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Abstract

One third of type-2 diabetic patients respond poorly to metformin. Despite extensive research, the 

impact of genetic and non-genetic factors on long-term outcome is unknown. In this study, we 

combine non-linear mixed effect modeling with computational genetic methodologies to identify 

predictors of long-term response. 1056 patients contributed their genetic, demographic and long-

term HbA1c data. The top 9 variants (of 12,000 variants in 267 candidate genes) accounted for 

approximately 1/3 of the variability in the disease progression parameter. Average serum 

creatinine level, age and weight were determinants of symptomatic response, however explaining 

negligible variability. Two SNPs in CSMD1 gene (rs2617102, rs2954625) and one SNP in 

pharmacologically relevant SLC22A2 gene (rs316009) influenced disease progression, with minor 

alleles leading to less and more favorable outcomes respectively. Overall, our study highlights the 

influence of genetic factors on long-term HbA1c response and provides a computational model, 

which when validated, may be used to individualize treatment.

Metformin is the first line of therapy for treatment of type 2 diabetes (T2D) and is one of the 

most frequently prescribed drugs worldwide1–3. Response to the drug is highly variable; 

greater than 30% of patients taking metformin are considered poor responders and require 

additional medications such as sulfonylureas and insulin instead of metformin. Metformin 

lowers both basal and postprandial glucose in patients with T2D and works by inhibiting 

hepatic glucose production, reducing intestinal glucose absorption, and improving glucose 

uptake and utilization2,4. Glycosylated hemoglobin (HbA1c) is formed through a non-

enzymatic and irreversible reaction between hemoglobin and glucose and is the primary 

surrogate biomarker for long-term glycemic control and drug response, reflecting the 

average glucose levels circulating in the blood over previous months5. This biomarker has 

been shown to be more reliable than fasting plasma glucose in assessing long-term efficacy; 

several studies have shown that HbA1c levels are strongly linked to adverse T2D-related 

cardiovascular outcomes and mortality6–8.

Baseline HbA1c levels vary significantly in the T2D population, from 5.5% (37 mmol/mol) 

to 15% (140 mmol/mol))9,10. Most studies have focused on uncovering the effect of genetic 

variants in pharmacokinetic (PK) genes on static pharmacological phenotypes of metformin 

and fail to address the variable nature of metformin response2,10–14. One of the largest 

studies to date, a genome-wide association study on metformin response in individuals from 

the United Kingdom, identified variants near the Ataxia Telangiectasia Mutated locus 

associated with the ability to achieve HbA1c below 7% (53 mmol/mol) in the first 18 

months of metformin treatment15. Finally, despite many studies having demonstrated 

associations between single nucleotide polymorphisms (SNPs) in biologically relevant genes 

with metformin PK and pharmacodynamics (PD), each variant accounts for only a small 

fraction of the variation in HbA1c levels.

To date, there have been no studies on the effect of genetic and demographic variables on 

long-term changes of HbA1c in patients on metformin. These factors may influence the 

drug’s efficacy or the patient’s underlying disease progression and, once accounted for, may 

make it easier to detect responders and non-responders to metformin16. The traditional 

approach considers a glycemic HbA1c change from baseline to evaluate the effectiveness of 
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the drug. This approach however, effectively collapses the time dimension in the data by 

disregarding the actual trajectory of the biomarker and disease status over time. As a result, 

this method not only ignores crucial information on disease progression, but also lumps 

together the short-term effects of a treatment with the long-term effects on the disease.

Longitudinal disease progression analysis allows for a quantitative assessment of drug 

treatment effect on the time-course of the disease/biomarker. Computational methods use 

mathematical models to describe or predict changes in the disease status as a function of 

time16. These methods allow researchers to understand the role of genes as well as any 

relevant demographic predictors on specific response curve characteristics (such as disease 

progression and the long-term dynamics of therapeutic effects). Non-linear Mixed Effect 

Analysis (NLME) is a powerful statistical approach used for this longitudinal analysis that 

effectively enhances the signal-to-noise ratio and enables the utilization of all data points, 

irrespective of study design17,18,19.

To date, current mathematical models that capture the time-course of HbA1c in relation to 

metformin therapy have been limited by small sample sizes and sparse measurements16,20,21. 

Furthermore, a comprehensive genetic analysis linking genetic variants to long-term HbA1c 

trajectories has not yet been performed and consequently, there is no current knowledge 

regarding the influence of genetics on long-term HbA1c dynamics.

The aim of this research is to explain the variance in long-term response, linking genes, 

demographics, and clinical factors to the upward trajectory of HbA1c levels (a marker of 

disease progression) using a rich, long-term HbA1c dataset from patients on metformin 

(Figure 1).

RESULTS

Summary of data

Baseline characteristics of patients with T2D are summarized in Table 1. A total of 7822 

HbA1c measurements from 1056 patients were used to develop a mathematical model of 

longitudinal HbA1c levels.

Of the 7822 total HbA1c measurements, 2928 HbA1c samples (37%) were collected after 2 

years following metformin initiation across 344 patients (33%). 1220 HbA1c measurements 

(15.6%) were collected after 5 years following metformin initiation across 202 patients 

(19%). 555 HbA1c samples (7%) were collected after 7 years following metformin initiation 

across 123 patients (12%).

The dataset has a stronger representation of African Americans (63%) compared to 

European Americans (36%). The average length of time that each patient was under study 

was 2.78 years (median of 1.43 years, range of 0.28–13.5 years). Mean HbA1c samples 

provided per patient available for analysis was 7.5 (58 mmol/mol) (median of 5, range of 1–

45). Of the 1056 patients, 1220 HbA1c measurements (15.6%) were available for 202 

patients (19%) 5 years following metformin initiation. 123 patients (12%) 7 years after 

metformin initiation, and 28 patients (3%) 10 years after.
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Mathematical model development

A turnover HbA1c model with a reversible metformin effect on the synthesis rate of HbA1c 

best characterized the data. A reversible (symptomatic) metformin effect was implemented 

because it was assumed that the drug does not directly impact the disease progression and 

this structure was supported by the data22. The upward trajectory (disease progression) of 

HbA1c over time was modeled by implementing a separate compartment that represented 

the HbA1c synthesis rate: KIN(t). Model mechanics and the interplay of disease progression, 

HbA1c synthesis rate and %HbA1c level over time can be viewed in Supplementary Figure 

1. In the model structure, KIN was increasing due to disease progression, which is quantified 

by the disease progression parameter. The disease progression parameter generates a 

nonlinear increase of KIN over time, especially when the estimate of disease progression is 

high. A time dependent increase in the HbA1c synthesis rate captured well the upward 

HbA1c trajectory observed in the data. In the model, between-subject variability (BSV) was 

estimated for baseline HbA1c, the magnitude of metformin’s effect (an individual’s specific 

HbA1c relative change from baseline), and disease progression. The inclusion of a full 

covariance block for all BSV parameters resulted in a significant improvement in the 

likelihood ratio. Final selection of the model was based on improvements in the objective 

function value and visual predictive checks of the longitudinal HbA1c data. Through 

simulations, the “onset’ of disease progression, which is defined by the time point at which 

HbA1c levels start to increase (i.e. an upward slope in HbA1c levels), was investigated. The 

model predicted that the onset of disease progression for a typical patient on metformin is 

approximately 321 days; at which point, HbA1c levels increased at a rate of 0.1% (1.1 

mmol/mol) [0.07%–0.13%] per year through the first three years (Table 2). For patients not 

on metformin, the model predicts that HbA1c levels would increase at a steady state rate of 

approximately 0.16% (1.7 mmol/mol) [0.08%–0.22%] per year. Mathematical model 

parameters along with clinically derived parameters are summarized in Table 2.

Final demographic/clinical covariate model

As determined by model diagnostics, the demographic-corrected mathematical model 

adequately described the data (Figure 2). As expected, average serum creatinine level (a 

likely surrogate for metformin drug exposure) was a significant predictor on MetfEFFECT, 

with higher levels leading to improved HbA1c response. Through simulations, a typical 

patient with a 0.6 mg/dL creatinine level is expected to result in a 0.77% (8.4 mmol/mol) 

HbA1c improvement from baseline (at 2 years), whereas a patient with a 1.3 mg/dL 

creatinine level is expected to result in a 0.96% improvement in HbA1c (10.5 mmol/mol) 

from baseline. This response characteristic is anticipated as pharmacologically, average 

exposure of metformin is expected to increase by approximately by 20% with a 0.7 mg/dL 

increase (from 0.6 to 1.3) in serum creatinine level for males and females of age 50.

Additionally, body weight and clinical site were significant covariates on the MetfEFFECT 

model parameter. Body weight was inversely related to metformin effect, estimated to result 

in a 6% decrease in metformin’s effect parameter per 10-kilogram increase in body weight. 

Clinically, this would result in a 0.99% and 0.80% change in HbA1c (equivalent of 10.8 and 

8.7 mmol/mol) from baseline (at 2 years) for patients with body weights of 66 kg and 140 kg 

(5th and 95th percentile) respectively. For clinical site variable, Vanderbilt and Kaiser 
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Georgia had a 16% and 30% lower estimate on the metformin effect parameter when 

compared to Kaiser Northern California, respectively.

Age was also a significant covariate on the disease progression model parameter, with a 

negative correlation observed between age and disease progression. Clinically, this would 

result in a relative change in HbA1c (at 2 years) to fall between 0.76% and 0.84% 

improvement for patients between the ages of 49 and 64 years.

Genetic analysis: hyperlasso methodology on model parameters

A total of 267 genes were selected and approximately 12000 variants within a 50-kilobase 

region around each gene were extracted for analysis. Of the variants investigated, a total of 

16 SNPs were linked to the disease progression parameter by hyperLASSO analysis (with a 

MAF ≥ 5%). Of the remaining 16 variants, 11 were intronic [CSMD1(4), ADCY5(1), 

PRKAG(1), SLC22A2(1), EMILIN2(1), SULF1(1), FTO(1), WWOX(1)], 1 was missense 

[SREBF1], and 4 were located within 50 kilobases upstream or downstream of each gene 

[VPS13C(1), KCNK16(1), PPARG(1), FOXN3(1)].

Genetic analysis: model-based approach for variant selection

Of the prioritized 16 variants from hyperlasso, a model-based methodology was 

implemented to verify statistical significance and determine effect sizes on the disease 

progression parameter. SNPs that passed this test were included in the final mathematical 

model for simulation purposes. From this step, 7 SNPs were removed due to the defined 

criteria (see Methods). The 9 remaining variants were statistically significant in the model 

structure and collectively accounted for approximately one-third of the variability in the 

predicted disease progression model parameter (reduced the BSV of the disease progression 

model parameter from 324% to 225%). Of the 9 variants, rs12907856 (VPS13C), rs2954625 

(CSMD1), and rs3160009 (SLC22A2) individually accounted for approximately 6%, 5%, 

and 8% of the variability, respectively. The characteristics of each SNP are shown in Table 3.

In the final model, several simulations were performed to illustrate the potential clinical 

impact of each SNP on long-term HbA1c levels. Figure 3 quantitatively summarizes the 

predicted effects of final model genetic and non-genetic factors on HbA1c levels at the 1-

year and 5-year mark. Hypothetical gene/gene interactions were also explored and the 

combinatorial effects of high risk SNPs in the CSMD1, WWOX, and SLC22A2 genes were 

also explored in Figure 4.

In the exploratory studies, patients carrying one or more minor alleles of the identified 

variants in the CSMD1 gene (rs2617102 (C), rs2954625 (T)) were predicted to have 

significantly higher long-term HbA1c levels compared to patients not carrying any CSMD1 
minor alleles or patients with homozygous rs3160009 TT (SLC22A2) and/or homozygous 

rs7500549 CC (WWOX) genotypes.

Functional annotation of top variants

Three out of the nine variants (rs12907856, rs316009, and rs7159552) are located in linkage 

disequilibrium (LD) to a regulatory region, determined by an algorithmic prediction by 
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RegulomeDB23. In particular, rs316009 and rs7159552 are located in a transcription factor 

binding motif as identified by the ENCODE project24. The rs316009 variant is in LD to the 

nonsynonymous variant of SLC22A2 - rs316019 - which is known to play a role in 

metformin pharmacokinetics,25,26,27. Another variant, rs6982250, is in an intronic region of 

SULF1. Several SNPs in SULF1 have been associated with many phenotypes28 with one 

such variant associated with fasting insulin-related traits29.

DISCUSSION

Previous pharmacogenetic studies of metformin response have focused on the effect of 

selected variants in relevant pharmacogenes on single-time point outcomes of metformin 

(i.e. HbA1c levels after 90 days, FPG levels, etc.)15,30,31,32. Long-term, time-dependent 

changes of HbA1c have been previously overlooked, resulting in a collapse of valuable 

biomarker information that may inform disease progression as well as temporal response 

patterns.

Here, we developed a longitudinal HbA1c model by leveraging a large T2D dataset and 

subsequently investigated the role of genetic and non-genetic factors on long-term dynamics 

of HbA1c following metformin initiation. Special focus was given to identifying factors that 

are responsible for the long-term variance in HbA1c levels.

Three important findings emerged from this analysis: (i) a mathematical model 

incorporating disease progression and a reversible metformin effect best characterized the 

long-term HbA1c data in T2D Patients. (ii) The model presented herein predicted that the 

onset of disease progression for patients on metformin is approximately 321 days, at which 

point, levels increase, on average, at a rate of 0.1% (1.1 mmol/mol) [0.04%–0.16%] HbA1c 

per year; HbA1c levels are expected to increase at a steady state rate of approximately 

0.16% (1.76 mmol/mol) [0.08%–0.22%] per year in patients not treated with metformin. (iii) 

Nine variants in 8 genes (of 267 genes interrogated) accounted for approximately one-third 

of the total estimated variability in the disease progression model parameter. Variants in 

three of these genes (CSMD1, WWOX, and SLC22A2) were identified as significant 

influencers of disease progression on metformin therapy.

The development of the final mathematical model resulted from the exploration of several 

approaches with various empirical and semi-mechanistic considerations. The structural 

parameters from the model were estimated with high precision. The between-subject 

variability estimates of baseline, metformin effect, and disease progression were also 

estimated with relatively high precision (3%, 4%, and 17% relative standard error (RSE), 

respectively). The high degree of parameter confidence was due to the abundance of 

available HbA1c data, allowing for the reliable assessment of clinical, demographic, and 

genetic covariates on disease progression. Disease progression (upward trajectory of HbA1c 

levels) is a function of both the patient’s underlying disease as well as the build up of 

metformin resistance. In order to differentiate between the effects of a patient’s biology and 

a reduction of metformin’s reversible effect, it is necessary to model longitudinal HbA1c 

data prior to the administration of treatment; unfortunately, this was not possible in our 

analysis as this would require patients to be off treatment during the duration of the disease. 
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The HbA1c model was however able to adequately predict the dynamics of HbA1c levels, 

capturing the long-term upward trend observed in this population. The ability to predict 

long-term HbA1c changes is especially valuable: the onset of disease progression and the 

rate of HbA1c increase were quantified for patients on metformin therapy (~0.1% increase 

per year for the first three years after 321 days, which is the estimated onset of disease 

progression) leveraging the richness of HbA1c data available. This finding was particularly 

interesting in relation to the study by Winter et al. where the authors noted a slight rise in 

patients’ HbA1c levels, between 200 and 400 days after metformin initiation; however, they 

were unable to quantify this upward trend through their simulations – a limitation which 

resulted from the lack of longitudinal data points available after 400 days16. In our analysis, 

the average length of time in the study was 1014 days and up to 10 years worth of HbA1c 

measurements were available to inform disease progression – allowing the characterization 

and quantification of this upward trend with high precision. The robustness in the model 

enabled the simulation of patient-specific disease progression with an underlying assumption 

of no metformin administration (approximate increase of 0.16% (1.7 mmol/mol) in HbA1c 

per year). The ability to separate disease progression and metformin effect is based on early 

HbA1c data (up to 1 year following metformin initiation). Simulations of disease 

progression assuming no metformin administration were explored by removing metformin’s 

estimated effect on the HbA1c synthesis rate within the model structure. The simulations 

demonstrate that on average, disease progression in patients who are metformin-naive will 

occur faster than in patients taking metformin for several months. Comparing this estimate 

to existing literature is problematic since T2D progression is a gradual process that typically 

takes place over several years and thus allows only a small trajectory of change within the 

limited time frame available for most studies. In the few studies reported, the rate of HbA1c 

increase was estimated to be approximately 0.2% (2.2 mmol/mol) per year, a value 

consistent with our observations33.

A stepwise multivariate analysis was performed to identify statistically significant 

demographic and clinical covariates on model parameters. Average serum creatinine level 

surfaced as a significant factor that influenced the magnitude of metformin’s effect. This 

finding was expected since serum creatinine is considered a likely surrogate for metformin 

exposure. Serum creatinine directly influences a patient’s creatinine clearance, which 

ultimately influences a patient’s systemic exposure to metformin by affecting the apparent 

clearance pharmacokinetic parameter. The effect of age was also noted - an inverse 

relationship was observed between age and the magnitude of disease progression. It is 

important to note that although age was statistically significant through a stepwise analysis, 

the effect size was quite small and a reproduction of these results is required to inspire 

greater conviction of this correlation. Previously, in a study by Williams et al., lower HbA1c 

levels were reported in African Americans compared to European American individuals34. 

In our analysis, however, there was no significant effect of self-reported ethnicity on any of 

the model parameters, including disease progression.

We used multiple genetic methods to prioritize influential variants on disease progression. 

Hyperlasso methodology was selected over a stepwise procedure, as well as several other 

algorithms. This is because the hyperlasso approach has been shown to be robust when 

investigated covariates are correlated, which is the case here with strong LD patterns in the 
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genotype data. The final selection of variants was based on the performance of individual 

variants within the demographic-corrected model so that the correlation across various 

model parameters may also be taken into consideration.

Nine variants emerged were linked to the progression of HbA1c levels on metformin. 

Collectively, the variants accounted for approximately one-third of the variance in the 

disease progression model parameter. It was also observed that these genetic variants had 

larger effects on HbA1c levels than the demographic and clinical covariates identified from 

the stepwise analysis.

Of the top genes, minor alleles of two SNPs (rs2617102, rs2954625) in the CSMD1 (CUB 

and Sushi multiple domains 1) gene had the strongest impact on disease progression. 

Although the pharmacological and biological mechanism remains unclear, CSMD1 has been 

previously linked to insulin sensitivity and lipid levels35,36. CSMD1 variants may have a 

significant impact on longitudinal HbA1c levels, especially at the five-year mark when the 

simulated HbA1c improvement from baseline becomes nominal – especially for 

homozygous carriers (TT) of rs2617102. The simulated 5-year HbA1c level was very similar 

to baseline levels (Figure 4) – which means that HbA1c levels rebounded back to its baseline 

state. Furthermore, the effect on HbA1c levels at the 5-year mark was higher for 

hypothetical homozygous carriers of both CSMD1 SNPs (rs2617102, rs2954625) – where 

HbA1c levels were predicted to be significantly higher than baseline levels.

Minor alleles of SNPs in genes SLC22A2, WWOX, EMILIN2, and FOXN3 were associated 

with more favorable trajectories (lower disease progression) of HbA1c levels compared to 

major allele carriers. Of these genes, SLC22A2 (rs316009 (T)) and WWOX (rs7500549 (C)) 

showed the strongest effect. In contrast to homozygous carriers of CSMD1 risk alleles, 

homozygous carriers of both SLC22A2 and WWOX SNPs were predicted to have a 

favorable clinical outcome - maintaining their peak HbA1c level improvement from baseline 

through 5 years of metformin therapy. The rs316009 variant is in LD to a nonsynonymous 

variant of SLC22A2 (rs316019), a SNP that has been previously shown to alter transporter 

function as well as modulate metformin pharmacokinetics.26,27 Therefore, the clinical 

expectation that the reduced function rs316009 (T) allele would lead to a more favorable 

outcome is pharmacologically sound. OCT2 (SLC22A2) is predominantly expressed at the 

basolateral membrane in distal renal tubules and is responsible for the uptake of metformin 

from circulation into renal epithelial cells, working in concert with other renal transporters 

to excrete metformin. Though functional studies have been controversial25, loss of 

transporter function is expected to increase plasma levels of metformin, potentially leading 

to a more favorable pharmacodynamic outcome with relatively low HbA1c levels.

Also of clinical interest, the gene WWOX has been previously associated with several T2D 

traits including body weight, C-reactive protein, insulin, obesity, and lipid levels37. WWOX 
encodes for an enzyme that is found in all eukaryotes and has been biologically shown to 

play an important role in the regulation of a wide variety of cellular functions such as protein 

degradation, transcription, and RNA splicing. Unlike SLC22A2, a pharmacological 

mechanism for WWOX is not clear. However, the clinical impact (if replicated) would mean 

that carriers of the rs7500549 (C) allele would respond favorably to metformin therapy. 
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Future studies should focus on elucidating the biology of WWOX and replicating the genetic 

findings on disease progression.

Although this computational approach represents a novel way to uncover factors that 

influence long-term drug response, several important limitations must be highlighted. First, 

the demographic distribution used for this analysis does not appropriately reflect the national 

population distribution due to the disproportionate representation of African Americans in 

this cohort. As a result, it will be critical to replicate both genetic and non-genetic findings in 

separate cohorts for validation purposes. Furthermore, the retrospective data set lacks a 

control group and is reflecting multiple studies across multiple sites. As such, validation of 

the model-based simulations, which quantify metformin’s effect on long term HbA1c 

dynamics with consideration of impactful covariates, is required.

Overall, our study has successfully integrated robust model-based approaches with genetic 

analyses methods to uncover genes linked to the progression of HbA1c on metformin 

therapy in a large T2D cohort. If replicated, these genetic findings may have a significant 

influence on T2D treatment strategy. Ultimately, the long-term goal of this research is to 

translate this computational model into clinical practice and enable clinicians to provide 

data-driven, personalized treatment advice to T2D patients based on individual patient 

characteristics.

METHODS

Patients with type 2 diabetes

Diabetic patients of European American, African American, and Asian American ancestry 

were recruited into a multicenter retrospective study as described previously13,32. All 

patients were metformin-naive, had HbA1c levels measured before and after initiation of 

metformin therapy (between 3 and 18 months), and had a medication possession ratio 

greater than 80%. The institutional review boards (IRBs) of Marshfield Clinic Research 

Foundation, Kaiser Permanente Northern California, Kaiser Permanente South East, 

Georgia, approved this study and informed consent was obtained. At Vanderbilt, an opt-out 

consent model was used. In diabetic patients, metformin was administered for at least three 

months, so steady state drug concentration levels were achieved, since the half-life of 

metformin is roughly 5 hours. Patients were in the study for an average of 2.8 years (median 

= 1.43 years) with on average 7.4 (median = 5) HbA1c measurements. HbA1c results were 

reported in the NGSP format (National Glycohemoglobin standardization program). The 

median metformin dose across the patient population was 1000 mg (Table 1). Patients were 

genotyped using an Illumina OmniExpress genotype array (see supplementary methods 

section for further details).

Development of mathematical model

Patient data were analyzed using non-linear mixed effect modeling (NONMEM 7) with first 

order conditional estimation method with interaction (FOCE-I). Several semi-mechanistic 

approaches were explored to best describe the longitudinal HbA1c versus time profiles. 

Model selection was determined using the objective function value (OFV, −2 times the log 
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of the likelihood) and visual inspection of diagnostic plots. The selected longitudinal HbA1c 

profiles were described by the following equations:

(1)

(2)

Equation 1 defines the synthesis rate of HbA1c, which includes a non-linear time sensitive 

parameter dependent on the baseline synthesis rate and the extent of patient-specific disease 

progression. In Equation 1, DisprEFFECT, KLOSS and KSYN represent the disease progression 

effect parameter, loss rate of KIN and synthesis rate of the KIN parameter, respectively. 

Equation 2 defines the dynamics of HbA1c, parameterized by the synthesis rate of HbA1c 

(KIN(t)), metformin’s effect from baseline (MetfEFFECT), and the loss rate of HbA1c 

(KOUT). A more detailed explanation and the model source code can be found in the 

supplementary methods section. A simulated demonstration of the dynamics of this model 

can viewed in supplementary figure 1. A patient’s individual administered doses were taken 

into consideration by examining the effect of the average daily dose. The average daily dose 

of metformin was calculated from metformin start day up to the day, where minimum 

HbA1c levels were achieved between 3–18 months (and before other anti-diabetic drug or 

insulin was added). Although no drug concentration was directly used for this analysis, 

surrogate PK information was taken into account in the model structure by investigating the 

effect of average serum creatinine level (a major predictor on metformin individual 

clearance) or imputed exposure (based on estimated individual clearance of metformin and 

average daily dose). Individual clearance was estimated based on the clearance equation 

previously described10. Both average dose and metformin exposure were tested on the 

MetfEFFECT parameter.

Demographic analysis

Using the mathematical model described above, agnostic stepwise forward selection (P < 

0.05) and backward elimination (P < 0.01) were applied to identify statistically significant 

demographic and clinical covariates on model parameter estimates, which helped guide the 

selection of the demographic-corrected final model. The effect of concomitant medications 

was taken into account by investigating the effect of added drug on model parameters. The 

subsequent demographic-corrected mathematical model served as a basis to investigate the 

effect of genetic variants on the variance of long-term response.

Genetic analyses of model parameters

A comprehensive list of candidate genes was selected using the GWAS Integrator tool on the 

HuGE Navigator38 (details found in supplementary methods section). A penalized 

regression-based approach called hyperlasso was implemented to statistically prioritize the 

variants associated with phenotypes outputted from the mathematical model (e.g. disease 
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progression, metformin effect, and baseline). This methodology was originally proposed by 

Hoggart et al., and is a generalization of Lasso39,40. Further information about the 

hyperlasso method can be found in supplementary methods section.

Model based genetic analysis of identified variants

The top SNPs from hyperlasso were subsequently investigated in the developed 

demographic-corrected mathematical model described above. Model based analyses are 

advantageous because they account for correlations across various model parameters as well 

as potential SNP/SNP interactions. Two key steps were taken to select the final mathematical 

model; (1) removal of non-significant SNPs, which resulted from a univariate analysis of 

each variant in the demographic-adjusted mathematical model, and (2) removal of variants 

from the full genetic model that had very low, clinically irrelevant effect sizes. Details of this 

step may be found in the supplemental section.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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RESEARCH HIGHLIGHTS

What is the current knowledge on the topic?

Previous studies have focused on the effect of genetic polymorphisms in candidate genes 

on short-term changes in metformin response. Additionally, studies have developed 

computational models to capture short-term pharmacodynamic changes without 

consideration of long-term disease progression.

What question did this study address?

In this study, we combined quantitative pharmacology with computational genetic 

analysis techniques to investigate the effect of genetic variants in biologically and 

pharmacologically meaningful genes on long-term disease progression of patients with 

type 2 diabetes on metformin therapy.

What this study adds to our knowledge

This study provides evidence that genetic polymorphisms in CSMD1 and membrane 

transporter gene SLC22A2 are significant influencers of disease progression, affecting 

the long-term trajectory of HbA1c levels. This study also adds a robust quantitative 

pharmacology model that predicts long-term changes in HbA1c levels, which if 

validated, may be used as a valuable tool to predict long-term outcomes for patients.

How this might change clinical pharmacology or translational science

To date, this is the first study to explore the effect of biologically and pharmacologically 

relevant genes on long-term disease progression of patients taking metformin. This is also 

the first study to investigate long-term HbA1c disease trajectories. In the future, 

combining genotyping of biologically and pharmacologically relevant genes with proper 

consideration of demographic and clinical predictors may be used to inform metformin 

therapy in T2D patients.
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Figure 1. 
Workflow of longitudinal modeling, genetic analysis and the potential clinical impact on 

individualizing metformin therapy. Longitudinal HbA1c modeling is followed by a clinical/

demographic analysis of model parameters using a step-wise approach. Once model 

parameters have been corrected for by clinical and demographic factors, a genetic analysis 

pipeline was deployed using multiple approaches; Disease-based and pharmacologically 

relevant genes were selected as part of the candidate gene selection. A hyperlasso regression 

and a mode-based approach were sequentially used to develop the final HbA1c model. 

Simulations were then performed using the final HbA1c model in order to determine the 

clinical impact of identified clinical, demographic and genetic factors. This work sets the 

stage for future research groups to replicate and validate the clinical impact of identified 

factors on external datasets.
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Figure 2. 
Longitudinal HbA1c levels over time and model based visual predictive check. The plot to 

the left shows raw HbA1c observations over time. On the right plot, a visual predictive 

check is shown, where the solid black line highlights the median observed profiles. The 

shaded regions indicate the 95th and 5th percentiles (ends) and the range of median simulated 

profiles (center) of simulated predictions from the visual predictive check.
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Figure 3. 
Top genetic and demographic covariates on long term HbA1c levels. A. The effect of 

covariates on the simulated median (bands show 5th and 95th CI of simulated median) of 

HbA1c levels at the 1-year mark. B. The effect of covariates on the simulated median (5th 

and 95th CI of simulated median) of HbA1c levels at the 5-year mark. A normal individual 

here represents a hypothetical patient with no minor alleles of any of the identified variants 

with median age, body weight, and serum creatinine values.
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Figure 4. 
Effect of SNP combinations in CSMD1, SLC22A2, and WWOX on the dynamics of HbA1c 

levels. A: Simulated median HbA1c levels (with 95% CI bands) over 5 years comparing 

carriers and non-carriers of CSMD1 minor (risk) alleles. B: Simulated median HbA1c levels 

over 5 years comparing carriers and non-carriers of SLC22A1/WWOX genes minor alleles. 

Blue shaded region with solid line: Simulated median for patients carrying no minor alleles 

with 5th and 95th confidence interval. Red/green shade with dashed line: Simulated median 

for patients carrying minor alleles of labeled gene(s) with 5th and 95th confidence interval of 

median.
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Table 1

Baseline characteristics of patients with Type II Diabetes

Clinical Site N (%)

Total patients 1056

Kaiser South East 154 (15%)

Marshfield Clinic 150 (14%)

Vanderbilt 251 (24%)

Kaiser Northern California 501 (47%)

Categorical Variable N (%)

Males 415 (61%)

Females 641 (39%)

European Americans1 376 (36%)

African Americans 665 (63%)

Asian Americans and Others 15 (1%)

Continuous Variable Median (range)

Age (years) 55 (23–90)

Body weight (kg) 96 (34–212)

Average Serum Creatinine (mg/dL) 0.91 (0.5–2.0)

Baseline HbA1c (%) 7.6 (5.6–17.9) (60 mmol/mol (38–172 mmol/mol)

Metformin daily dose (mg) 1000 (200–2500)

# HbA1c samples/patient 5 (1–45)

Years on study 1.43 (0.28–13.5)

1
Ethnicities reported are all self reported.

2
This is the average daily dose of metformin calculated from metformin start day up to the day, where minimum HbA1c levels were achieved 

between 3–18 months (and before other anti-diabetic drug or insulin was added). There was one patient, as noted in the electronic medical record, 
who had <250 mg average metformin dose due to an early stop of metformin (at 1000 mg) for several months and then restarted the metformin at 
500 mg. As a result, the average metformin dose was <250mg.
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Table 2

Population pharmacodynamic model derived estimates and bootstrap results for model parameters

Final Model Parameter Median (%RSE)1 Median (90% CI)2

Baseline HbA1c Level (%) 7.74 (1) 7.73 (7.6–7.8)

Half Life of Effect (days) 40.9 (6) 41.2 (36.8–45.7)

Metformin Effect Magnitude EFF 13.1% (5) 13.0 (12.1–14.4)

Disease Progression Estimate DISPR3 (all patients) 82.2 (67) 75.3 (32.6–249)

Boxcox transformation parameter on Baseline 2.38 (9) 2.41 (1.99–2.78)

Boxcox transformation parameter on DISPR −0.246 (15) −0.26 (−0.31–−0.20)

KLOSS 0.205 (86%) 0.266 (0.05–0.657)

Between-subject variability (% variance)

Between-subject variability (Baseline) 16.9 (3) 16.6 (15.9–17.8)

Between-subject variability (Metformin Effect Magnitude METFEFF) 76.4 (4) 75.9 (71.7–81.6)

Between-subject variability (Disease Progression DISPR) 324 (17) 390 (164–418)

Covariance of parameters (%)

Correlation Baseline-METFEFF 0.114 (1) 0.11 (0.101–0.136)

Correlation Baseline-DISPR 0.033 (3.6) 0.03 (−0.07–0.14)

Correlation DISPR-METFEFF 0.204 (21) 0.31 (−0.42–0.95)

Residual error model

Proportional error (%) 0.098 (3) 0.098 (0.092–0.101)

Additive error 0.1 (FIXED) 0.1 (NA)

Derived Clinical Parameters Simulated Median (90% CI)

Estimated onset of disease progression4 321 (309–332) days

Estimated yearly rate of HbA1c increase on Metformin4 0.1 %HbA1c (0.07–0.13)

Estimated yearly rate of HbA1c increase not on Metformin4 0.16 %HbA1c (0.08–0.22)

1
Typical value of parameter in final model. RSE= Relative standard error (%), also known as the precision of the parameter estimate.

2
Confidence interval for the population pharmacodynamic parameter following bootstrap results. Covariance of parameters are shown in 

untransformed format.

3
DISPR is the disease progression model parameter that affects the synthesis rate of HbA1c and longitudinal HbA1c levels through the following 

equations. (1) DADT(A1) = KON*(1+DISPR) - KLOSS*A(1) and (2) DADT(A2) = A(1)*(1-METFEFF) - KOUT*A(2). Where A(1) represents 

the synthesis rate of HbA1c (KSYN), and A(2) represents HbA1c levels.

4
Yearly rate of HbA1c increase was based on simulated median yearly increase over the first three years following the onset of disease progression 

(i.e. 321 days). The median and 90%CI of the onset and yearly rate of HbA1c increase was calculated across simulations. For example, each 
simulation provided a median, which was then summarized across 1000 simulations.
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