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A continuum of genetic liability for minor and major
depression
EC Corfield1, Y Yang1, NG Martin2 and DR Nyholt1

The recent success of a large genome-wide association (GWA) study—analysing 130 620 major depression cases and 347 620
controls—in identifying the first single-nucleotide polymorphism (SNP) loci robustly associated with major depression in Europeans
confirms that immense sample sizes are required to identify risk loci for depression. Given the phenotypic similarity between major
depressive disorder (MDD) and the less severe minor depressive disorder (MiDD), we hypothesised that broadening the case
definition to include MiDD may be an efficient approach to increase sample sizes in GWA studies of depression. By analysing two
large twin pair cohorts, we show that minor depression and major depression lie on a single genetic continuum, with major
depression being more severe but not aetiologically distinct from minor depression. Furthermore, we estimate heritabilities of 37%
for minor depression, 46% for major depression and 48% for minor or major depression in a cohort of older adults (aged 50–92).
However, the heritability of minor or major depression was estimated at 40% in a cohort of younger adults (aged 23–38). Moreover,
two robust major depression-risk SNPs nominally associated with major depression in our Australian GWA data set produced more
significant evidence for association with minor or major depression. Hence, broadening the case phenotype in GWA studies to
include subthreshold definitions, such as MiDD, should facilitate the identification of additional genetic risk loci for depression.
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INTRODUCTION
Major depressive disorder (MDD) is a common, complex trait with
an estimated genetic heritability of ~ 40%.1 However, until
recently, genome-wide association (GWA) studies in large
European samples have failed to robustly identify genetic variants
contributing to MDD.2–11 In July 2015, two genome-wide signi-
ficant (Po5 × 10− 8) single-nucleotide polymorphism (SNP) loci
(rs12415800 near the SIRT1 gene, P= 2.53 × 10− 10, and rs35936514
in the intron of LHPP, P= 6.45 × 10− 12) were reported to be
associated with severe and recurrent MDD in a sample of Han
Chinese women (5282 cases and 5220 controls);12 however, these
SNPs were not associated in the Psychiatric Genomics Consortium
GWA study of 9240 European MDD cases and 9519 controls.11

In August 2016, the first SNP loci robustly associated with major
depression in Europeans were reported.13 This landmark study
analysed a combined cohort of 130 620 self-reported and clinically
evaluated lifetime major depression cases and 347 620 controls,
and identified 17 genome-wide significant SNPs within 15
independent genomic regions. The implicated SNP risk loci com-
prise rs10514299 in an intron of TMEM161B-AS1 (P= 9.99 × 10− 16),
rs1518395 in an intron of VRK2 (P= 4.32 × 10− 12), rs2179744 in an
intron of L3MBTL2 (P= 6.03 × 10− 11), rs11209948 downstream of
NEGR1 (P= 8.38 × 10− 11), rs454214 upstream of MEF2C
(P= 1.09 × 10− 9), rs301806 in an intron of RERE (P= 1.90 × 10− 9),
rs1475120 in an intron of LIN28B (P= 4.17 × 10− 9), rs10786831 in
an intron of SORCS3 (P= 8.11 × 10− 9), rs12552 in the 3′ untrans-
lated repeat of OLFM4 (P= 8.16 × 10− 9), rs6476606 in an intron of
PAX5 (P= 1.20 × 10− 8), rs8025231 in an intergenic region between
MEIS2 and TMCO5A (P= 1.23 × 10− 8), rs12065553 in an intergenic

region on chromosome 1 (P= 1.32 × 10− 8), rs1656369 in the
intergenic region between RSRC1 and MLF1 (P= 1.34 × 10− 8),
rs4543289 in an intergenic region on chromosome 5
(P=1.36×10−8), rs2125716 upstream of SLC6A15 (P=3.05×10−8),
rs2422321 downstream of NEGR1 (P= 3.18 × 10− 8) and rs7044150
in the intergenic region between KIAA0020 and RFX3
(P= 4.31 × 10− 8). An important implication of this study is that
immense sample sizes are required to identify a relatively modest
number of MDD risk loci in Europeans (compared to other traits of
similar prevalence and heritability).14

Additional insights into the molecular mechanisms of depres-
sion, in Europeans, were identified in 2016 through the investiga-
tion of depressive symptoms and a broad depression phenotype.
In April, rs7973260 in an intron of KSR2 (P= 1.8 × 10− 9) and
rs62100776 in an intron of DCC (P= 8.5 × 10− 9) were associated
with depressive symptoms.15 Meanwhile, in December, rs9825823
located in the intron of FHIT (P= 8.2 × 10− 9) was associated with a
broad depression phenotype—including MDD and depressive
symptoms.16 Most recently, MDD in adults aged over 27 years was
associated with the intergenic SNP rs7647854 located on
chromosome 3 (P= 5.2 × 10− 11).17

Given the phenotypic similarity between MDD and the less
severe minor depressive disorder (MiDD), we hypothesised that
broadening the case definition to include subthreshold definitions
such as MiDD may provide an efficient means to increase sample
sizes in GWA studies of depression.
In contrast to MDD, the heritability and genetics of MiDD have

not been well investigated. The only difference in diagnosis
between MDD and MiDD is the number of presenting symptoms
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of the Diagnostic and Statistical Manual of Mental Disorders
(DSM-IV) criteria (NB, within the DSM-V, MiDD individuals would
be diagnosed as ‘Unspecified Depressive Disorder’), with MDD
requiring at least five symptoms and MiDD requiring two to four
symptoms.18,19 This phenotypic similarity coupled with a reported
increased risk of MDD in first-degree relatives and patients with
MiDD20–25 suggests that a depression continuum exists, and that
MiDD may be a relevant trait which could be utilised to elucidate
the underlying mechanisms associated with MDD. Therefore, the
present study utilises relative risks (RR) to ensure a similar pattern
of familiarity exists within the study cohorts. In addition,
heritability estimates and the liability threshold model were
utilised to investigate whether minor and major depression lie on
a single genetic continuum. Finally, the association signal of the 17
SNPs robustly associated with major depression in Europeans was
examined utilising both a narrow major depression case
phenotype and a broader depression phenotype including minor
depression (that is, minor or major depression cases).

MATERIALS AND METHODS
Study cohorts
Two independent, community-based cohorts of Australian twin pairs were
analysed within the current study. Initially, the analysis was conducted
within an older adult cohort, the over 50's (aged) study, before being
replicated in a young adult cohort, the Twin 89 (TE) study. Informed written
consent was obtained from each participant, and the studies were
approved by the Human Research Ethics Committee of the QIMR Berghofer
Medical Research Institute.
The over 50’s cohort26,27 contained 1220 twin pairs with complete self-

reported depression classifications (non-depressed, minor depression,
major depression). Current depression classifications were obtained
utilising a combination of responses from the 12-item General Health
Questionnaire (GHQ)28 and the 14-item Delusions-Symptoms-States
Inventory, States of Anxiety and Depression (DSSI/sAD)29 questionnaires.
As previously detailed,30 specific questions from the GHQ and DSSI/sAD
were assigned to the appropriate DSM-IV major depressive episode
criteria.19 If an individual exhibited at least five of the DSM-IV symptom
criteria, of which either depressed mood or anhedonia was reported, they
were assessed as suffering major depression. Similarly, if an individual
exhibited two to four of the DSM-IV symptom criteria (depressed mood,
anhedonia, a change in weight or appetite, insomnia or hypersomnia,
psychomotor agitation or retardation, fatigue or loss of energy, feelings of
worthlessness or excessive guilt, inability to concentrate or make decisions
and thoughts about death, suicidal thoughts, suicidal plans or suicidal
attempts), of which either depressed mood or anhedonia was reported,
they were assessed as suffering minor depression. The remaining
individuals were assessed as non-depressed. Meanwhile, the TE cohort31

contained 2363 twin pairs, with complete lifetime self-reported depression
classifications. Minor depression and major depression classifications
required an individual to report depressed mood and/or anhedonia. In
addition, individuals reporting a total of two to four and five or more
depression symptoms for a period of 2 or more weeks, across their
lifespan, were classified as minor depression and major depression,
respectively. In-depth explanation of depression assessment utilised within
the TE cohort is provided by Yang et al.32

Statistical analysis
Familial clustering of major depression, minor depression and depression
(minor or major depression) was investigated by calculating RR with their
95% confidence intervals (CI) in monozygotic (MZ) and dizygotic (DZ) twin
pairs. RRs were calculated relative to non-depressed individuals. Within MZ
and same-sex DZ twin pairs, RRs were calculated by averaging over using
twin 1 or twin 2 as the proband.33

A major goal of the genetic analysis was to test the multiple-threshold
model, which asserts that different syndromes reflect different levels of
severity on a single dimension, rather than distinct aetiologies.34 The fit of
the multiple-threshold model was tested by calculating the polychoric
correlation for the three-category depression (non-depressed, minor
depression and major depression) classification using POLYCORR.35 The
polychoric correlation assumes that, underlying the observed polychoto-
mous distribution of affection status, there exists a continuous, normally

distributed latent (non-observable) liability.36 That is, the polychoric
correlation is an estimate of the correlation between two latent variables,
where each latent variable is assumed to have a bivariate normal
distribution. A χ2-goodness-of-fit test is used to test whether the
multiple-threshold model provides a good fit to the observed data (that
is, compares the observed frequencies to those predicted by the model). In
addition, polychoric correlations were calculated for minor depression
(excluding major depression cases), major depression (excluding minor
depression cases), two-category depression (non-depressed, minor or
major depression) and three-category depression within MZ and DZ twin
pairs. Comparisons of the correlations between MZ and DZ twin pairs were
used to provide information on the importance of genetic and
environmental factors contribution to the heritability of depression.
Structural equation modelling was utilised to investigate the heritability

of minor depression (excluding major depression cases), major depression
(excluding minor depression cases), two-category depression and three-
category depression. Structural equation modelling was used to estimate
the contribution of additive genetic (A), non-additive (dominance) genetic
(D), common environmental (C) and unique environmental (E) variance
components.37 Adjustments for (linear) age and sex effects were included
in the model. Significance of the variance components was assessed by
comparing the fit of the full model (ACE/ADE) to the nested models (AE, CE
and E) where the effect was dropped, using OpenMx in R.38 The goodness-
of-fit parameters used to assess the differences in the twin models were
the likelihood-ratio χ2-test and the P-value. In addition, model fit was
compared utilising Akaike’s Information Criteria (AIC), with the lowest AIC
indicating the most parsimonious model.39,40

An association analysis was conducted for the 17 genome-wide
significant loci associated with major depression, in Europeans,13 within
the Australian GWA data set. The Australian GWA data set is a community
cohort that contained 3664 unrelated major depression cases, 620
unrelated minor depression cases and 7113 unrelated controls of European
ancestry. In-depth explanation of the genotyping and quality-control
methods utilised within the GWA cohort has previously been detailed by
Medland et al.41 Briefly, standard quality-control measures were utilised,
whereby SNPs with BeadStudio GenCall scores o0.7, call rateo0.95,
Hardy–Weinberg equilibrium P-valueso1× 10− 6 and minor allele fre-
quencies o0.01 were excluded. Imputation was then conducted utilising
HapMap samples of European ancestry. If multiple cases were present
within a family, the most severe case was selected based on the number of
reported DSM depression symptoms, or an individual was randomly
selected if numerous individuals reported the same number of depression
symptoms. Similarly, if multiple controls were available within a family, the
single ‘best’ control was selected based on the lowest number of
depression symptoms reported or an individual was randomly selected if
numerous individuals within a family reported the same number of
depression symptoms. Finally, a single population control was randomly
selected from the remaining families for whom genotyping data but no
depression phenotype data were available.
The association analysis was conducted on 3664 major depression cases

and 7113 controls, using logistic regression with sex as a covariate, using
PLINK.42 The association analysis was then repeated using a broad
depression phenotype, of 4284 cases (3664 major depression+620 minor
depression cases). The results were then compared to ascertain whether
the evidence for association was increased by the addition of minor
depression cases, thus reflecting an increase in power.

RESULTS
The over 50’s (aged) study cohort consisted of 643 MZ twin pairs
(491 female–female (F–F) and 152 male–male (M–M)) and 577 DZ
twin pairs (263 F–F, 73 M–M, 136 female–male (F–M) and 105
male–female (M–F)), with a mean age of 61.30 ± 8.60 (range = 50–
92). The prevalence of minor depression, major depression and
two-category depression was 8.98%, 2.05% and 11.02%, respec-
tively (9.61%, 2.12%, 11.72% in females; 7.38%, 1.88% and 9.26% in
males, respectively). Meanwhile, the TE cohort consisted of 1005
MZ twin pairs (609 F–F and 396 M–M) and 1358 DZ twin pairs (455
F–F, 349 M–M, 301 F–M and 253 M–F) with a mean age of
29.80 ± 2.49 (range = 23–38). The prevalence of minor depression,
major depression and two-category depression was 7.70%, 37.41%
and 45.11%, respectively (7.23%, 42.80% and 50.04% in females;
8.32%, 30.33% and 38.65% in males, respectively).
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Familial clustering of minor depression and major depression
cases was observed (Table 1), with co-twins of minor depression
probands having an increased risk of major depression, and vice
versa, within both cohorts.
No differences in threshold liability distributions were observed

within twin pairs, and across sex and zygosity groups, in either
study cohort. Importantly, none of the multiple-threshold model
goodness-of-fit tests (one for each zygosity group) were
significant at the 5% level within the over 50’s study cohort
(Table 2). Similarly, only one multiple-threshold model goodness-
of-fit test was nominally significant (M–M DZ twin pairs, P= 0.01)
in the TE cohort (Table 2); however, considering goodness-of-fit
tests were performed for each of the five zygosity groups and four
additional combined groupings, this finding is not considered
study-wide significant. Therefore, these results support the validity
of the multiple-threshold model for the DSM-IV classifications for
minor and major depression, and indicate that they can be
conceptualised as different levels of severity on a single
dimension of liability.
The polychoric correlations for the varying depression classifica-

tions were approximately two times larger in MZ compared to DZ
twin pairs within the over 50’s cohort (Table 3). Similarly, with the
exception of the MZ non-depressed–minor depression correlation
(due to small cell counts), the polychoric correlations for the major
depression, two-category depression and three-category depres-
sion were at least two to three times higher in MZ compared to DZ
twin pairs within the TE cohort (Table 3). The observed MZ4DZ
correlations indicate additive genetic factors contribute to the
heritability of depression.
The best-fitting model for all depression classifications in the

over 50’s cohort was the AE model (Table 4). Similarly, the best-
fitting model for major depression, two-category depression and
three-category depression was the AE model in the TE cohort.
Within the over 50’s cohort, unique additive genetic factors

were estimated to explain ~ 37% of the heritability of minor
depression. Similarly, unique additive genetic factors were
estimated to explain ~ 46% and ~ 45% of the heritability of major
depression, within the over 50’s and TE cohorts, respectively
(Table 4). Significantly, the heritability of the two-category model
(combining minor depression and major depression) was esti-
mated at 48% (95% CI: 33–62%), which was almost indistinguish-
able to the three-category model estimate of 47% (95% CI: 33–
60%) in the over 50’s cohort. The observed indistinguishability of
the estimates for unique additive genetic factors between two-
category depression (A: 40%, 95% CI: 23–48%) and three-category
depression (A: 40%, 95% CI: 32–47%) was replicated within the TE
cohort. No significant evidence for sex-specific genetic effects was
observed within the over 50’s or TE cohorts.Ta
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Table 2. Liability threshold model fit P-values

Twin pair Aged TE

Complete pairs 0.41 0.53
MZ 0.73 0.75
MZf 0.64 0.81
MZm 0.62 0.92
DZ 0.46 0.43
DZss 0.66 0.66
DZf 0.34 0.21
DZm 0.64 0.01
DZos 0.46 0.46

Abbreviations: DZ, dizygotic; DZf, DZ female; DZm, DZ male; DZos,
DZ opposite sex; DZss, DZ same sex; MZ, monozygotic; MZf, MZ female;
MZm, MZ male; TE, Twin 89 cohort. Aged: over 50’s (aged) cohort.
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Of the 17 loci robustly associated with major depression in
Europeans,13 two were nominally (Po0.1) associated with major
depression in our Australian data set, SNP rs10514299 between
TMEM161B and MEF2C (allele T: odds ratio (OR) = 1.10, 95%
CI = 1.03–1.17; P= 0.006) and SNP rs11209948 near NEGR1 (allele
T: OR = 1.07, 95% CI = 1.01–1.12; P= 0.05). Broadening our case
phenotype to include an additional 620 unrelated minor depres-
sion cases (providing a total of 4284 unrelated cases) increased
the evidence for association with depression at both loci,
producing more significant P-values of 0.003 and 0.03, respec-
tively. Comparable results were observed utilising a quantitative,
three-category depression classification with P-values of 0.005 and
0.04, respectively.

DISCUSSION
Findings from the present study of two independent twin cohorts
indicate the heritability of minor depression has a genetic
contribution. However, the genetic heritability of minor depres-
sion appears larger in the over 50’s cohort compared to the TE
cohort. In contrast, the genetic heritability estimates for major
depression were comparable at ~ 46% in individuals over 50 and
~ 45% in 23–38 year olds. Within each cohort the contribution of
additive genetic factors was comparable between the two-
category and three-category depression classifications. However,
the genetic heritability estimates were larger at 47–48% in the
over 50’s cohort compared to 40% in the TE cohort. The
differences in heritability estimates between the cohorts are
potentially attributable to the time periods assessed within each
study cohort (that is, current depression in the over 50’s study
compared to lifetime depression in the TE cohort). In addition, the
difference in depression classifications between the study cohorts
explains the higher major depression prevalence within the TE
cohort. Kendler et al.43 have reported a comparable elevation in
lifetime major depression prevalence within an independent
cohort. The authors postulated the higher prevalence of major
depression was likely attributable to a lower average cohort age
than national population cohorts, and the use of self-report rather
than highly structured psychiatric interview—which may under-
estimate population rates of major depression. In 2016, Zeng
et al.44 showed self-declared depression is a valid alternative to
MDD in genetic studies, reporting common genetic effects were
highly correlated with significant genetic contributions associated
with both classifications.
The near-identical genetic heritability estimates of the two-

category and three-category depression classifications and the
results of the liability threshold model indicate minor depression
and major depression lie on a single genetic-liability continuum,
with major depression being more severe but not aetiologically
distinct from minor depression. We note that the evidence for a
genetic contribution to the heritability of minor depression in
younger adults is weak; this is likely due to a relative lack of power
(due to the low number of minor depression cases) within the TE

cohort. Indeed, the genetic heritability estimate for the broad,
two-category depression classification indicates the applicability
of a broad depression phenotype is not specific to the over 50’s
cohort. Therefore, broadening the depression phenotype in
genetic studies by including individuals with a diagnosis of minor
depression or major depression should facilitate the identification
of genetic risk factors associated with depression due to improved
power via increased sample size. Such improved power will be
readily provided through re-analysis of existing GWA data sets
(which currently exclude minor depression-like cases from
analysis), and more cost-effective collection of depression cases
in future studies. As previously outlined by Sullivan,45 GWA studies
will continue to be of great importance for identification of the
underlying biology and genetic architecture of psychiatric
disorders. Indeed, the MDD working group of the Psychiatric
Genomics Consortium has previously emphasised the absence of
reference to the underlying biology or pathophysiology within the
MDD diagnosis.11

Previous MDD GWA analyses have discussed possible
approaches to increase power and enable identification of genetic
risk loci associated with MDD.10 The first approach involves
utilising more homogenous MDD case samples. In 2015, the
CONVERGE consortium utilised this method by selecting 5303 Han
Chinese women with recurrent MDD (of which 85% have the
severe melancholic subtype) and 5337 Han Chinese female
controls screened to exclude MDD to identify the first SNP loci
robustly associated with severe recurring MDD.12 Furthermore, in
2017, Power et al.17 utilised additional phenotypic data to stratify
cases and thereby reduce heterogeneity, which enabled the
identification of a genetic risk locus associated with MDD onset in
adults aged over 27 years. Stratification of MDD cases based on
symptom dimensions represents an alternative method of utilising
phenotypic data to reduce heterogeneity within GWA studies,
with Pearson et al.46 showing common SNPs explain varying
proportions of the variation in the depression symptom dimen-
sions of core depression symptoms, insomnia, appetite and
anxiety symptoms (SNP-based heritability = 14.3%, 30.3%, 29.6%
and 4.7%, respectively). Meanwhile, a complementary approach is
to obtain larger sample sizes, which are more representative of the
general population. This approach can be achieved by broadly
defining depression to detect the common variation of small
effect, given the relatively high prevalence and low heritability of
MDD.10

To demonstrate the utility of using a broader depression
phenotype, we examined the association signal of the 17 SNPs
reported by Hyde et al.,13 in Table 2, reaching genome-wide
significant association with major depression, utilising our
Australian GWA data set. In our Australian sample of 3664
unrelated major depression cases and 7113 unrelated controls,
SNP rs10514299 between TMEM161B and MEF2C and SNP
rs11209948 near NEGR1 were nominally associated with major
depression (P⩽ 0.05). Broadening our case phenotype to include
an additional 620 unrelated minor depression cases (providing a

Table 3. Polychoric correlations with their 95% confidence intervals for depression according to zygosity

Depression classification Aged TE

MZ DZ MZ DZ

Non-depressed, minor depression 0.37 (0.17–0.56) 0.21 (−0.04–0.45) 0.05 (−0.22–0.31) 0.17 (−0.04–0.39)
Non-depressed, major depression 0.46 (−0.01–0.93) — 0.49 (0.41–0.58) 0.19 (0.10–0.28)
Non-depressed, minor or major depression 0.49 (0.33–0.64) 0.25 (0.05–0.46) 0.43 (0.34–0.51) 0.18 (0.10–0.27)
Non-depressed, minor depression, major depression 0.48 (0.33–0.62) 0.24 (0.04–0.43) 0.43 (0.35–0.51) 0.17 (0.09–0.25)

Abbreviations: DZ, dizygotic; MZ, monozygotic; TE, Twin 89 cohort. Aged: over 50’s (aged) cohort.
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total of 4284 unrelated cases) increased the statistical evidence for
association with depression at both loci. Although a subset (1450
cases and 1711 controls) of the 3664 Australian major depression
cases and 7113 controls was part of the Psychiatric Genomics
Consortium MDD GWA11 that was meta-analysed in Hyde et al.,13

these results provide proof-of-principle for using a broader
depression phenotype to increase power in genetic association
studies of depression. In addition, the study by Hyde et al.13

provides evidence that utilising large self-reported depression
data, which broadens the MDD phenotype because of the lack of
restriction to clinically validated MDD cases, is an effective strategy
for overcoming the large heterogeneity of depression. Further
evidence for the utility of broad depression phenotypes in genetic
studies is provided by the investigation of depression symptoms
conducted by Okbay et al.15 and MDD or depression symptoms by
Direk et al.16

Continued use of broad depression phenotypes and large
cohorts without detailed clinical evaluation, such as from large
ongoing commercial (for example, 23 and Me and Kaiser
Permanente) and public (for example, UK Biobank and Generation
Scotland) data sets, should, therefore, identify additional genetic
risk factors and provide the crucial clues to further elucidating the
complex molecular pathways underlying MDD—which can then
be characterised with respect to particular features of depression
via the study of specific patient subgroups in deeply phenotyped
clinical cohorts.
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