements, e.g.
protoplast transformation, biolistics or microprojectile
bombardment and Agrobacterium-mediated transforma-
tion (Rodrigues et al. 2012; Fei et al. 2015).

In this review, we summarize stress-responsive genes
and their subsequent introgression or overexpression
within other crop species. In addition, engineering of im-
portant pathways involved in the oxidative defence sys-
tem, osmoprotection, ion transportation and resistance
against pathogens is explored. The role of biotechnology
and its successes, prospects and challenges in develop-
ing stress-tolerant crop cultivars are discussed.

Responses of Transgenic Plants to
Different Stresses

The past decade has extensively increased our under-
standing of ways to improve stress tolerance through

the transgenic approach (Bhatnagar-Mathur et al. 2008;
Gilliham et al. 2016; Wang et al. 2016). The majority of
transgenic plants has been tested against different abi-
otic factors only in growth chambers, greenhouses or un-
der controlled conditions (Ashraf and Foolad 2007). Few
studies are available in the literature in which abiotic
stress tolerant transgenic plants were tested under true
field conditions (Table 1).

Drought stress

Adaptation to water stress conditions is one of the major
challenges for plant scientists and biotechnologists in
the current scenario of rapid climate change. Scientists
are increasing their efforts to elucidate various climate
triggered metabolic processes at cellular and gene levels
(Chaves et al. 2003). Research trials tailoring the plant
genome for water stress tolerance and enhanced yield
carried out all over the globe have increased with the
premier goal of more crop per drop (Medici et al. 2014).
There is a growing trend to improve the water use effi-
ciency (WUE) of crops to enable the more efficient use of
available water (Al-Karaki 2000).

The difference between transgenic and conventional
approaches for achieving improved water stress toler-
ance is considerable. One viable transgenic approach is
the engineering of genes of important metabolic and de-
fensive pathways, e.g. osmoprotectant synthesizing
pathways and antioxidant defence systems (Ashraf
2009; Wang et al. 2016). Several stress inducible genes
have been identified through microarrays, but as yet
their function within the molecular mechanisms for crop
stress response and tolerance still needs to be deci-
phered. For example, the production of the phytohor-
mone abscisic acid (ABA) causes stomatal closure and
induces the expression of stress responsive genes
(Tuteja 2007). However, how they function is not known.
In Arabidopsis thaliana wild type and abi11 mutant seed-
lings, Hoth et al. (2002) identified �1354 genes that
were up- or down-regulated following ABA treatment,
with most of them coding for signal transduction.

Pinheiro and Chaves (2011) state that during lowered
stomatal conductance, in combination with sustained irra-
diance, relatively more CO2 is available within intercellular
sites, because during the Calvin cycle the consumption of
light is slowed down while production rates of reducing
power are increased under such conditions. These changes
slow down the photosynthetic rate through photoinhibi-
tion, which may serve as a defensive mechanism for plants
following the C3 pathway through thermo-regulated en-
ergy dissipation and light harvesting complexes (Ruban
et al. 2012). Plants with upregulated photosynthetic path-
ways exhibit a high rate of photosynthesis (Gu et al. 2013).
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There are three major pathways of CO2 assimilation
and fixation: C3, C4 and crassulacean acid metabolism
(CAM) pathways. C4 plants can minimize photorespiration
by separating initial CO2 fixation and the Calvin cycle in
different cell types, and CAM plants can fix carbon at
night, and are more tolerant to drought stress due to
their more efficient carbon fixation and specialized ana-
tomical features (Ashraf and Harris 2013). Recently,
Ashraf and Harris (2013) comprehensively described the
progress made during the last two decades in producing
transgenic lines of different C3 crops with enhanced pho-
tosynthetic performance either due to introgression of
genes encoding C4 enzymes into C3 plants or overexpres-
sion of C3 enzymes or transcription factors (TF). Usually,
C4 and CAM plants are best adapted to arid environ-
ments, because they have higher photosynthetic
efficiency as well as WUE as compared with C3 plants
(Fischer and Turner 1978). Likewise, Kim et al. (2014)
reported that overexpression of Capsicum annuum
drought stress responsive 6 (CaDSR6) in Arabidopsis
plants led to higher tolerance to drought as compared
with wild type plants. Saad et al. (2013) also showed that
the stress-responsive NAC1 (SNAC1) gene controlled sig-
nalling of sucrose phosphate synthase type 2C protein
phosphatases, 1-phosphatidylinositol-3-phosphate-5-ki-
nase as well as regulatory components of ABA receptor
in wheat plants under drought stress. Overall, a variety of
genes contributing to drought tolerance in plants
have been explored and characterized in Arabidopsis.
However, few of these genes have been tested in other
crops, and only under controlled or laboratory conditions
instead of natural field conditions.

Salinity stress

Salt is a premier environmental stress that affects plant
growth and development adversely through induction of
ion toxicity, reduced water uptake, hormonal disturbance
and oxidative stress (Ashraf and McNeilly 2004; Athar
et al. 2008; Tuna et al. 2007; Siddiqi et al. 2007; Ashraf
and Foolad 2013). As with other abiotic stresses, several
tolerance responses are triggered in the plants to avoid
high salinity-induced deleterious effects. One response
used to avoid saline stress is compartmentation and the
exclusion of deleterious ions (Naþ and Cl-) from sensitive
tissues like the mesophyll (where sodium toxicity is in-
duced by competing for Kþ binding sites) and their diver-
sion into the apoplast or vacuole (Sperling et al. 2014).

Maintenance of high potassium and retention of delete-
rious ions or solutes within a root or apoplastic regions are
the major tolerance strategies, and hence a high K/
Na ratio is maintained through the efficient function of
transporters (Shabala and Cuin 2008). Pandolfi et al.

(2012) suggested that short-term exposure and acclima-
tion of glycophytes to a lower salt concentration can help
withstand prolonged exposure to a higher concentration.
The plant acclimates through a set of physiological mech-
anisms including controlled xylem ion loading and
efficient Naþ compartmentation (Pandolfi et al. 2012).

For example, plants overexpressing the ion transporter
genes show high salinity tolerance as in halophytes
(Flowers and Colmer 2008). Overexpression of Naþ/Hþ

antiporter (AlNHX) from the halophyte, Aeluropuslittoralis,
in tobacco enhanced the salinity tolerance of tobacco by
maintaining a suitable level of Naþ and Kþ/Naþ ratio
(Zhang et al. 2008). Overexpression of vacuolar ATPase
subunit c1 (SaVHAc1) gene from Spartinaalterniflora en-
hanced rates of photosynthesis and cell wall expansion,
improved the Kþ/Naþ ratio and led to a higher relative wa-
ter content (RWC) in rice (Baisakh et al. 2012).
Overexpression of the wheat transporter geneTaNHX2 en-
hanced the salt tolerance of C. annuum by improving the
Kþ/Naþ ratio (Bulle et al. 2016). These studies indicate
that genes contributing towards tolerance to high salinity
in halophytic grasses could be better engineered to
achieve enhanced tolerance of sensitive cash crops.

Cold stress

Plant survival under low temperature depends on the
physiological and molecular responses triggered by the
plant on exposure to low temperature (Sergeant et al.
2014; John et al. 2016). These can be confounded by pho-
toperiod response as cold is often associated with extreme
latitudes. Water availability, growth and development, en-
ergy metabolism and photoperiod are amongst the impor-
tant factors that determine the deacclimation and
reacclimation of plants to cold stress (Thomashow 1999).
Compatible solutes, membrane proteins, antioxidants and
expression of cold responsive genes have a significant role
in cold tolerance (Kalberer et al. 2006). Cold stress alters
the expression of putative cold responsive genes coding
for an array of important proteins, for example enzymes
involved in respiration and the metabolism of carbohy-
drates, phenylpropanoids, lipids, antioxidants and those
coding for chaperones and antifreeze proteins. Several
other genes involved in regulating intriguing tolerance
mechanisms are involved in freezing-induced dehydration
(John et al. 2016). Altered gene expression and subse-
quent production of specific proteins during cold tolerance
play an important role in the distribution and survival of
plants as well as yield (Sanghera et al. 2011).

Interspecific and intergeneric hybridization-depen
dent conventional breeding has not been fully successful
in developing cold tolerant crop cultivars. However,
biotechnological and molecular approaches, including
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genome sequencing and alteration of the genome for
transgenic development, provide an opportunity to
understand and access the complex cold tolerance
mechanisms operating at the transcriptional as well as
the translational levels (John et al. 2016). Altered gene
expression has increased the level of several metabolites
that have a protective role under cold stress. Amongst
the low-temperature-induced genes that have been iso-
lated to date, the expression of most of them has been
reported to be regulated by cold binding factor/dehydra-
tion responsive element binding transcription factors
(CBF/DREB TFs; Sanghera et al. 2011).

Cold stress induces the expression of several proteins,
e.g. proteins of methionine pathways and membrane
stabilizing proteins. The methionine metabolism path-
way has an important role in the biosynthesis of essen-
tial metabolites including polyols and polyamines, which
play a role in cold acclimation. Although their actual role
in cold tolerance is not fully known, their accumulation
in plants has been reported in response to cold stress
(John et al. 2016). Overexpression of methionine sulph-
oxide reductase A (MsrA), an important enzyme in the
regulation of methionine metabolism, increases resis-
tance to oxidative damage at low temperatures. For ex-
ample, Arabidopsis plants with a mutation in methionine
sulphoxide reductase B3 (MsrB3) were more sensitive to
low temperature than their respective wild-type and
MsrB3 transgenic plants. MsrB3 plays a ubiquitous role in
eliminating reactive oxygen species (ROS) and methio-
nine sulphoxide (MetO) accumulating in the endoplasmic
reticulum during cold stress (Kwon et al. 2007).

Cold stress is believed to damage photosynthetic ma-
chinery, including photosystems and photosynthetic pig-
ments, by altering the expression of photosynthetic genes
(Oquist and Huner 2003). Han et al. (2010) isolated the
violaxanthin de-epoxidase gene (LeVDE), a gene regulated
by temperature rhythms, from Lycopersicon esculentum.
Overexpression of this gene increased non-photochemical
quenching, Fv/Fm and quantum yield, oxidizable P700, and
the activity of the xanthophyll cycle and alleviated PSI
and PSII photoinhibition under temperature stress.
Recently, similar observations have been reported in
transgenic tobacco by introgression of LeLUT1 (carotenoid
epsilon-ring hydroxylase gene from tomato), which re-
duced ROS production and hence maintained membrane
integrity (Miller et al. 2010). Transgenic plants that overex-
press these stress responsive genes benefit from their key
roles in alleviating photoinhibition and photo-oxidation,
which in turn decrease the sensitivity of the plant’s photo-
synthetic apparatus to cold (Zhou et al. 2013). The gene
AtICE1, which is responsible for stimulating the expression
of CBF/DREB in Arabidopsis under cold stress, was intro-
gressed in rice thereby enhancing tolerance to cold stress

(Dian-jun et al. 2008). Transgenic A. thaliana overexpress-
ing CcCDR, a potent cold and drought regulatory protein
gene, conferred enhanced tolerance to cold, salinity and
low temperature by improving various physio-biochemical
attributes, such as increased antioxidant activity and
accumulation of osmolytes (Tamirisa et al. 2014).

By using suppression subtractive hybridization (SSH),
Guo et al. (2013) identified the genes up- or down-regu-
lated in ABA-pre-treated pepper seedlings incubated at
6 �C for two days. It has been observed that 50.68 % of
unigenes showed similarities to genes with known func-
tions while 49.32 % showed fewer similarities or un-
known functions. The expression level of ten genes was
at least 2-fold higher in the ABA-pre-treated seedlings
than in non-treated (control) plants under chilling stress,
which suggested that ABA negatively or positively regu-
lates the genes in pepper plants under cold stress.

Cold induces accumulation of oligosaccharides and
galactosyl synthase activity. Galactinol synthase medi-
ates the synthesis of galactinol, which serves as a donor
of galactosyl during the synthesis of oligosaccharides of
the raffinose family (Zhou et al. 2013). Photinia serrulata
overexpressing the galactinol synthase gene (AmGSl)
from a cold tolerant tree, Ammopiptanthus mongolicus,
exhibited enhanced cold tolerance (Song et al. 2013).
Galactinol and raffinose are active scavengers of hy-
droxyl radicals. The role of galactinol synthase in drought
and salinity is well documented (Nishizawa et al. 2008),
yet very few reports are available pertaining to its possi-
ble role in cold tolerance. One of the few studies is by
Zhou et al. (2013), who introgressed and overexpressed
MfGolS1 in tobacco, which resulted in increased cold tol-
erance through improved formation of galactinol, sta-
chyose and raffinose. Elucidation of mechanisms of
tolerance to cold stress in cold tolerant grasses at bio-
chemical and molecular levels can be very helpful in im-
proving our understanding of putative cold responsive
genes and their subsequent introgression for enhancing
the tolerance of economic crops to cold stress.

High temperature

High temperature reduces a number of growth and
physiological processes including seed germination,
subsequent development, reproductive processes and
photosynthesis, which have adverse effects on the
overall yield of a crop (Gillooly et al. 2001). For example,
impaired reproductive growth by high temperature
results in inhibition of pollen grain swelling leading to
anther indehiscence and perturbed pollen dispersal,
which ultimately adversely affects seed production
(Das et al. 2014). Understanding the high temperature
tolerance mechanisms at physiological, biochemical and
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molecular levels in the light of global warming is essen-
tial for further successful efforts in developing high tem-
perature tolerant crop cultivars. Genetic and molecular
mechanisms for circumventing high-temperature-
induced deleterious changes play an essential role in
plant survival under such conditions. Sensing of high
temperature stress and developing tolerance is highly
complex, involving networks operating in different cellu-
lar compartments. Different putative sensors, e.g. his-
tone sensors located in the nucleus, protein sensors in
the endoplasmic reticulum and cytoplasm and a plasma
membrane channel initiating inward calcium flux, medi-
ate activation of heat stress responsive genes involved in
thermotolerance (Mittler et al. 2012).

Genome modification for thermotolerance in crop
plants is of immense concern because of its direct influ-
ence on the mechanisms involved in the reprogramming
of the proteome, transcriptome, metabolome and lipi-
dome. Molecular chaperones, e.g. heat shock proteins
(HSPs), have a key role in mitigating the deleterious ef-
fects induced by heat stress (Xu et al. 2013). Reduction in
the levels of HSPs causes developmental abnormalities
(Kotak et al. 2007). Five major highly conserved HSP fam-
ilies have been recognized that differ in their respective
molecular masses. Under normal metabolism, the HSPs
are involved in several processes including protein fold-
ing, assembly, translocation as well as degradation, sig-
nalling and cell cycle control (Young et al. 2001).
However, under stress conditions, the HSPs interact with
other co-chaperones to bring about refolding of proteins
in order to re-establish protein conformation and cellu-
lar homoeostasis, thereby protecting plant cellular
functioning.

The essence behind the successful acclimation of
plants to high temperature depends on the massive ac-
cumulation of transcripts coding for HSPs and ROS de-
toxifying enzymes like ascorbate peroxidase (APX). For
example, Zea mays and Arabidopsis mutants for HSP100
showed retarded growth and adaptation to high temper-
ature (Hong and Vierling 2000; Nieto-Sotelo et al. 2002).
Similarly, silencing of chloroplast HSP100/ClpB protein
gene expression in tomato reduced heat stress tolerance
(Yang et al. 2006). Reports pertaining to the sensitivity of
crop plants to high temperature as a result of mutation/
silencing of HSPs (Bita and Gerats 2013) help our under-
standing of how essential these HSPs are for plants
in triggering expression of heat responsive genes.
Thermotolerance in plants can be better achieved by ma-
nipulating the detoxification pathways of ROS, e.g. Shi
et al. (2001) cloned the peroxisomal APX-encoding gene,
HvAPX1, and its introgression within Arabidopsis en-
hanced heat stress tolerance by increasing APX activity,
thereby exhibiting low lipid peroxidation. The

phospholipid hydroperoxide glutathione peroxidase
encoding gene from L. esculentum, LePHGPx, protects
yeast cells from lethal effects. However, its introgression
and overexpression protected tomato from lethal tem-
perature and salinity levels by reducing apoptosis levels
(Chen et al. 2004).

Until recently, the genes that have been identified or
introgressed in different genetically modified (GM) plants
mainly relate to the regulation of the oxidative defence
system. However, multiple other plant metabolic sys-
tems and activities are affected by changes in tempera-
ture, and have the potential to be tackled in transgenic
crops. Moreover, a rise in ambient temperature as al-
ready visible over the last 10 years is a continuing chal-
lenge for crop productivity, creating the need to develop
stress tolerant plants with heat tolerance.

Fungicide and herbicide stress resistance

A variety of pesticides, herbicides and fungicides are fre-
quently used to control crop loss due to pathogen attack
(Yoon et al. 2013). Excessive use of these chemicals has
a considerable negative impact on crop growth and yield
(Chen 2006). Use of pesticides, fungicides and herbicides
has become an integral part of modern agriculture
(Aktar et al. 2009; Mattah et al. 2015). Residues of
sprayed pesticides and fungicides residing on the fruits
or seeds have a direct impact on human health.
Scientists are continuously endeavouring to develop al-
ternative chemicals to replace the commonly used
chemicals so that threats to plants, animals as well as
the environment can be minimized (Aktar et al. 2009;
Mahmood et al. 2014; Mattah et al. 2015). Crops vary in
their degree of sensitivity towards a particular pesticide,
herbicide or fungicide, and extreme conditions in terms
of heavy use of these chemicals can lead to crop death
because of their direct interference with the metabolic
processes of the plant (Mahmood et al. 2014; http://
www.irac-online.org).

Synthetic pesticides, herbicides and fungicides are ef-
fective, but excessive use can generate environmental
pollution, development of resistance and non-
degradable residues. For example, chemical fungicides
used for the treatment of plant diseases have diverse
mechanisms of action involving the mitochondrial respi-
ratory chain, inhibition of sterol biosynthesis as well as
microtubule assembly, resulting in some limitations re-
lated to their toxicity and resistance in plants. A number
of stress response pathways such as the cell wall integ-
rity and high-osmolarity glycerol pathway are triggered
by stimuli such as changes in osmolarity, cell wall insta-
bility and production of ROS (Hayes et al. 2014). There is,
however, an emerging fear globally about the mis/over
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use of synthetic chemicals particularly on food crops be-
cause of their potential effects on the environment and
human health (Al-Samarrai et al. 2012; Yoon et al. 2013).
So, the introduction of bio pesticides/fungicides/herbi-
cides is necessary (Yoon et al. 2013).

Elucidating and understanding the molecular mecha-
nisms of chemicals used to control pests, and the devel-
opment of pest-resistant crops and other alternative
ecologically sound methods, are important so that
chemical-dependent agriculture can be replaced with
safer productive alternatives to agrochemicals. The de-
velopment of crops that are resistant to pests and fungi
and improving plant tolerance to a particular chemical
pesticide or fungicide are being discussed in this regard
(Mahmood et al. 2014). In addition to causing crop dam-
age, many insects and pests have developed resistance
to these chemicals, e.g. in pests, resistance mediated
through enhanced activities of complex multigene en-
zymes like glutathione-S-transferase, esterases and cy-
tochrome P450s is well reported in the literature (Bass
and Field 2011). Engineering of crop plants by introduc-
ing genes involved in these important defence mecha-
nisms from animals, bacteria and pests could be a useful
part of xenobiotic strategies (Abhilash et al. 2009).

Qianet al. (2014) demonstrated that introgression of
a-momorcharin (a-MC), a ribosome-inactivating protein
(RIP) isolated from Momordicacharantia seeds, enhanced
the tolerance of rice to Magnaporthe grisea induced
blast. In another study, Zhu et al. (2013) showed that
pre-treatment of tobacco plants with a-MC (0.5 mg mL-1)
increased resistance to Bipolaris maydis, Fusarium grami-
nearum, Aspergillus oryzae, Aspergillus niger and
Sclerotinia sclerotiorum, thereby favouring the antifungal
and antiviral activity of a-MC.

Use of fungal cell wall degrading enzymes to enhance
fungal resistance has been widely practiced, e.g. intro-
gression of rice chitinase cDNA into cucumber enhanced
its resistance to Botrytis cinerea by suppressing the
growth of fungi (Kishimoto et al. 2002). In Brassica jun-
cea, Rhizoctonia solani infection induces the expression
of BjCHI1, a chitinase enzyme. Transgenic Solanum
tuberosum L. overexpressing either BjCHI1 or BjCHI1 and
HbGLU (Hevea brasiliensis b-1,3-glucanase) exhibited sig-
nificant inhibition of fungal growth (Chye et al. 2005).
Chye et al. (2005) suggested that co-expression of pro-
teins can effectively degrade fungal cell wall producing
elicitors by initiating epidermal cell collapse and thus re-
stricting further hyphal penetration. They also noted that
there are small-sized proteins, e.g. plant defensins, that
play an active role in plant defence against a variety of
diseases. Of the various plant defensins, NaD1 from
Nicotiana alata is a well-characterized antifungal protein
and its overexpression increased the resistance of cotton

to Fusarium oxysporum and Verticillium dahlia, resulting
in an enhanced survival rate and yield (Gaspar et al.
2014).

Amongst the most commonly used herbicides are
glyphosate and bromoxynil (3,5-dibromo-4-hydroxyben-
zonitrile). Glyphosate restricts growth by reducing aro-
matic amino acid biosynthesis while bromoxynil prevents
photosynthesis by affecting PSII activity (Stalker et al.
1988). The development of glyphosate resistant crops
would help plants resist the glyphosate and thus reduce
yield losses. Research efforts have been successful in
identifying and characterizing glyphosate resistance
genes and to date various 5-enolpyruvylshikimate-3-
phosphate (EPSP) resistant genes have been identified.
Shah et al. (1986) developed glyphosate resistant petunia
using the cauliflower mosaic virus 35S promoter, resulting
in 20-fold amplification of the ESPS synthase gene.
Similarly, Tian et al. (2013) developed a transgenic rice
cultivar through the incorporation of MdEPSPS, a gene
conferring glyphosate resistance, in Malus domestica,
which they identified after five rounds of DNA shuffling
and screening; amongst the eight mutations in the amino
acid sequence of this gene only two were identified as
site directed and important for glyphosate resistance.
Stalker et al. (1988) isolated and cloned the bxn gene
from the soil bacterium Klebsiella ozaenae. This gene
codes for nitrilase and mediates conversion of bromoxynil
to its primary metabolite form (3,5-dibromo-4-hydroxy-
benzoic acid), and when introduced into tobacco, en-
hanced bromoxynil resistance. Recently, Iwakami et al.
(2014) isolated two cytochrome P450 genes of CYP81A,
i.e. CYP81A12 and CYP81A21, from a noxious weed
Echinochloa phyllopogon that is resistant to the herbicides
bensulphuron-methyl and penoxsulam, and developed
transgenic Arabidopsis expressing either of these genes
that showed enhanced herbicide resistance through the
O-demethylation of herbicides. These results indicate that
the characterization and understanding of molecular
mechanisms and the development of resistant crops can
help withstand the devastating effects of pathogens and
pests and provide an important alternative to chemical
dependent agriculture.

Nutrient stress

Changes in environmental conditions have a direct influ-
ence on nutrient uptake and assimilation in plants
(Lopez-Arredondo et al. 2013). Amongst the various nu-
trient deficiencies, commonly reported deficiencies in-
clude those of iron, zinc and calcium, while other mineral
deficiency disorders are believed to be rare (Taiz and
Zeiger 2010). Most chemical fertilizers, which are en-
riched with desired nutrients, may improve biomass, but
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their role in improving the nutritional value for consump-
tion is minimized either through leaching, surface run-
off, volatilization or microbial consumption. Increasing
nutrient use efficiency (NUE) amongst crops through effi-
cient means is crucial to prevent mineral losses.
Extensive contributions from conventional breeding with
regard to improving NUE in crops have been made during
the past few decades (Ashraf et al. 2011), but such
achievements through advanced molecular techniques
have not been numerous. Efficient working of transpor-
ters and enzymes involved in nutrient assimilation is es-
sential for achieving enhanced nutrient uptake, and this
has a direct influence on the crop yield status. For exam-
ple, overexpression of glutamine synthetase gene (GS1)
in wheat plants led to increased nitrogen accumulation
in shoot and grains (Habash et al. 2001), whereas over-
expression of GS1-3 led to enhanced (30 %) kernel num-
ber in maize (Martin et al. 2006). At the molecular level,
there are very few reports in the literature pertaining to
the mechanisms and associated genes involved in nutri-
ent transport and assimilation. However, it is widely ac-
cepted that TFs and associated kinases are involved in
these processes (Canales et al. 2014).

Efficient working of the ammonium transporter,
OsAMT1, helps transgenic rice plants to achieve and
maintain sufficient levels of ammonium, the major
source of nitrogen for rice. This suggests the role of this
transporter in enhancing NUE, growth and yield under
optimal as well as suboptimal nitrogen conditions
(Ranathunge et al. 2014). NRT1.1 functions as a nitrate
sensor and can enhance high to low affinity nitrate
transporters in the protein kinase CIPK23 dependent
phosphorylation and dephosphorylation of intracellular
threonine, thereby changing NRT1.1’s ability to mediate
efficient nitrate transport (Parker and Newstead 2014).
Moreover, nodule inception (NIN)-like protein (NLP) TFs
are the master regulators of nitrate response, and upon
binding with the nitrate responsive cis-element activate
nitrate-responsive transcription, which is further modu-
lated by nitrate signalling at the post-translational level.
Suppression of NLP function results in impeded expres-
sion of several nitrate-inducible genes (Konishi and
Yanagisawa 2013). Castaings et al. (2009) reported that
nlp7 mutants show impaired nitrate signal transduction,
and that its expression pattern and function in sensing
nitrogen are closely associated with each other. Kuo and
Chiou (2011) suggested that micro-RNAs have a putative
rolein regulating the nutrient starvation genes at post-
transcriptional levels.

Nutrient rich cultivars can be selectively developed
from the existing germplasm or through genetic manipu-
lation. Tailoring of the genetic makeup of crops for im-
proved nutrient levels is gaining interest as a means to

reduce malnutrition. Microarray and sequence based
transcription profiling technology to study gene expres-
sion changes in response to nutrient stress can yield
meaningful results (Lee et al. 1999). Transient changes in
gene expression in nutrient starved plants are well docu-
mented. Bi et al. (2007) reported the differential expres-
sion of genes under mild nitrogen stress that were acting
as putative regulators of nitrogen stress responses in
Arabidopsis. An Arabidopsis mutant defective in develop-
ing proper nitrogen stress responses showed altered
transcriptional responses to nitrogen limitation because
of the absence of a key regulatory gene, NLA (Peng et al.
2007). In rice and maize, a systems approach is being
adopted, mainly aiming at profiling genes at transcrip-
tional levels in response to individual or combined nutri-
ent stress.

Genetic engineering approaches for enhancing NUE
range from increasing the solubility of mineral nutrients
and remobilization within the plant to transport and ac-
cumulation within storage organs. Recently, Zhou et al.
(2014) developed transgenic soybean in which constitu-
tive overexpression of GmEXPB2 (b-expansin) increased
leaf expansion and improved phosphate efficiency.
Overexpression of expansin genes, e.g. HvEXPB1 in barley
(Kwasniewski and Szarejko 2006) and OsEXPA17 in rice
(Yu et al. 2011), improved phosphate uptake through in-
duction of better root hair growth even under
phosphate-deficient conditions. Remobilization of nutri-
ents within a plant is critical for their survival, and manip-
ulation of transporter genes for efficient remobilization
of nutrients is an important strategy. For example, over-
expression of the GmPT1 transporter gene enhanced
phosphate remobilization, yield and related attributes
like phosphorus use efficiency and quantum yield in soy-
bean (Song et al. 2014). To enhance NUE through genetic
manipulations, a thorough understanding about the fac-
tors governing efficient mineral uptake and remobiliza-
tion within the plant is necessary. The use of methods
such as transcription profiling, analysis of mutants defec-
tive in their response to mineral deficiency and investiga-
tion of plants showing normal growth under nutrient
stress are pre-requisites.

The biofortification of important seed crops for opti-
mal accumulation of micronutrients has been the sub-
ject of intensive research for the last few decades
(Akram et al. 2009; Akram and Ashraf 2011). For exam-
ple, during a study on sunflowers, Akram et al. (2009)
found that a foliage spray of potassium sulphate signifi-
cantly improved shoot and leaf Kþ contents, while no
change was observed in leaf and root Mg2þ, Ca2þ or N
content under non-stress and saline conditions.
Similarly, soil and foliar application of Zn and Fe at the
rate of 4.0 and 2.0 mg kg�1, respectively, had a
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significant effect on plant available nutrients and nutri-
ent concentration in wheat grain and straw (Naz et al.
2015).

The transgenic approach has been preferred over the
conventional one for the biofortification of important
crops, because it is a convenient and time and labour
saving approach for overcoming nutrient deficiency
problems (Zhu et al. 2007). Rice plants overexpressing
the iron storage protein ferritin were reported to have in-
creased seed iron content (Lucca et al. 2001). Adoption
of GM crops is a time-consuming process as a number of
policies and laws need to be adopted before the com-
mercial release of such cultivars or varieties can occur. A
cultivar or variety that is transgenic for one of the nutri-
ents could involve up- or down-regulation of a cascade
of genes involved therein, which could cause human
health problems. A number of government agencies are
working mostly in developed countries to review these is-
sues. The transgenic approach is considered as an ex-
tremely useful tool in basic plant science research, but
understanding of the gene networks and molecular
physiology of plant responses to deficiency or excess of
nutrients is a pre-requisite.

Heavy metals

Heavy metal pollution and contamination is a major de-
terminant of the global distribution of plant species as
well as agricultural productivity, particularly in countries
where the economy relies heavily on industry (Khan et al.
2014, 2015). Many plants show symptoms of heavy
metal toxicity when a metal concentration surpasses a
specific threshold level. In general, necrosis and stunted
shoot growth are the first visible symptoms of heavy
metal exposure (Liu et al. 2014).

Heavy metals interfere with the growth and physiol-
ogy of plants in several ways. Heavy metals like lead (Pb)
and cadmium (Cd) reduce the number of mitochondrial
cristae leading to impaired oxidative phosphorylation.
Upon binding to nucleic acids, heavy metals promote the
aggregation and condensation of chromatin as well as
impaired replication and transcription (Youssef and
Azooz 2013). The affinity of Pb and Cd to sulphohydryl
groups of enzymes leads to their inactivation. In addi-
tion, heavy metal stress leads to the enhanced produc-
tion and accumulation of ROS and thus oxidative stress,
which usually upsets the normal metabolism (Groppa
et al. 2012). Phytoremediation is being extensively pro-
moted as a means to remediate environmental contami-
nants such as heavy metals (Glick 2003). Moreover,
rhizoremediation, which involves plants as well as their
rhizospheric microbes, either naturally occurring or intro-
duced, also helps to degrade or lower the levels of

contaminants and promote normal plant growth
(Gerhardt et al. 2009; Qadir et al. 2014).

Most heavy metal salts are hydrophilic and easily solu-
ble in wastewater, so they are difficult to separate by
physical separation methods. At low levels of heavy met-
als, physico-chemical methods can be ineffective or
costly. Alternative methods include biosorption or bioac-
cumulation for the removal of heavy metals. The use of
microorganisms and plants for remediation purposes is
thus an effective strategy to overcome or minimize heavy
metal pollution (Dixit et al. 2015). Despite the potential of
these strategies to contribute to reclamation of contami-
nated soils, detailed information on the underlying mech-
anisms is not available in the literature and efforts to
transform these strategies from successful laboratory or
greenhouse trials to field natural sites are highly challeng-
ing. Two factors that make these strategies not very effec-
tive are (i) the multiple stress factors available in the field
are not employed under laboratory and greenhouse stud-
ies and (ii) there is a lack of efficient and adequate meth-
odologies and techniques that can be employed to
ascertain whether or not the concentrations of different
contaminants are decreasing (Gerhardt et al. 2009).

Phytoremediation is an ecofriendly, cost-effective and
non-invasive strategy that is now being used extensively
to clean up heavy metals from the environment or ren-
der them harmless. Various mechanisms, e.g. chelation,
trafficking, compartmentation, etc. are employed for de-
toxification of toxic heavy metals and metalloids (Guo
et al. 2008; Khan et al. 2014). Moreover, production of
higher levels of high affinity ligands like phytochelatins
(PCs) and metallothioneins (MTs), and cysteine rich thiol-
reactive peptides, mediates detoxification by binding
with toxic metals and metalloids (Gasic and Korban
2007; Guo et al. 2008; Pal and Rai 2010). Formation of
PSc-metal or MT-metal complexes and their subsequent
sequestration into the vacuole are essential for heavy
metal tolerance. The enzyme phytochelatin synthase
(PCS) mediates the synthesis of PCs using GSH or c-glu-
tamyl cysteine as a substrate (Cobbett and Goldsbrough
2002; Wunschmann et al. 2007). Effective research has
been performed regarding genes encoding PCs, with sev-
eral genes being cloned to date, e.g. OsPCS1, TaPCS1,
AtPCS1 and CePCS1 from rice, wheat and Arabidopsis (Ha
et al. 1999; Vatamaniuk et al. 1999; Gasic and Korban
2007), and BjPCS1 and AsPCS1 from the metal tolerant
plants B. juncea and Allium sativum, respectively (Heiss
et al. 2003; Zhang et al. 2005).

Guo et al. (2008) demonstrated that simultaneous
overexpression of AsPCS1 and GSH1 (from A. sativum and
S. cerevisiae) enhanced the tolerance of A. thaliana to
heavy metals and metalloids. They further reported that
single-gene transgenic lines showed higher tolerance
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and accumulated more Cd and As than wild type plants,
while dual gene transgenic lines exhibited even more tol-
erance and accumulated (2-fold) more Cd and As com-
pared with single gene transformants. The elevated
production of GSH and PCs resulted in accumulation and
tolerance to Cd and As (Li et al. 2004). Plants used in phy-
toextraction should have an inherent capacity to accu-
mulate and tolerate high contents of metalloids in
aboveground biomass (Pajevic et al. 2016). In addition,
they should have fast growing adaptability and biomass,
and ideally be repulsive towards herbivores so that trans-
mission of toxic metals to various components of the
food chain can be avoided. Besides these basic charac-
teristics, hyper-accumulator plants have should have a
profusely branched root system, wide geographical dis-
tribution and be easy to cultivate as well as harvest.

Genetic manipulations for developing specific morpho-
logical characteristics supported by unique anatomical
efficiencies for the accumulation of metalloids are being
intensively studied (Kotrba et al. 2009). Tolerant plant
species show increased uptake and metal binding capac-
ity at intracellular sites, and efficient sequestration into
the vacuole for deposition and detoxification that is con-
trolled in a highly regulated manner by a set of gene
products (Peng et al. 2014). For instance, yeast protein
YCF1 mediates the sequestration of Pb and Cd into the
vacuole. Transgenic A. thaliana plants overexpressing
YCF1 were found to be tolerant to Pb and Cd (Song et al.
2003). In addition, enhanced translocation of metals to
aboveground plant parts via the apoplast or symplast,
and their subsequent extrusion to metabolically less ac-
tive tissues like trichomes, was also found to contribute
to enhanced metal tolerance as well as remediation
(Clemens et al. 2002).

The role of PCs and MTs in heavy metal detoxification
has been well documented. Gonzalez-Mendoza et al.
(2007) reported that increased expression of AvPCS and
AvMt2 in Avicennia germinans under Cd and Cu stress in-
dicates that the PCs and MTs are involved in a coordi-
nated detoxification response mechanism employed for
removal of non-essential metals. Scientists are continu-
ously striding towards enhancing the detoxifying poten-
tial of crop plants through manipulating the genes
coding for PCs and MTs, e.g. Nicotiana tabacum (Sylwia
et al. 2010) and B. juncea (Gasic and Korban 2007) over-
expressing AtPCS1 (PCS) showed improved tolerance to
Cd by maintaining higher levels of PCs in the cytosol and
vacuole. Arabidopsis thaliana overexpressing PCs1
showed higher resistance to Cd and arsenic (As) and ac-
cumulated more biomass (Verbruggen et al. 2009).
Moreover, concentrations of Cd and As decreased while
that of thiol peptide increased in shoot biomass (Li et al.
2004). Besides increasing tolerance, transgenic plants

accumulated less metal content in the aboveground bio-
mass (Gasic and Korban 2007).

Overexpression of AtPCS1 in N. tabacum harbouring
the Agrobacterium rhizogenes rolB oncogene enhanced
its tolerance to Cd; tolerance was further enhanced
when the culture was supplemented with GSH (Pomponi
et al. 2006). Transgenic plants showing increased expres-
sion of O-acetylserine (thiol) lyase (OASTL), a key enzyme
that catalyzes cysteine formation (from sulphide and O-
acetylserine) and a key limiting step in the production of
GSH, showed high tolerance to heavy metals (Ning et al.
2010). Nicotiana tabacum plants expressing the
wheat (Triticum aestivum) OASTL gene, cys1, and ex-
posed to SO2 maintained high levels of Cys and GSH as
well as higher rates of accumulation of Cu/Zn SOD
transcripts.

The advancement in transgenic approaches (individ-
ual or combination) could be a successful means to pro-
mote phytoextraction of toxic metalloids (Se and As)
and metals, particularly Cu, Pb and Cd in the above-
ground plant organs and to promote tissue up-take in-
volving metal transporters, high production of enzymes
and the production of metal-detoxifying chelators in-
cluding PCs and MTs. Advances in the mechanistic basis
of a transgenic approach would help provide a better un-
derstanding of the genetic basis of resistance or toler-
ance and hyperaccumulation of metals and metalloids,
means of translocation and other environmental factors
influencing phytoremediation, because these all hinder
its implementation.

Conclusions and Future Prospects

Several intrinsic protective mechanisms are triggered in
plants when they are exposed to various environmental
stresses (Sadiq et al. 2017). Deciphering the regulatory
mechanisms involved in initiating these tolerance path-
ways has remained under intensive research for de-
cades. Testing of the validity of these assumptions has
provided new insights towards the better understanding
and elucidation of stress-induced changes in plants.
Plant physiologists and biochemists have remained the
key players in elucidating the basics of these mecha-
nisms, which are now being extensively explored at the
genetic and molecular levels using various molecular,
genomic and biotechnological approaches.

The identification and selection of key stress responsive
genes and their subsequent introgression for developing
resistant crop cultivars through conventional breeding
protocols are time-consuming. Plant biotechnology, de-
spite being costly in comparison with conventional breed-
ing, is very efficient. Several stress responsive genes have
been identified and successfully introduced into other

Ahanger et al. — Plant responses to environmental stresses

AoB PLANTS www.aobplants.oxfordjournals.org VC The Authors 2017 110



crops to create transgenic crops with enhanced stress tol-
erance. However, it is important to point out here that dur-
ing the development of a transgenic crop variety, care is
taken to introduce genes that result in enhanced toler-
ance to multiple stresses, specifically at the whole plant
level. This requires the development of sets of markers de-
signed to enhance stress tolerance.

The advantages of biotechnology in the development of
transgenic plants for efficient crop varieties are undoubt-
edly enormous, but their commercialization after proper
field testing is still an unavoidable reality. In addition, risk
assessment of transgenic plants/crops is one of the pre-
liminary steps required before the release or use of trans-
genic plants. The set standard all over the world explains
the risk and official registration of plants and plant prod-
ucts has to be under taken. In addition, the risks to the en-
vironment from the transgenic crop plants must be
examined with many field tests prior to commercializa-
tion, with institutional assessments, decisions on plants or
varieties and adequate management practices in place to
tackle inherent risks. For decision making, risk assessment
must be followed in a scientific, sound and transparent
manner. There are many operational governmental regu-
lations in many countries for the safety assessment of GM
crops. Furthermore, there are some international agree-
ments that regulate the cultivation and commercialization
of transgenic plants and their derivatives. All over the
world, the major objective of these regulations and risk as-
sessment strategies is focused on protecting the environ-
ment and human/animal health. The adoption of
transgenic plants entirely depends on the assessments of
the risks or benefits, regulatory approval, cost and time
period, commercialization as well as the economic status,
requirements and values of different countries.
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