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Abstract

In magnetic resonance (MR), hardware limitations, scan time constraints, and patient movement 

often result in the acquisition of anisotropic 3D MR images with limited spatial resolution in the 

out-of-plane views. Our goal is to construct an isotropic high-resolution 3D MR image through 

upsampling and fusion of orthogonal anisotropic input scans. We propose a multi-frame super-

resolution (SR) reconstruction technique based on sparse representation of MR images. Our 

proposed algorithm exploits the correspondence between the high-resolution slices and the low-

resolution sections of the orthogonal input scans as well as the self-similarity of each input scan to 

train pairs of over-complete dictionaries that are used in a sparse land local model to upsample the 

input scans. The upsampled images are then combined using wavelet fusion and error back-

projection to reconstruct an image. Features are learned from the data and no extra training set is 

needed. Qualitative and quantitative analyses were conducted to evaluate the proposed algorithm 

by using simulated and clinical MR scans. Experimental results show that the proposed algorithm 

achieves promising results in terms of peak signal to noise ratio, structural similarity image index, 

intensity profiles, and visualization of small structures obscured in the low-resolution imaging 

process due to partial volume effects. Our novel SR algorithm outperforms the non-local means 

(NLM) method using self-similarity, NLM method using self-similarity and image prior, self-

training dictionary learning based SR method, averaging of upsampled scans and the wavelet 

fusion method. Our SR algorithm can reduce through-plane partial volume artifact by combining 

multiple orthogonal MR scans, and thus can potentially improve medical image analysis, research, 

and clinical diagnosis.
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I. Introduction

Magnetic resonance imaging (MRI) plays a key role in non-invasive examination of various 

diseases. Fast MRI acquisitions are preferred to avoid motion artifacts and improve patient 

comfort; so many MRI scans are performed with relatively few slices and with rather large 

slice thickness to cover the imaged anatomy. As a result, highly anisotropic data sets are 

acquired that have higher resolution within the slices than in the slice-selection direction. 

Obviously, the spatial resolution of thick-slice rectangular voxels is not comparable to 

isotropic square voxels as the image is unequally resolved along the slice, frequency, and 

phase encoding axes [1]. Computer aided diagnosis, analysis, and research on disease 

demand high quality image data and particularly high spatial resolution data in 3D. Thus, 

reducing the voxel size and reconstructing isotropic 3D MR images with high spatial 

resolution is much desired.

Reducing the voxel size is challenging in MRI because the signal-to-noise ratio (SNR) is 

directly proportional to the voxel size and the square root of the number of averages. 

Decreasing the voxel size by a factor α (e.g. α = 8 to reduce the voxel size from 2×2×2 mm3 

to 1×1×1 mm3) requires α2 (e.g. 64) averages to ensure a similar SNR. A 5-min acquisition 

would become a 5-hour scan, which is not feasible in practice [2]. One solution to achieve 

higher resolution in MRI is to improve MRI scanner hardware. Higher magnetic fields, and 

stronger and faster gradients enable MR imaging with higher SNR; but these solutions 

require hardware upgrades, which are costly and often uneconomic.

Enhancing the resolution in MRI by post processing based on algorithms attracts widespread 

attention. Super-resolution (SR) techniques are among the popular methods that, because of 

their efficiency and satisfying results, can be combined with other methods to improve the 

efficacy of MRI [3], [4]. SR algorithms try to reconstruct a high-resolution (HR) image from 

a single low-resolution (LR) image (single-frame SR methods) [5], [6] or multiple LR 

images (multi-frame SR methods). Multi-frame SR methods usually use more information 

than single-frame SR methods thus may generate better results; but multi-frame acquisitions 

often require extra time and resources compared to a single frame acquisition. A 

combination of the two techniques for SR MRI can be very attractive and useful.

SR techniques were originally proposed as multi-frame SR algorithms for the reconstruction 

of HR images from a set of LR images in video sequences [7]. In 2001 and 2002, initial 

attempts were made to adopt SR algorithms from the computer vision field to medical 

imaging with a focus on MRI [8], [9]. Multiple MR images of the same subject with small 

shifts were obtained to reconstruct an HR image. The authors tried to reconstruct the HR 

MR image from a set of spatially subpixel shifted scans in the in-plane dimension in [8]. In-

plane shifting, however, is equivalent to acquisition of the same points in k-space, which 

means they carry the same information, thus such techniques do not enable actual resolution 
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enhancement in MRI. Greenspan [9] used Irani and Peleg’s IBP (Iterative Back Projection) 

method [7] to reconstruct HR isotropic MR image from subpixel shifted scans in the slice-

selection dimension; the results of which showed that the proposed method did improve the 

resolution of MRI. Greenspan discussed these methods and the state-of-the-art in SR in 

medical imaging in [10].

Some of the modern applications of multi-frame SR reconstruction in MRI have been 

motion-robust fetal MRI [11], [12], [13], [14], SR cardiac MRI [15], [16], [17], [18], SR 

tongue and vocal tract MRI [19], [20] and SR diffusion-weighted (DW) MRI [2], [4], [21]. 

Gholipour et al. [11] developed a model-based SR technique that incorporated a model of 

subject motion, slice profile, and robust estimation, that enabled the reconstruction of a 

volumetric image from arbitrarily oriented slice acquisitions, a scenario that fit very well to 

fetal MRI. This framework was extended and used in attractive applications in various MR 

imaging applications affected by motion, such as cardiac MRI, vocal tract MRI and DW 

MRI. Rahman et al. employed a maximum a posteriori (MAP) based SR approach for 

computing a HR volume from two orthogonal short-axis and long-axis cardiac MR images 

[15]. The model-based SR algorithm was further extended to 4D image reconstructions in 

cardiac MRI [18]. Woo et al. introduced a framework to SR reconstruct an isotropic tongue 

volume using three orthogonal LR stacks [19]; and Zhou et al. also followed the model-

based SR approach to SR reconstruct HR isotropic volume from three orthogonal LR vocal 

tract MR images [20]. Scherrer et al. [2], [21] proposed model-based SR methods, based on 

MAP estimation, to accelerate and reconstruct HR diffusion tensors and diffusion model 

compartments from multiple anisotropic orthogonal DW-MRI scans. Ning et al. [4] coupled 

compressed sensing with SR for accelerated HR DW-MRI.

For reviews of other super-resolution techniques in MRI we refer to [3], [10], [22], [23]. 

Inspired by the very interesting works on single image scale-up (or single frame SR) based 

on sparse representation [25], [26], several researchers developed single-frame SR methods 

in MRI. Jafari-Khouzani [5] used a feature-based approach to upsample a thick-slice MR 

image using another MR image of the same subject acquired with different contrast but at 

higher resolution, and compared it to an earlier work based on non-local means by Manjon 

et al. [24]. Rueda et al. [6] used HR MR images as examples to train a sparse model for 

single-frame SR. Jia et al. [22] proposed training a dictionary from HR in-plane data using 

K-SVD algorithm (K-Singular Value Decomposition) and obtained better results than non-

local means approach. For a discussion of these methods and their relation to SR methods 

based on sparse representation we refer to [22].

To the best of our knowledge, there has not been any study that combines the information of 

multiple orthogonal anisotropic MR scans using sparse representation for SR image 

reconstruction. In this work, we propose a novel algorithm to reconstruct isotropic HR MRI 

by upsampling and fusing orthogonal anisotropic MR scans to increase the resolution by SR 

using sparse representation of images. This is different from single frame SR reconstruction 

in digital imaging [25], [26] and MRI [22]. To this end, we construct training sets based on 

the self-similarity and similarity between orthogonal LR 3D MR scans and combine them to 

achieve SR MRI. There is no need for extra training sets in this approach and the technique 

takes advantage of the data provided by multiple orthogonal acquisitions in two ways: 1) 
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learning from data to reduce the effect of partial volume in anisotropic LR acquisitions for 

upsampling, and 2) fuse data that sample the 3D space of the anatomy in orthogonal 

complementary ways.

The remaining parts of this paper are organized as follows. The mathematical model behind 

the proposed method is discussed in Section II. The proposed methodology is described in 

Section III. In Section IV, experimental results and analysis are presented. Section V 

contains the conclusion.

II. Mathematical model behind the proposed method

The multi-frame SR problem can be formulated as follows:

(1)

where Yn is the nth LR image, N is the total number of LR images; X is the desired 

reconstructed HR image; Dn, Bn and Gn are the down-sampling, blurring and geometric 

transformation operators respectively; Vn is the additive noise in the nth LR image. With N 
= 1, (1) becomes a single-frame SR problem. To solve the above problem efficiently, we 

propose to decompose the multi-frame SR problem into three sub-problems presented as 

follows:

1) Upsampling LR images

We initiate the multi-frame SR problem by upsampling each of the LR images. The single 

image SR problem is expressed by:

(2)

Without loss of generality, (2) can be rewritten as:

(3)

where Mn=Dn BnGn. Upsampling is equivalent to finding Xn in equation (3) based on the 

acquired LR scans and the LR scans generative model. This is an under-determined inverse 

problem. We regularize and solve this problem using a sparse-land local model described in 

Section-III-A-1.

2) Initial HR image reconstruction

In this step, we fuse all the obtained HR images X n from step 1 into one single HR image as 

the initial SR reconstructed result X0 in (1). While several techniques can be used for this 

[31], we choose to efficiently perform it through 3D wavelet decomposition of the 

upsampled images from step 1 and then fuse the wavelet decompositions to reconstruct X0 

[32]. This process, which is based on [32], is discussed in Section-III-B-2.
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3) Constrained reconstruction by error back-projection

The initial reconstructed HR image X0 is then refined by minimizing the error of estimating 

slices in the global generative model in (1). We perform this global reconstruction 

constrained by the projection of X0onto the solution space of (1) using:

(4)

where c balances the fidelity of the approximation of reconstructed LR MR scan and the 

difference between the solution and the initial value. The weighting coefficient c is set to be 

between 0.01 and 0.1 for regularization, but can be set to zero in a multi-frame SR problem 

with a relatively small SR factor (e.g. 2–3). The solution to the SR optimization problem can 

be numerically computed through iteration on the difference between the reconstructed and 

the original LR MR scans [6]. The update equation for the iterative optimization is:

(5)

where Xt is the estimation of the HR image after the t-th iteration, and σ defines the step 

size.

III. Proposed methodology

The proposed algorithm aims to reconstruct an isotropic HR 3D MR image from orthogonal 

anisotropic scans. The proposed framework includes three steps: upsampling all the 

orthogonal scans based on sparse representation, orthogonal MR images fusion based on 

wavelet decomposition, and global reconstruction through error minimization, as shown in 

Fig. 1. The details of these three steps are discussed below.

A. Upsampling Orthogonal Scans

Orthogonal LR anisotropic MR scans include axial, coronal and sagittal scans with HR 

slices in the in-plane directions and LR slices in the slice-selection directions. In this step, 

our goal is upsampling the three LR anisotropic MR images to HR isotropic MR images 

respectively by the proposed algorithm based on sparse representation. This procedure 

includes training set construction, HR and LR dictionaries training, and HR MR image 

reconstruction.

1) Sparse-Land Local Model—The problem in the first step, as shown in (3), is ill-posed 

and has no unique solution, so we need regularizers to obtain a unique solution for this 

problem [27]. To regularize the solution using the sparsity of the MR image, we choose to 

introduce sparsity prior as the regularizer and work at the level of small 2D patches extracted 

from MR slices. We then compose the SR reconstructed patches into a 3D volume. The 

sparsity prior means the small patches can be represented as a sparse linear combination in 

the corresponding trained over-complete dictionaries. So (3) can be rewritten as:

Jia et al. Page 5

IEEE Trans Med Imaging. Author manuscript; available in PMC 2018 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(6)

where  is the feature extractor for the LR MR slice which extracts the 

high frequency information. The HR MR image loses its high frequency information 

through the acquisition process, and our task is to recover the high frequency information. 

That is why we use the high frequency features as the examples to consider the SR model 

and train dictionaries. In this paper, we utilize gradient and Laplacian image filters to extract 

features of the LR MR images. These two filters are simple and efficiently extract high 

frequency information from MR images. Besides, we get the HR feature vector by 

subtracting the low frequency from the HR slices. We use Principal Component Analysis 

(PCA) for dimensionality reduction on feature vectors to reduce computations and improve 

the reconstruction accuracy. In this formulation,  is the overlapped 2D patch extractor 

from MR slices; yk is the feature vector of 2D patch k; xk is the corresponding feature vector 

extracted from the HR MR slice;  is the local down-sampling operator on patch k; vk is 

the additive noise on patch k; and K is the total number of patches extracted from LR MR 

image Yn. To be consistent, the patches are feature vectors extracted from the corresponding 

2D patches in the following parts. The atoms of the dictionary are also feature vectors.

In this paper, we utilize the synthesis model to describe the sparse representation problem. 

The HR dictionary of the synthesis model DX = [d1, d2, …, dW] ∈ RH×W, where H < W, that 

means the dictionary is over-complete, allows to represent a wide range of signal 

phenomena; where dw ∈ RH is one atom of the dictionary DX. Vector xk ∈ RH can be 

expressed as a sparse linear combination of the atoms in the dictionary , 

where  is the coefficient of xkover dictionary DX. If the number of nonzero 

elements in  is  is s-sparse. Similarly, for the LR dictionary: , 

where  ∈ RL×W. The over-complete dictionary ensures the coefficients 

 and  of the patches are sparse. Furthermore, in the SR reconstruction problem, we 

assume  [26]. This means the LR patches and the corresponding HR patches share 

the same sparse representation. The problem of finding a sparse representation of yk can be 

described as follow:

(7)

where l0 is the number of non-zero elements.

Supported by the above theory, the SR method based on sparse representation and over-

complete dictionary is defined in Fig. 2: Firstly, LR dictionary DY and HR dictionary DX are 

trained from the training set by using a dictionary training algorithm. The dictionary training 

process will be discussed in the following section. Then the observed LR patch yk is sparsely 

represented over the trained LR dictionary DY by utilizing sparse representation techniques, 
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and the sparse coefficients  are computed. As assumed above, the sparse representations 

of the LR and HR images are the same. So based on the obtained sparse representation 

 and the trained HR dictionary DX, HR patch is reconstructed by . After up-

sampling each patch, the whole image is composed by all the overlapped patches. We 

describe the composition algorithm in Section 4. Test experiments show that the SR 

algorithm performing at overlapped patches lead to better reconstruction results than 

performing at non-overlapping patches, therefore we use overlapped patches here. The low-

frequency information is then added to the composed HR image. The above model based on 

sparse representation can also be referred as local sparse-land. This model constructs a 

connection between HR patches and the corresponding LR patches, which is exploited to 

recover the HR image.

2) Training set construction—Based on the SR method described in Fig. 2, the first step 

of SR algorithm is constructing the training set to train the LR dictionary DY and the 

corresponding HR dictionary DX, respectively. The training set includes HR patches and the 

corresponding LR patches which are produced through the observed model by the HR 

patches. It means the LR training examples are the down-sampled, blurred, transformed and 

noisy version of the corresponding HR training examples. The upsampled results depend on 

whether the trained dictionary matches the observed LR patches. Generally, the more similar 

the observed LR patches are to the training examples, better-trained dictionaries can be 

obtained. So in order to train dictionaries that closely resemble a sparse land model of the 

observed LR patches, it would cost much more time to select similar training examples from 

big datasets. Then we should consider the balance between accuracy and robustness of the 

dictionary, but there is no theoretical guidance. Furthermore, sometimes no extra training set 

is provided. To mitigate the above problems, here we propose to construct the training set 

from the orthogonal anisotropic MR scans themselves to utilize the similarity between the 

HR slices and the corresponding out-of-plane sections of the three orthogonal anisotropic 

MR scans, and the self-similarity of each of them.

In this paper, we train the dictionary based on all the HR in-plane slices extracted from the 

orthogonal anisotropic scans. The upsampling process of all the three orthogonal MR images 

shares the same dictionary. Then we upsample the LR slices containing the slice-selection 

direction (the out-of-plane slices) of each anisotropic scan. It is evident from k-space 

sampling in MRI and represented by the wavelet representation, these thick-slice 2D scans 

carry high-frequency information in two dimensions (phase encoding and frequency 

encoding dimensions) while not covering high frequencies in the third (slice select) 

dimension. So we trained the dictionary based on in-plane slices and performed the SR 

reconstruction process at the level of 2D patches rather than 3D patches. If we were using 

3D patches, then the effect of the partial volume in the slice select direction could be 

problematic.

This is an efficient strategy to construct the training set. Firstly, the constructed training set 

is much more similar with the LR slices to be upsampled. Using axial scan as an example, 

the in-plane slices in the axial view is HR and our task is to upsample the out-of-plane slices. 

By analyzing the features of the three orthogonal anisotropic MR scans, the LR coronal and 
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sagittal slices of the axial scan correspond to the HR in-plane slices of the coronal scan and 

the sagittal scan. So extracting the HR slices from coronal and sagittal scans to train the 

dictionary for the LR slices of the axial scan is an intuitive choice. Similarly, the HR slices 

in the axial scan can be utilized to train dictionary for the LR slices in coronal and sagittal 

scans. Furthermore, the local self-similarity of anatomical features occurs both within the 

same plane and across the planes. That means, for the same MR scan we can extract 

overlapping image patches from the in-plane direction that are similar to the out-of-plane 

patches. So the HR in-plane slices of the axial scan also could be utilized as the training 

examples for the reconstruction of the same scan. That means we could extract all the HR 

in-plane slices from the three orthogonal MR images to construct the training set. Secondly, 

the training set construction strategy is robust. For various MR scans, the constructed 

training set would always be similar with the LR slices to be upsampled, as the training set 

construction strategy utilizes the intrinsic similarity between the three orthogonal anisotropic 

MR scans and the self-similarity of each MR scan.

Based on the above analysis, this paper extracts the HR slices from the in-plane direction 

from all the orthogonal scans to construct the training set; and the same trained dictionary is 

used to upsample the LR slices of the orthogonal scans respectively.

3) Dictionary Training—The key step of the SR algorithm is dictionary training, 

including LR dictionary training and the corresponding HR dictionary training. Yang et al. 
[25] proposed jointly training HR and LR dictionaries for the HR and LR image patches, to 

enforce the similarity of sparse representation between the LR and HR image pairs based on 

their own dictionaries. This method, however, is very time consuming. To solve this 

problem, Zeyde et al. [26] simplified the overall process both in terms of computational 

complexity and the algorithm architecture. Meanwhile, the reconstruction results were also 

improved. We utilized Zeyde’s algorithm to train the HR and LR dictionary pair in this 

paper. They firstly trained the LR dictionary using K-SVD (K-Singular Value 

Decomposition) [28] algorithm based on LR training examples, and obtained the sparse 

representation; then the HR dictionary was learned based on the sparse representation and 

HR training examples. The details of the dictionary training algorithm are shown in the 

online Supplementary Material.

4) Orthogonal MR image SR reconstruction—Based on the trained HR and LR 

dictionary, we SR reconstruct all the orthogonal MR images. For each orthogonal MR 

image, we upsample the LR slices in the slice-selection direction. In our proposed sparsity-

based SR reconstruction algorithm, we process small 2D patches. Firstly, feature extraction 

and dimensionality reduction are performed again over the LR slices of orthogonal MR 

images similar to the dictionary training phase. The next step is reconstruction. For each 2D 

patch extracted from the LR slices in out-of-plane directions, we get the sparse code by 

OMP (orthogonal matching pursuit) method [29], [30] using the trained LR dictionary DY. 

Because HR patches and the corresponding LR patches share the same sparse representation, 

we get the HR patches by multiplying the sparse code and the trained HR dictionary DX.

As mentioned above, we process small 2D patches rather than the whole volume. So the 

reconstructed overlapped small 2D patches should be composed to reconstruct the HR slices; 
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then HR slices are composed to the whole HR volume. The final HR slices are constructed 

by solving the following minimization problem with respect to xk:

(8)

where  means an extractor to extract patches at location k from high frequency resulting 

image (Xh − Xl), where Xl is the low frequency part of Xh. The extracted patches should be 

as close as possible to the reconstructed patches xk. This problem can be solved by the 

following equation:

(9)

It is equivalent to putting xk in their proper location, averaging the overlap regions, and 

adding the low frequency content of Xl to generate the final image Xh. Then the HR slices 

are composed to reconstruct the HR volumes.

B. 3D Wavelet Fusion

1) Image Resampling—Orthogonal MR scans acquired from a subject often do not have 

the same origin, spacing, direction, and number of voxels; so in order to fuse orthogonal 

scans, we first resample them to match their geometry. For scans acquired in the same scan 

session, if the subject does not move between scans, an identity transformation is used for 

resampling. Alternatively, image registration may be used to correct for possible subject 

motion or misalignment between scans. The main component of resampling is interpolation. 

Classic interpolation algorithms like nearest neighbor, linear, cubic, B-spline, or Kaiser-

Bessel windowed Sinc may be used. We used cubic interpolation as it provides good 

practical estimations of the ideal Sinc interpolator.

2) Wavelet fusion—The simplest method to fuse resampled images from orthogonal scans 

is averaging. Averaging is simple but does not take into account the physics of MRI slice 

acquisitions thus results in artificial blurring. SR MRI reconstruction accounts for MRI 

physics and can be done in the image, frequency, or wavelet domains [31]. Here, we adopt a 

wavelet-based approach [32] to combine the orthogonal scans as it is fast and efficient and 

performs nearly as good as the frequency and image domain approaches. Wavelet fusion 

approach intends to construct a high spatial resolution image, containing a wide range of 

spatial frequencies (from low to high) in each axis, derived from input MR scans that 

contain high spatial frequency information in the in-plane axes only. This is an important 

contribution because the ability to acquire directly high spatial frequency data in all three 

axes is restricted, both by acquisition time, by signal-to-noise ratio, and by the decay times 

of MRI contrast parameters T1 and T2. To this end, the wavelet fusion algorithm combined 

all the meaningful information from the input MR images, including the low frequencies and 

in-plane high frequencies; while discarding the parts without useful information, i.e. missing 

high frequencies in the slice-selection direction. The procedure is described below.

Jia et al. Page 9

IEEE Trans Med Imaging. Author manuscript; available in PMC 2018 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The 3D wavelet transform of an MR image (with “XYZ” coordinates) has eight blocks, 

often denoted as “LLL”, “LLH”, “LHL”, “LHH”, “HLL”, “HLH”, “HHL”, “HHH”, where, 

for instance, LHH stands for the block containing low-, high-, and high-frequency 

information in the X, Y, and Z directions, respectively. The sagittal scan, for example, has 

useful information in its L## blocks, but virtually no information in its H## blocks (“#” 

stands for both H and L). Similarly, the informative blocks of the coronal and axial scans 

would be the #L# and the ##L blocks, respectively. Following [32], we used Haar wavelets 

for wavelet transform.

Wavelet fusion uses as many informative blocks as possible from the three orthogonal scans 

to reconstruct the desired HR image. For example, the reconstructed LLL block will be the 

average of the LLL blocks of all the three scans, the LLH will be the average of the LLH 

blocks of the coronal and sagittal scans, and the LHH will be the LHH of the sagittal scan. 

The fusion rule is shown in Fig. 3. The HHH block is the only one missing in all the three 

scans, which is handled by zero padding. Performing an inverse wavelet transform will then 

produce an isotropic-voxel HR image, combining the useful information of the three 

available scans.

C. Global Reconstruction

As a last step, we solve the global reconstruction problem (5) formulated in Section II. In the 

previous steps, we upsampled the three orthogonal input LR scans independently even 

though they shared the same training set and trained dictionary that were based on the 

similarity between them and their self-similarity. Through this last step, we refine the 

reconstructed image based on (1). This helps mainly because in upsampling each input LR 

scan based on sparse representation, we did not demand exact equality between the LR 

patches and the reconstructions , and we did not impose strict constraints to ensure αX 

=αY in the dictionary training part. Besides, we worked at the level of patches and solved 

the reconstruction problem locally. Global reconstruction ensures the continuity between 

patches after composing the small patches into a final isotropic HR image.

IV. Experiments and analysis

To validate the efficacy of the proposed algorithm we conducted abundant experiments. This 

section includes four parts. The first part presents the implementation details and parameters 

selection. The second part gives a brief description of the MR data utilized in the 

experiment. In the third part, we test the proposed method over MR images with different 

features (different slice thickness, different noise power, with or without sclerosis), and also 

test the influence of number of input LR images over reconstructed results. In the fourth 

part, we compared our proposed method with single-frame SR and multi-frame SR 

algorithms over bigger datasets, including simulated MR images and clinical MR images.

A. Implementation Details and Parameters Selection

All algorithms were implemented in MATLAB R2014a, running on a Windows machine 

with two 3.10 GHZ Intel Core i5 CPUs and 4.00 GB of RAM. To quantitatively and 

qualitatively evaluate the performance of the proposed method over different MR data sets, 
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we introduce 4 different methods in this section for two scenarios, including PSNR (Peak 

Signal-to-Noise Ratio), SSIM (Structural Similarity Image Metric) [34], visual inspection 

and intensity profile (The details of these four methods are provided in the online 

Supplementary Material). We ran several preliminary experiments with different parameters, 

to provide a good tradeoff between accuracy and efficiency. Based on these testing 

experiments we chose the patch size equal to 3×3, number of iterations of dictionary training 

algorithm = 40, overlapped region for patches = 1, number of dictionary atoms = 521 and the 

maximum sparsity = 3. Besides, we used cubic interpolation for the initial upsampling. The 

step size of gradient descent in the global reconstruction stage was set to , and the 

maximum number of iterations of the error minimization in the global reconstruction 

algorithm was 40.

B. Experimental Data Acquisition

Experiments were conducted on the simulated T2-weighted (T2w) MR scans from the 

Brainweb database [33], T2w turbo spin echo (TSE) clinical MR scans of the brain, and 

T2w single slab 3D TSE with slab selective, variable excitation pulse (T2 SPACE) knee 

MRI scans. The simulated data included normal and pathologic (multiple sclerosis) MR 

images, with and without noise. The details of the datasets are shown in Table I. To simulate 

the down-sampled version of HR MR images, adjacent slices were averaged to produce 

different slice thicknesses. This simulates the Partial Volume Effect (PVE). PVE increases as 

the slice thickness increases. Orthogonal scans were generated by down-sampling different 

directions of the HR MR images.

C. Tests on the proposed method

We performed experiments on the simulated T2w scans and clinical T2w knee MR scans to 

evaluate the efficacy of the proposed method. Simulated orthogonal scans with different 

thickness, different levels of noise, and cases with multiple sclerosis were utilized to produce 

HR isotropic 3D MR images. To show the efficacy of the proposed method in different 

situations, we compared with Cub-Ave and Cub-Wav. Cub-Ave indicates the traditional 

averaging method. Cub-Wav means interpolating those three orthogonal LR MR scans by 

cubic interpolation and combining the upsampled scans by wavelet fusion approach [32]. In 

Section D, we compare with more SR reconstruction algorithms over bigger datasets.

1) Influence of slice thickness—As mentioned in Section B, in order to simulate PVE, 

we constructed down-sampled MR images by averaging adjacent slices. In particular, the 

PVE is stronger as the slice thickness increases. To study the effect of slice thickness on the 

proposed method, we respectively produced three orthogonal LR down-sampled MR images 

with slice thickness of 2mm, 3mm, 4mm, 5mm, 6mm, and 7mm from simulated T2w brain 

MR image. We reconstructed T2w brain HR volume with voxel size 1mm × 1mm × 1mm 

from three simulated LR orthogonal brain MR images. Table II shows that the proposed 

algorithm generated the best results in terms of both PSNR and SSIM values. For example, 

the PSNR/SSIM values obtained from the proposed method were 42.78dB/0.999 in 2 mm 

and 36.68dB/0.995 in 3 mm, while the results of the other two algorithms were much worse. 
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This indicates major improvements over Cub-Ave and Cub-Wav method. The PSNR/SSIM 

values dropped as the slice thickness increased.

We tested the effect of slice thickness on the proposed method over knee MR scans and 

observed similar trends. For HR knee MRI reconstruction, the PSNR/SSIM values obtained 

from the proposed method were 47.26dB/0.996 for 2mm thick-slice LR images, while the 

results of the other two algorithms were 37.09dB/0.974 and 43.56dB/0.994, respectively. 

The PSNR and SSIM values of the knee reconstruction results are shown in the online 

Supplementary Material. Again, the proposed algorithm generated the best results in terms 

of both PSNR and SSIM values.

Similarly, the PSNR/SSIM values dropped as the slice thickness increased. The reason for 

the influence is that the upsampling factor increases as the slice becomes thicker. The 

limitation of most SR algorithms is that their performance deteriorates quickly when the 

magnification factor becomes moderately large.

Besides, we displayed several slices of the reconstructed knee MR image when slice 

thickness is 3mm in Fig. 4. Details are blurred in thick-slice scans due to PVE, but we 

obtained satisfactory results by our method. For example, the structure highlighted by the 

red rectangle in the coronal view of (a) could be observed clearly, but were very blurry in the 

coronal view of (b) and (d).

2) Influence of noise power—The intension in our particular MR application is to 

reconstruct an HR isotropic 3D MR image from orthogonal clinical scans based on the SR 

algorithm, but without exposing the patient to longer acquisitions. So we did not consider 

and were not specifically focused on improving the reconstructed image by removing noise; 

however, it was important to evaluate the impact of the noise in the proposed algorithm. To 

do so, three orthogonal LR brain T2w MR scans with 2mm slice thickness were respectively 

produced. Different percentage noise (1%, 3%, 5%, 7%, and 9%) levels were used to 

investigate the noise influence. It is well known that the magnitude MR noise follows a 

Rician distribution. So we added Rician noise to the simulated LR orthogonal brain MR 

scans. Firstly, those three LR noisy MR scans were denoised using ODCT3D and PRI-

NLM3D methods [35], which take advantage of two intrinsic properties of MR images: 

sparseness and self-similarity. Then, the proposed algorithm was applied to the denoised LR 

orthogonal scans.

Table III presents the reconstruction accuracy values in terms of PSNR and SSIM on 

simulated T2w brain MR image. The proposed method obtained the best results in all cases. 

In Table III, the PSNR/SSIM values dropped as the noise level increased. For example, the 

PSNR/SSIM value of the reconstructed T2w brain MR image was 39.78dB/0.993 when the 

noise power was 1%, while the PSNR/SSIM value was 35.71dB/0.974 when the noise power 

was 3%. We observed similar trends in the impact of noise in the proposed algorithm on 

knee MR data with 3mm slice thickness. The PSNR/SSIM values of the reconstructed 

results can be found in the online Supplementary Material. The results showed that the 

proposed method obtained the best results in most cases; and the PSNR/SSIM values 

dropped as the noise level increased.
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The efficacy of the denoising method affects the SR reconstruction results. As the noise 

power increased, the difference between the results obtained by various algorithms became 

smaller. This is explained as follow: when the noise power becomes increasingly large, the 

results mostly depend on the denoising method and the SR reconstruction algorithms that 

use intrinsic image features perform less satisfactorily.

3) Influence of pathology—To test whether the proposed method could keep the details 

of the LR orthogonal scans, we applied the proposed algorithm to simulated pathologic 

scans and tested the accuracy of the reconstruction on MR scans with multiple sclerosis. As 

shown in Table IV, the PSNR/SSIM values obtained by the proposed method over three LR 

orthogonal pathologic brain T2w MR scans with 2mm slice thickness were 43.92dB/0.999, 

while the PSNR/SSIM values obtained by Cub-Ave and Cub-Wav were 32.69dB/0.987 and 

38.64dB/0.997 respectively. Besides, we present the reconstruction results over orthogonal 

pathologic brain T2w MR scans with 4mm slice thickness in Fig. 5. Thin structures 

(sclerosis) are easily obscured and blurred in thick-slice scans due to PVE, but were 

reconstructed satisfactorily by the proposed method. For example, the sclerosis highlighted 

by the top red circle in the axial view of (a) could be observed clearly, but were obscured in 

the axial view of (c) and (d).

4) Influence of the number of input LR MR images—To evaluate the additional 

benefit of SR reconstruction from three orthogonal scans compared to two scans and a single 

scan, we applied the proposed method to any pairs of the three simulated non-noisy LR 

orthogonal T2w brain scans with 2–7 mm slice thickness. Furthermore, we compared the 

proposed method with our previous work on single-frame MR SR reconstruction [22]. Table 

V presents the PSNR and SSIM values of the reconstruction results over various situations. 

The results show that SR reconstruction using three orthogonal scans provided much better 

results than SR reconstruction using two scans, and SR reconstruction using two scans 

outperformed single-frame SR. For example, when the slice thickness was 2mm, the PSNR/

SSIM value of the reconstructed image from three LR MR scans was 42.78dB/0.999, but the 

average PSNR/SSIM value of the reconstructed images from two orthogonal MR scans and 

single scans were 38.45dB/0.997 and 30.92dB/0.983, respectively. This indicates that multi-

frame SR has clear advantages over single-frame SR as it combines information from 

multiple MR scans. In fact, single-frame SR can be considered as an upsampling technique 

that uses prior information based on the sparsity of images to improve conventional 

interpolation; whereas multi-frame SR indeed fuses high-frequency image information in an 

efficient manner.

The quality of the reconstructed image improves as a larger number of LR MR images are 

fused. But the computational time also increases proportional with the number of LR MR 

images. When the slice thickness was 3mm, the average computational time of the single-

frame SR reconstruction, two-frame SR reconstruction, and three-frame SR reconstruction 

were 3.59, 7.28, and 10.79 minutes, respectively. As the slice thickness increased, the 

computational time decreased. The computational time of the different scenarios in Table V 

can be found in the online Supplementary Material.
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D. Comparison with other approaches

To identify the advantages and improvements of the proposed algorithm, we compared the 

proposed method with single-frame SR algorithms and multi-frame SR algorithms on 

simulated MR images and clinical MR images.

1) Comparison with single-frame SR algorithms—To compare the efficacy of our 

proposed algorithm over single-frame SR algorithms, we compare the proposed method with 

reconstructions based on the popular single MR image NLM SR [36], NLMp [24] and stDL 

algorithms [22] over simulated T2w brain MR images with various slice thickness and noise 

power. The reconstructions were made by averaging the upsampled orthogonal MR scans by 

each of the single-frame SR algorithms. Table VI presents the PNSR/SSIM values of 

reconstructed results over simulated T2w brain MR image with slice thicknesses changing 

from 2mm to 7mm. The proposed algorithm achieved the best results in all situations, and 

outperformed over the other three single-frame SR algorithms. For example, when the slice 

thickness was 2mm, the PSNR/SSIM value of the reconstructed results using the proposed 

method was 42.78dB/0.999, but the PSNR/SSIM values of the reconstructed results using 

the single-frame SR algorithms were 37.36dB/0.996, 36.90dB/0.996 and 34.71dB/0.993, 

respectively. Table VII shows the PNSR/SSIM values of reconstructed results over simulated 

T2w brain MR image with noise power changing from 0% to 9% when the slice thickness 

was 2mm. The proposed algorithm generated the best results in most situations compared to 

the single-frame SR algorithms. For example, when the noise power was 1%, the PSNR/

SSIM value of the reconstructed result using the proposed method was 39.78dB/0.993, but 

the PSNR/SSIM values of the reconstructed results using the single-frame SR algorithms 

were 36.99dB/0.992, 36.43dB/0.991, and 34.38dB/0.989, respectively. It is noteworthy that 

while the NLMp algorithm utilized a HR T1w MR image as reference for upsampling, the 

proposed method generated better results at lower noise powers even though it only utilized 

the features of the input LR MR images. For high noise power (i.e. 5%, 7% and 9%), on the 

other hand, the PSNR/SSIM values of the reconstruction results by the proposed method 

were slightly lower than the PSNR/SSIM values of the results obtained by the NLMp 

method. The above results showed that our proposed multi-frame SR algorithm generated 

better results than the state-of-the-art single-frame SR and averaging combination 

algorithms.

2) Comparison with multi-frame SR algorithms—To further evaluate the efficacy of 

the proposed method over Cub-Ave and Cub-Wav, we compared those three multi-frame SR 

algorithms over bigger datasets, including the simulated T2w brain MR image, 10 clinical 

T2w knee MR images and 3 clinical T2W brain MR images. For the simulated T2w brain 

MR image and 10 clinical T2w knee MR images, we produced non-noisy LR orthogonal 

MR images by averaging 3 adjacent slices in three orthogonal directions. That corresponded 

to an upsampling factor of 3 in our experiments. Table VIII shows the reconstructed results. 

The performance of the proposed method was the best. For example, in the experiment over 

C004 knee MR image, the PSNR/SSIM value of the reconstructed result obtained by the 

proposed method was 46.87dB/0.993, while the PSNR/SSIM values of the reconstructed 

results using Cub-Ave and Cub-Wav were 39.76dB/0.953 and 41.05dB/0.967, respectively.
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To test the efficacy of the proposed method in a clinical MRI exam setting, we reconstructed 

HR isotropic MR scans based on three orthogonal clinical TSE T2w anisotropic scans, and 

SR reconstructed HR volume with voxel size 0.5mm × 0.5mm × 0.5mm. The detail 

information of the clinical scans has been shown in Section B. The results are displayed in 

Fig. 6. We selected several slices from axial view, coronal view and sagittal view to compare 

the reconstruction results. Ellipses in this figure highlight the structures that were visualized 

with anatomic details on the SR reconstruction by the proposed method but were blurred or 

obscured in the axial scan. Similarly, the structures marked by ellipses in the coronal view 

were severely blurred in both axial and sagittal scans, while could be clearly visualized on 

the SR reconstructed image. The squares mark the structures that were visualized on the SR 

by the proposed method but blurred and obscured in both coronal and sagittal scans. 

Rectangles show the structures that were visualized on the SR reconstruction by the 

proposed method but were blurred in the sagittal scan. Even though the averaging method 

and wavelet fusion approach improved the input scans, the reconstructed results showed 

visually inferior quality to the SR reconstruction by the proposed method. For example, the 

structures marked by the squares in the axial view in the SR image by the proposed method 

were better visualized than the ones in the averaging result and the SR image by the wavelet 

fusion approach. Besides, we selected three lines from axial view, coronal view and sagittal 

view to evaluate image intensity profiles on the thick-slice scans and the reconstructed 

results by different methods, as shown in Fig. 7. These lines show that the reconstruction 

results by the proposed method always had the sharpest changes in intensity profile over the 

image edges. As observed in this figure, some lines are not following the same shapes, it is 

because the small structures are obscured in thick-slice scans. This analysis shows that our 

proposed method generates better results with better details, and intensity profiles show 

better delineation of image edge features than averaging and the state-of-the-art wavelet 

fusion method.

V. Conclusions

This work proposed a novel super-resolution algorithm based on sparse representation for 

the reconstruction of an HR isotropic MR image from three MR scans acquired in 

orthogonal planes with anisotropic spatial resolution. The proposed algorithm decomposes 

the super-resolution reconstruction problem into three sub-problems, including upsampling 

thick-slice scans, super-resolution fusion based on wavelet decomposition, and global 

reconstruction. The proposed method exploits the similarity between the three orthogonal 

scans and the self-similarity of each scan at the same time. We examined and showed the 

superiority of our method by abundant experiments over simulated and clinical MR scans, 

and compared the results with three popular and efficient single MR image SR algorithms, 

including NLM algorithm, NLMp algorithm, and stDL algorithm. The results show that our 

algorithm outperformed the above three algorithms. Furthermore, we compared the proposed 

method with other multi-frame SR algorithms. The results show that the proposed technique 

outperforms the traditional averaging method and the classic wavelet fusion approach; and 

reconstructs small structures that are obscured in the thick-slice scan acquisition due to 

partial volume effects. The reconstruction results by the proposed method can provide HR 
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MR image for clinical applications and facilitate computer-aided analysis, diagnosis, and 

research.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
An overview of the proposed algorithm
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Fig. 2. 
Upsampling orthogonal scans based on sparse representation. OMP stands for the 

orthogonal matching pursuit algorithm.
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Fig. 3. 
The rule of image fusion based on wavelet decomposition

Jia et al. Page 20

IEEE Trans Med Imaging. Author manuscript; available in PMC 2018 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 4. 
From top to bottom, this figure shows axial, coronal and sagittal views on (a) SRR knee 

image by our proposed method, (b) resampled knee axial scan, (c) resampled knee coronal 

scan and (d) resampled knee sagittal scan. The rectangle highlights some details.
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Fig. 5. 
From top to bottom, this figure shows axial, coronal and sagittal views on (a) SRR 

pathologic brain image by our proposed method, (b) resampled pathologic axial brain scan, 

(c) resampled pathologic coronal brain scan and (d) resampled pathologic sagittal brain scan. 

The circles and ellipse highlight some sclerosis regions with differences.
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Fig. 6. 
Reconstruction results over clinical orthogonal brain scans; (a) is the reconstructed image by 

the proposed method; (b), (c) and (d) are the resampled axial, coronal and sagittal scans by 

cubic interpolation method, respectively; (e) is the averaging of the resampled input 

orthogonal scans; and (f) is the reconstructed results by wavelet fusion approach.
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Fig. 7. 
Intensity profiles of the selected lines shown in the upper row on multi-frame SRR and 

original brain scans.
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Table I

The detailed information of the MR scans utilized in the experiments

3D Images #of slices Matrix size Voxel Size (mm)

T2w HR brain MR image 181 181×216 1×1×1

TSE T2w axial brain scan 80 512×408 0.5×0.5×2

TSE T2w coronal brain scan 80 408×512 0.5×2×0.5

TSE T2w sagittal brain scan 83 512×512 2×0.5×0.5

C00l T2w knee MR image 192 256×256 0.625×0.625×0.63

C002 T2w knee MR image 256 320×320 0.5×0.5×0.5

C003 T2w knee MR image 224 320×320 0.5×0.5×0.5

C004 T2w knee MR image 208 320×320 0.5×0.5×0.5

C005 T2w knee MR image 192 256×256 0.6×0.6×0.6

C006 T2w knee MR image 256 320×320 0.5×0.5×0.5

C007 T2w knee MR image 256 320×320 0.5×0.5×0.5

C008 T2w knee MR image 288 320×320 0.5×0.5×0.5

C009 T2w knee MR image 224 320×320 0.5×0.5×0.5

C010 T2w knee MR image 208 320×320 0.5×0.5×0.5
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Table IV

Reconstruction results over simulated pathologic brain MR scans

Slice thickness
2mm 3mm

PSNR(dB) SSIM PSNR(dB) SSIM

Proposed method 43.92 0.999 37.78 0.995

Cub-Ave 32.69 0.987 27.97 0.958

Cub-Wav 38.64 0.997 29.12 0.968

IEEE Trans Med Imaging. Author manuscript; available in PMC 2018 May 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Jia et al. Page 29

Ta
b

le
 V

R
ec

on
st

ru
ct

io
n 

re
su

lts
 b

as
ed

 o
n 

si
ng

le
 M

R
 s

ca
n,

 tw
o 

or
th

og
on

al
 M

R
 s

ca
ns

, a
nd

 th
re

e 
or

th
og

on
al

 M
R

 s
ca

ns

T
hi

ck
ne

ss
 (

m
m

)
2

3
4

5
6

7

A
PS

N
R

(d
B

)
31

.7
5

26
.8

7
24

.4
0

22
.8

3
21

.7
0

20
.6

7

SS
IM

0.
98

5
0.

95
4

0.
91

6
0.

87
6

0.
83

7
0.

79
2

C
PS

N
R

(d
B

)
31

.4
8

26
.0

0
23

.1
4

21
.4

8
20

.4
1

19
.4

7

SS
IM

0.
98

7
0.

95
1

0.
89

9
0.

84
5

0.
79

6
0.

74
2

S
PS

N
R

(d
B

)
29

.5
4

24
.8

6
22

.5
7

21
.1

2
20

.0
8

18
.8

9

SS
IM

0.
97

8
0.

93
2

0.
87

8
0.

82
4

0.
77

4
0.

71
7

A
+

C
PS

N
R

(d
B

)
39

.1
8

32
.7

9
29

.0
8

26
.7

2
24

.9
8

23
.7

7

SS
IM

0.
99

8
0.

98
9

0.
97

3
0.

95
2

0.
92

4
0.

89
5

A
+

S
PS

N
R

(d
B

)
38

.5
7

32
.1

6
28

.7
0

26
.4

9
24

.7
9

23
.7

9

SS
IM

0.
99

7
0.

98
7

0.
97

0
0.

94
7

0.
91

8
0.

89
2

C
+

S
PS

N
R

(d
B

)
37

.5
9

31
.2

7
27

.6
3

25
.3

6
23

.7
0

22
.5

3

SS
IM

0.
99

7
0.

98
5

0.
96

3
0.

93
3

0.
89

6
0.

86
1

A
+

C
+

S
PS

N
R

(d
B

)
42

.7
8

36
.6

8
32

37
29

.4
7

27
.4

2
26

.1
0

SS
IM

0.
99

9
0.

99
5

0.
98

7
0.

97
4

0.
95

6
0.

93
7

A
, C

 a
nd

 S
 s

ta
nd

 f
or

 A
xi

al
, C

or
on

al
 a

nd
 S

ag
itt

al
 v

ie
w

 s
ca

n 
re

sp
ec

tiv
el

y.

IEEE Trans Med Imaging. Author manuscript; available in PMC 2018 May 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Jia et al. Page 30

Ta
b

le
 V

I

A
cc

ur
ac

y 
of

 r
ec

on
st

ru
ct

ed
 im

ag
es

 u
si

ng
 s

in
gl

e-
fr

am
e 

al
go

ri
th

m
s 

an
d 

th
e 

pr
op

os
ed

 a
lg

or
ith

m
 o

ve
r 

si
m

ul
at

ed
 b

ra
in

 M
r 

im
ag

es
 w

ith
 d

if
fe

re
nt

 s
lic

e 

th
ic

kn
es

s

Sl
ic

e 
th

ic
kn

es
s 

(m
m

)

2
3

4
5

6
7

P
SN

R
(d

B
)

SS
IM

P
SN

R
(d

B
)

SS
IM

P
SN

R
(d

B
)

SS
IM

P
SN

R
(d

B
)

SS
IM

P
SN

R
(d

B
)

SS
IM

P
SN

R
N

(d
B

)
SS

IM

N
L

M
p 

ap
pr

oa
ch

37
.3

6
0.

99
6

32
.8

7
0.

99
0

29
.8

3
0.

97
5

27
.9

0
0.

96
1

26
.3

0
0.

93
7

25
.0

2
0.

91
6

N
L

M
 a

pp
ro

ac
h

36
.9

0
0.

99
6

30
.5

0
0.

97
9

26
.9

3
0.

94
8

24
.7

0
0.

90
0

23
.2

4
0.

85
8

22
.0

0
0.

80
4

st
D

L
 a

pp
ro

ac
h

34
.7

1
0.

99
3

29
.0

7
0.

97
4

26
.1

7
0.

94
5

24
.2

0
0.

90
8

22
.7

9
0.

86
6

21
.8

6
0.

82
6

Pr
op

os
ed

 a
pp

ro
ac

h
42

.7
8

0.
99

9
36

.6
8

0.
99

5
32

.3
7

0.
98

7
29

.4
7

0.
97

4
27

.4
2

0.
95

6
26

.1
0

0.
93

7

IEEE Trans Med Imaging. Author manuscript; available in PMC 2018 May 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Jia et al. Page 31

Ta
b

le
 V

II

A
cc

ur
ac

y 
of

 r
ec

on
st

ru
ct

ed
 im

ag
es

 u
si

ng
 ii

ng
le

-f
ra

m
e 

al
go

ri
th

m
s 

an
d 

th
e 

pr
op

os
ed

 a
lg

or
ith

m
 o

ve
r 

si
m

ul
at

ed
 b

ra
in

 M
r 

im
ag

es
 w

ith
 d

if
fe

re
nt

 n
oi

se
 p

ow
er

N
oi

se
 p

ow
er

0%
1%

3%
5%

7%
9%

P
SN

R
(d

B
)

SS
IM

P
SN

R
(d

B
)

SS
IM

P
SN

R
(d

B
)

SS
IM

P
SN

R
(d

B
)

SS
IM

P
SN

R
(d

B
)

SS
IM

P
SN

R
(d

B
)

SS
IM

N
L

M
p 

ap
pr

oa
ch

37
.3

6
0.

99
6

36
.9

9
0.

99
2

35
.4

4
0.

97
4

33
.6

7
0.

95
0

31
.9

6
0.

92
2

30
.4

1
0.

89
6

N
L

M
 a

pp
ro

ac
h

36
.9

0
0.

99
6

36
.4

3
0.

99
1

34
.7

2
0.

97
2

32
.9

9
0.

94
7

31
.4

0
0.

92
1

29
.9

3
0.

89
3

st
D

L
 a

pp
ro

ac
h

34
.7

1
0.

99
3

34
.3

8
0.

98
9

33
.2

0
0.

97
1

31
.8

3
0.

94
6

30
.4

9
0.

92
1

29
.2

2
0.

89
2

Pr
op

os
ed

 a
pp

ro
ac

h
42

.7
8

0.
99

9
39

.7
8

0.
99

3
35

.7
1

0.
97

4
33

.3
6

0.
94

9
31

.6
4

0.
92

2
30

.1
6

0.
89

4

IEEE Trans Med Imaging. Author manuscript; available in PMC 2018 May 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Jia et al. Page 32

Ta
b

le
 V

III

R
ec

on
st

ru
ct

ed
 r

es
ul

ts
 u

si
ng

 m
ul

ti-
fr

am
e 

SR
 a

lg
or

ith
m

s 
ov

er
 1

1 
M

R
 im

ag
es

D
at

as
et

T
2w

br
ai

n
M

R
I

C
00

1
kn

ee
M

R
I

C
00

2
kn

ee
M

R
I

C
00

3
kn

ee
M

R
I

C
00

4
kn

ee
M

R
I

C
00

5
kn

ee
M

R
I

C
00

6
kn

ee
M

R
I

C
00

7
kn

ee
M

R
I

C
00

8
kn

ee
M

R
I

C
00

9
kn

ee
M

R
I

C
01

0
kn

ee
M

R
I

C
ub

-A
ve

PS
N

R
(d

B
)

27
.0

1
33

.6
5

37
.0

7
33

.8
3

39
.7

6
34

.2
9

34
.4

5
35

.6
0

37
.9

3
36

.8
5

33
.3

4

SS
IM

0.
95

8
0.

95
9

0.
94

3
0.

96
4

0.
95

3
0.

94
2

0.
94

3
0.

95
7

0.
96

1
0.

94
2

0.
95

9

C
ub

-W
av

PS
N

R
(d

B
)

28
.1

7
35

.0
3

38
.3

4
35

.0
7

41
.0

5
35

.7
1

35
.7

1
36

.7
8

39
.1

1
38

.0
7

34
.5

4

SS
IM

0.
96

8
0.

97
0

0.
95

9
0.

97
4

0.
96

7
0.

95
8

0.
95

8
0.

96
8

0.
97

1
0.

95
8

0.
97

0

Pr
op

os
ed

m
et

ho
d

PS
N

R
(d

B
)

36
.6

8
40

.7
8

44
.0

4
40

.4
7

46
.8

7
41

.5
2

41
.2

9
41

.7
6

44
.2

4
43

31
39

.7
3

SS
IM

0.
99

5
0.

98
6

0.
99

1
0.

98
6

0.
99

3
0.

98
8

0.
98

7
0.

98
6

0.
98

9
0.

99
1

0.
98

6

IEEE Trans Med Imaging. Author manuscript; available in PMC 2018 May 01.


	Abstract
	I. Introduction
	II. Mathematical model behind the proposed method
	1) Upsampling LR images
	2) Initial HR image reconstruction
	3) Constrained reconstruction by error back-projection

	III. Proposed methodology
	A. Upsampling Orthogonal Scans
	1) Sparse-Land Local Model
	2) Training set construction
	3) Dictionary Training
	4) Orthogonal MR image SR reconstruction

	B. 3D Wavelet Fusion
	1) Image Resampling
	2) Wavelet fusion

	C. Global Reconstruction

	IV. Experiments and analysis
	A. Implementation Details and Parameters Selection
	B. Experimental Data Acquisition
	C. Tests on the proposed method
	1) Influence of slice thickness
	2) Influence of noise power
	3) Influence of pathology
	4) Influence of the number of input LR MR images

	D. Comparison with other approaches
	1) Comparison with single-frame SR algorithms
	2) Comparison with multi-frame SR algorithms


	V. Conclusions
	References
	Fig. 1
	Fig. 2
	Fig. 3
	Fig. 4
	Fig. 5
	Fig. 6
	Fig. 7
	Table I
	Table II
	Table III
	Table IV
	Table V
	Table VI
	Table VII
	Table VIII

