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A latent genetic subtype of major depression identified by
whole-exome genotyping data in a Mexican-American cohort
C Yu1,2, M Arcos-Burgos3,4, J Licinio1,2,5 and M-L Wong1,2

Identifying data-driven subtypes of major depressive disorder (MDD) is an important topic of psychiatric research. Currently, MDD
subtypes are based on clinically defined depression symptom patterns. Although a few data-driven attempts have been made
to identify more homogenous subgroups within MDD, other studies have not focused on using human genetic data for MDD
subtyping. Here we used a computational strategy to identify MDD subtypes based on single-nucleotide polymorphism genotyping
data from MDD cases and controls using Hamming distance and cluster analysis. We examined a cohort of Mexican-American
participants from Los Angeles, including MDD patients (n= 203) and healthy controls (n= 196). The results in cluster trees
indicate that a significant latent subtype exists in the Mexican-American MDD group. The individuals in this hidden subtype have
increased common genetic substrates related to major depression and they also have more anxiety and less middle insomnia,
depersonalization and derealisation, and paranoid symptoms. Advances in this line of research to validate this strategy in other
patient groups of different ethnicities will have the potential to eventually be translated to clinical practice, with the tantalising
possibility that in the future it may be possible to refine MDD diagnosis based on genetic data.
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INTRODUCTION
The chronicity of major depressive disorder (MDD) results in
tremendous medical, social, and economic impact. MDD is a major
contributor to global disease burden and produces considerable
morbidity and mortality.1–5 Despite recent advances,6 little is
known about its underlying fundamental biology and much work
still needs to be done to fully elucidate the genetic factors that
confer susceptibility to MDD.7–10 Clinically, major depression has
been classified based on various, distinct features that include
course, periodicity, qualitative and quantitative types of symp-
toms, clinical features, age or phase of life, and cause.11 Those
categories are based on historical observations, and sometimes
are unconvincing or controversial. For example, atypical depres-
sion is the most common form of depression in outpatients, but
beyond the well-characterized constellation of symptoms (mood
reactivity, leaden paralysis, hyperphagia, hypersomnia and rejec-
tion sensitivity) that define it, the biological course of this
presentation remains unknown.12 It has not yet been established
if atypical depression is a stable subtype or if it is just one of
several forms of MDD that an individual may express during a
lifetime of recurrent depressions.13,14 As different subtypes of
MDD may respond differentially to various medications, it is
critical that we elucidate the natural course of this disorder.
Efforts to explore subtypes of depression have recently been

made using sophisticated statistical models on clinical data;15–20

however, there has been no studies on genetic MDD subtyping.
Recent advances in high-throughput genomic technologies
provide considerable opportunities for medical research. Clinical
care appears to be moving toward genotyping/sequencing-based

precision medicine, and single-nucleotide polymorphism (SNP)
genotyping is currently the most popular technique used in
genome-wide association studies, which identify variations that
are significantly associated with a trait or disease.21 In addition to
searching for SNPs or genes that are significantly associated with a
disease, it is also important to understand whether genetic data
could be used to identify disease subtypes.
Here we developed a computational strategy that identifies

genetic subtypes using functional SNPs. A group of Mexican-
American patients from Los Angeles was examined in this study.
We chose this group because the Hispanic population is currently
the largest ethnic minority group in the United States, represent-
ing over 37 million people, and within this group, almost 70% are
Mexican-Americans.22 Although this population is growing mark-
edly, there is little research on psychiatric diagnosis and treatment
in this group.23 The idea for this new approach arose from
distance-based phylogenetic analyses of genetic sequences
described by us earlier.24–28 In the proposed methodology, we
applied Hamming distance on a SNP set to measure the genetic
similarity between two individuals. Then, we reconstructed a
cluster tree based on the Hamming distance matrix of all
individuals; cluster relationships in the tree revealed interesting
and meaningful MDD subtypes.

MATERIALS AND METHODS
The Los Angeles Mexican-American cohort
We investigated a Los Angeles Mexican-American group of 203 MDD
patients (50.88%) and 196 healthy controls (49.12%) aged 19–65 years,
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which was a convenience sample, as we had previously obtained and
performed classical genetic analysis on functional SNP data in this
cohort.29 Participants provided written informed consent, and detailed
demographic, epidemiological and clinical descriptions were previously
described.30–32 The study was registered in ClinicalTrials.gov
(NCT00265291), and approved by the Institutional Review Boards of the
University of California Los Angeles and University of Miami, USA, and by
the Human Research Ethics Committees of the Australian National
University and Bellbery, Australia.
Individuals in this group had three or more grandparents born

in Mexico. MDD was diagnosed using the SCID (Structured Clinical
Interview for DSM-IV (Diagnostic and Statistical Manual IV edition)).
Patients met diagnostic criteria for current, unipolar major depressive
episode, participated in a pharmacogenetic study of antidepressant
treatment and had an initial HAM-D 21 (21-Item Hamilton
Depression Rating Scale) score of 18 or greater with item number 1
(depressed mood) rated 2 or greater. MDD was defined as five out of nine
criteria in the SCID. The structured clinical interview for the DSM-IV Axis I
Disorders had a mean kappa score for sensitivity and specificity among
raters of 0.84–0.85. Raters were experienced bilingual clinical personnel
(nurses, social workers and physicians) using Spanish or English versions of
questionnaires and rating scales, and diagnosis was confirmed by a
research psychiatrist.30–32 Control subjects responded that they were in
good health and answered to acculturation questionnaires. However, they
were not screened for medical illnesses and did not responded to
structured psychiatric interviews. They were age- and gender-matched
Mexican-American individuals recruited from the same community in Los
Angeles.

SNP genotyping data analyses
The cohort was genotyped by the Australian Genome Research Facility
(North Melbourne, VIC, Australia; www.agrf.org.au) using the Illumina
HumanExome BeadChip-12v1_A (San Diego, CA, USA), which exonic
content consists of 4250 000 markers representing diverse populations
and a range of common conditions. All samples passed the Illumina
expected SNP call rate (499%). Detailed genotyping data analyses have
been reported in our recent work and briefly described here.29 We
analyzed 83 898 common and rare SNP variants that remained after raw
whole-exome SNP data (247 909 variants) from 399 Mexican-American
subjects, were filtered by a pipeline that considered call rate, number of
alleles and Hardy–Weinberg equilibrium deviation. The identity by descent
matrix between all pairs of individuals was estimated after linkage
disequilibrium pruning and used for quality control and for the mixed
linear models analyses. Then, the association between MDD and those
SNPs was analyzed using single- and multi-locus linear mixed-effect
models33 with up to 10 steps in the backward/forward optimization
algorithm. Models included fixed (SNPs, gender and age) and random
(family or population structure) effects and were both implemented in SVS
8.3.0 (Golden Helix, Bozeman, MT, USA). A total of 19 common SNPs
(rs41310573, rs201935337, rs140395831, rs56293203, rs78562453,
rs115054458, rs143696449, rs748441912, rs62001028, rs150952348,
rs782472239, rs112610420, rs142029931, rs201483250, rs200897153,
rs3744550, rs115668237, rs56344012 and rs200520741) in 18 genes were
significantly associated with MDD at the genome-wide false discovery rate
o0.05. It is worth mentioning that principal component analysis of
random effects clearly showed the absence of family or population
stratification in this cohort.29 In the approaches described below, we tested
all 83 898 variants and the 19 significant variants separately.

The Hamming distance between two individuals
The traditional genetic distance, such as in Nei et al.34 and Goldstein
et al.,35 is designed as a measure of the genetic divergence between
populations within a species; and thus it is not appropriate to use this
approach to explore the genetic variations associated with a complex
disease within a human population, namely, Mexican-American. Here we
introduce the Hamming distance,36 which is a natural distance without the
assumption of any model of mutation/substitution rate, to investigate the
genetic similarity between two individuals based on a set of SNPs.
Let S be a SNP set that contains n SNPs. We use SNPk to represent the

SNP indexed k (k=1, …, n). Thus, S= {SNP1, SNP2, …, SNPn}. If P and Q are
two individuals, their genotypes in SNP sets are respectively named SP and
SQ. Let SP be SNPP1; SNP
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Table 1, individuals P, Q and R show their genotypes in a six-SNP set. Thus,
the Hamming distance between P and Q is 5, the Hamming distance
between P and R is 4 and the Hamming distance between Q and R is 2. Our
hypothesis was that if two individuals have a closer Hamming distance,
then those two individuals would have more similar phenotypes, such as
diseases or traits. In the above example, we assume that Q and R possess
more similar phenotypes.
The population stratification must be corrected before the SNP set can be

used in this method. Principal component analysis was used to confirm
there was no family or population structure among individuals in our
Mexican-American cohort.29 In a given group of individuals, we can calculate
their Hamming distance matrix based on a specific SNP set. After obtaining
the distance matrix across the individuals, two methods can be used to map
the distance matrix into a two-dimensional picture: (1) the multi-dimensional
scaling (MDS) method and (2) the clustering tree method.

MDS and the Hamming distance matrix
The classical MDS method proposed by Torgerson37 is aimed at represent-
ing high-dimensional data or a distance matrix into a low-dimensional
space with preservation of similarities between data points, which can
visually disclose some structures hidden in the data. We used the classical
MDS method to map the Hamming distance matrix into a two-dimensional
Euclidean plane, and in this plane, each individual is represented by one
point in the scatter plot. The MDS method gives a data visualization of all
individuals and aims at preserving the between-individual Hamming
distances in a two-dimensional space as accurately as possible.

The clustering tree method and the Hamming distance matrix
We drew cluster trees employing hierarchical cluster analysis of Hamming
distance matrix data. We used the popular distance-based neighbor-
joining method,38 which is a bottom-up agglomerative strategy for
reconstructing trees. Each external node in the tree represents one
individual, and the edge length in the tree indicates exactly the Hamming
distances among individuals. Cluster trees were drawn using the MEGA 6
software39 (www.megasoftware.net).

Statistical analysis
The difference between two group means on each item was tested using
an independent two-sample Student’s t-test. Multiple testing was
addressed by correcting P-values using the false discovery rate method,
and the significance level was set at ⩽ 0.05.

Code availability
All data were analyzed using the R software (www.r-project.org), and the
code can be accessed from the authors.

RESULTS
MDS visualization on two SNP sets
In Supplementary Table S1, we summarize descriptive statistics of
gender, age, Hamilton depression rating scale (HAM-D) scores and
educational levels for all Mexican-American subjects. Following
the proposed method, we used the normalized Hamming
distances (NHD) to obtain the distance matrices cross the 399

Table 1. Hamming distances of three subjects in a six-SNP set

Genotype SNP1
(C|T)

SNP2
(A|T)

SNP3
(G|T)

SNP4
(A|G)

SNP5
(C|G)

SNP6
(C|T)

Subject P CC AT GG AG CG CC
Subject Q CT AA GG GG CC TT
Subject R CT AA GG AA CC CC

Abbreviation: SNP, single-nucleotide polymorphism.
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participants for the SNP set of 83 898 variants and the SNP set of
19 variants. We checked the pairwise NHD in the (i) MDD group,
(ii) control group and (iii) MDD cross-control group. In the MDD
cross-control group, each pairwise distance was calculated
between one individual in the MDD group and one individual in
the control group. For the SNP set of 83 898 variants, the NHD
mean± s.d. was 0.185 ± 0.016, 0.184 ± 0.015 and 0.186 ± 0.008 for
the MDD, control and MDD cross-control groups, respectively. For
the SNP set of 19 variants, the NHD mean± s.d. was 0.516 ± 0.301,
0.222 ± 0.163 and 0.426 ± 0.308 for the MDD, control and MDD
cross-control groups, respectively. Then, we applied the classical
MDS to map the two distance matrices in a two-dimensional
Euclidean plane, in which each point in the plane represents one
individual. Figure 1a, which is based on 83 898 SNPs, shows no
significant difference between cases (blue points) and controls
(red points). However, in Figure 1b, which is based on 19
significant variants, there are clearly some cases (blue points) that
scatter far away from other individuals, especially from controls

(red points). This interesting finding implies that a latent subgroup
of MDD cases may exist in this cohort.

Subtype identification using cluster tree
We applied the neighbor-joining method to reconstruct the
cluster trees in Figures 2 and 3 to the distance matrices data

Figure 1. MDS two-dimensional visualization of 399 Mexican-
American subjects (MDD cases are represented by blue dots and
controls are represented by red dots) in (a) the 83 898 SNP set and in
(b) the 19 significant SNP set. MDD, major depressive disorder; MDS,
multi-dimensional scaling; SNP, single-nucleotide polymorphism.

Figure 2. Cluster tree for 399 Mexican-American subjects (MDD
cases are represented by blue external nodes and controls are
represented by red external nodes) in the 83 898 SNP set. MDD,
major depressive disorder; SNP, single-nucleotide polymorphism.

Figure 3. Cluster tree for 399 Mexican-American subjects (MDD cases
are represented by blue external nodes and controls are represented
by red external nodes) in the 19 significant SNP set. MDD, major
depressive disorder; SNP, single-nucleotide polymorphism.
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across the 399 subjects for the SNP set of 83 898 variants and the
SNP set of 19 variants, respectively. In Figure 2, which is based on
83 898 SNPs, there is a significant subgroup of MDD cases (marked
in green color to display its branches) in the cohort, although the
normalized Hamming distances of this subgroup are not
significantly away from the other subjects. In Figure 3, which is
based on 19 significant variants, the MDD subgroup (also marked
in green color) in the tree looks very obvious. This also implies that
the 19 significant SNPs detected by genome-wide association
studies can indeed capture most of the information from the
83 898 common SNPs. The two newly found subgroups in
Figures 2 and 3 contain the same 41 MDD subjects (see
Supplementary Figures S1 and S2 and Supplementary Table S1
for details), which we consider as a latent subtype in the Mexican-
American MDD group.
Our new approach shows that a potential subtype exists in our

Mexican-American MDD sample. We have confirmed that there
were no blood relatives between those Mexican-American
individuals.29 Therefore, the identification of subgroups in the
cluster trees was not due to genetic relatedness. Supplementary
Table S1 also summarizes descriptive statistics of gender, age,
HAM-D scores and educational levels for the identified subgroup
of 41 MDD cases. There are 150 males and 249 females (sex ratio
of 60.2%) in our Mexican-American cohort with an average age of
39.2 years with s.d. 11.5. In the latent MDD subgroup, there are 41
subjects (15 males and 26 females) with the sex ratio of 57.7% and
an average age of 38.9 years with s.d. 10.3. Therefore, this latent
MDD subgroup was not associated with gender or age.
Table 2 contains the statistical results of HAM-D 21 items for the

MDD latent subtype group and the remainder group of MDD
patients. Although false discovery rate did not identify significant
results, the original t-tests showed potential significant symptom
differences between two groups—insomnia middle (decreased),
anxiety (increased), depersonalization and derealisation (decreased),
and paranoid symptoms (decreased).

DISCUSSION
In this study, we developed a computational strategy to identify
MDD subtypes based on SNP genotyping data using Hamming
distance and cluster analysis. The results in cluster trees indicate
that a significant latent subtype exists in the Mexican-American
MDD group. The individuals in the hidden subtype have increased
common genetic substrates related to MDD and they may also
have more anxiety, and less middle insomnia, depersonalization,
derealisation and paranoid symptoms.
We used the Hamming distance on SNP data to generate the

distance matrix for subjects. To show the close/distant relation-
ships of subjects in a two-dimensional space, we used the MDS
and neighbor-joining tree methods. Both methods can project
individuals in a two-dimensional plane. The MDS worked well with
the set of 19 significant SNPs (Figure 1b) but not with the set of
83 898 SNPs (Figure 1a). However, the neighbor-joining tree
worked well for the sets of 19 significant SNPs and 83 898 SNPs;
therefore, both Figures 2 and 3 identify the same MDD subtype. It
is known that the MDS method may lose distance information in
the conversion process from the distance matrix to a two-
dimensional projection. Therefore, the Euclidean distance (visual
representation) between two points in the MDS two-dimensional
plane may differ from the original Hamming distance. In contrast,
the neighbor-joining tree method preserves the original distance
between points. The additive distance between two leaf nodes in
the tree is identical to the one in the distance matrix. Furthermore,
among distance-based tree construction methods, the neighbor-
joining algorithm does not assume a constant rate of evolution, as
opposed to the molecular clock hypothesis that has always been
controversial.40,41 Because of its low computational complexity,
the neighbor-joining algorithm can be performed very fast and is
widely used to generate phylogenetic trees of a large number of
biological species or other entities.42 Thus, to obtain an accurate
subtyping identification, we recommend the phylogenetic cluster

Table 2. The statistical analysis on HAM-D scores for the group of MDD patients in the identified subtype and the group of MDD patients not in the
identified subtype

HAM-D 21 items Score range Mean score for MDDs in the
subtype

Mean score for MDDs not in the
subtype

t-value P-value FDR

1. Depressed mood 0–4 1.88 1.73 0.5851 0.2799 0.4024
2. Feelings of guilt 0–4 1.36 1.42 − 0.2836 0.3887 0.4686
3. Suicide 0–4 0.70 0.52 1.0234 0.1544 0.3222
4. Insomnia early 0–2 1.06 1.11 − 0.2761 0.3915 0.4686
5. Insomnia middle 0–2 0.76 1.03 − 1.7261 0.0438* 0.2519
6. Insomnia late 0–2 0.97 1.14 − 0.9664 0.1681 0.3222
7. Work and activities 0–4 1.85 1.81 0.1653 0.4345 0.4759
8. Retardation 0–4 0.73 0.53 1.1102 0.1349 0.3169
9. Agitation 0–4 0.61 0.52 0.6073 0.2725 0.4024
10. Anxiety 0–4 1.55 1.14 1.9417 0.0276* 0.2377
11. Anxiety somatic 0–4 1.48 1.50 − 0.0874 0.4653 0.4865
12. Somatic symptoms gastro-intestinal 0–2 0.39 0.34 0.4015 0.3445 0.4661
13. Somatic symptoms general 0–2 1.27 1.13 1.0965 0.1378 0.3169
14. Genital symptoms 0–2 1.18 1.28 − 0.6405 0.2617 0.4024
15. Hypochondriasis 0–4 0.28 0.48 − 1.3961 0.0830 0.2795
16a. Loss of weight (rating by history) 0–2 0.45 0.31 0.7707 0.2217 0.3922
16b. Loss of weight (measured weight
change)

0–2 0.36 0.31 0.2368 0.4075 0.4686

17. Insight 0–2 0.24 0.38 − 1.3139 0.0960 0.2795
18a. Diurnal variation: AM worse 0–2 0.82 0.82 0.0082 0.4967 0.4967
18b. Diurnal variation: PM worse 0–2 0.56 0.86 − 1.5833 0.0590 0.2714
19. Depersonalization and derealisation 0–4 0.15 0.47 − 2.3350 0.0108* 0.2377
20. Paranoid symptoms 0–3 0.03 0.20 − 1.8881 0.0310* 0.2377
21. Obsessional and compulsive symptoms 0–2 0.06 0.17 − 1.3071 0.0972 0.2795
Total score 0–67 18.12 18.42 −0.1815 0.4282 NA

Abbreviations: FDR, false discovery rate; HAM-D 21, 21-Item Hamilton Depression Rating Scale; MDD, major depressive disorder; NA, not available. We use * to
show the significant test results.
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approach to build the hierarchical tree for those subjects. Actually,
the Hamming distance is a powerful mathematical tool that can
be used for many genetic applications, such as checking
population structures43 or family-control analysis.44

Our Mexican-American cohort and the International Haplotype
Map Project (HapMap) cohort were recruited from the same
community in Los Angeles by the same team; thus, they both have
an admixture of 49% European, 45% Indigenous American and 5%
African ancestries.45 According to the International HapMap 3
Consortium46 and the 1000 Genomes Project Consortium,47 it
would be expected that individuals with African ancestry, such as
Mexican-Americans, have an increased number of variants
compared with other populations, such as Northern European.
Future work is needed to extend our new methodology to other
populations. Some distance formulae such as the Hamming
distance may need adjustments for different populations.
We used our existing whole-exome SNP genotyping data in the

work described here. The fact that those subjects fail to be
clustered as expected into two big groups (cases and controls)
may be due to the SNP set selection. Without doubt, a larger SNP
set would reveal more interesting and comprehensive findings. As
whole-genome sequencing costs are projected to decrease
further, we may have the opportunity to examine single-
nucleotide variant set, which involves much more individual
genetic data. Consequently, further studies utilizing our method
should examine larger genotyping or sequencing data. In this
work, we tested the clinical relevance of our new genetic subtype
using HAM-D 21 items. Our statistical results did not show
significant differences between patients in the new subtype and
the remaining patients for most HAM-D items. This could be
explained by the high complexity of MDD clinical symptoms.
Therefore, to investigate more external clinical variables, future
research needs to be performed using longitudinal data for
depressed patients with detailed information on course of
depression, antidepressant responses and suicidality.
To the best of our knowledge, this is the first study on genetic

subtyping of MDD. Genome-wide association studies examine
genome-wide genetic variants in case and control samples to
identify variants that are associated with a trait or disease.
Genome-wide association study association findings do not
directly contribute to disease subtyping. Therefore, the knowledge
that our 19 SNPs were significantly associated with MDD did not
translated directly into clear MDD subtypes, which could not be
identified without the introduction of the Hamming distance and
neighbor-joining tree analyses. Results displayed graphically in
cluster trees are user-friendly and allow non-experts to easily
visualize the close/distant relationships between subjects. Our
approach may result in a useful future clinical predictive/
diagnostic tool. One could evaluate whether genotyping data
from a new subject could be used to determine whether that
subject would be within or close to an existing MDD genetic
subtype. However, further studies are needed using cohort of
different ethnicities to determine whether such a strategy may be
successfully translated into clinical practice. This method, in
concert with clinical symptom data, has the potential to eventually
be translated to clinical practice and could refine the ability to
diagnose and classify depressed patients. Better understanding of
MDD subtypes may help optimize treatment approaches.
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